EUROGRAPHICS 2006 Tutorial

Developing Mobile 3D Applications
with OpenGL ESand M 3G

K. Pulli and J. Vaarala and V. Miettinen and T. Aarnio and M. Callow

Abstract

Mobile phones offer exciting new opportunities for graphics applicationldpees. However, they also have sig-
nificant limitations compared to traditional desktop graphics environmémtkjding absence of dedicated graph-
ics hardware, limited memory (both RAM and ROM), limited communicationgdvaidth, and lack of floating
point hardware. Existing graphics APIs ignore these limitations and thesrdeasible to implement in embedded
devices.

This course presents two new 3D graphics APIs that address the bpeeis and constraints of mobile/embedded
platforms: OpenGL ES and M3G. OpenGL ES is a light-weight version of ¢éfiekmown workstation standard,
offering a subset of OpenGL 1.5 capability plus support for fixed paittiraetic. M3G, Mobile 3D Graphics
API for Java MIDP (Mobile Information Device Profile), also known as I8R, provides scene graph and
animation support, binary file format, and immediate mode rendering thaddses scene graphs. These APls
provide powerful graphics capabilities in a form that fits well on today’sicks; and will support hardware
acceleration in the future.

The course begins with a discussion of the target environments and thigatiims, and general techniques for
coping with platform/environment constraints (such as fixed point arithinétiés is followed by detailed presen-
tations of the APIs. For each API, we describe the included functionalitycantpare it to related workstation
standards, explaining what was left out and why. We also discuss mbatpects of working with the APIs on
the target platforms, and present strategies for porting existing applicatiadscreating new ones.

Categories and Subject Descript¢scording to ACM CCS) 1.3.6 [Computer Graphics]: Standards

1. Course Syllabus e fixed point programming

1.1. Graphicsfor Mobile Devices

e converting existing OpenGL code to OpenGL ES

e characteristics and constraints of mobile devices

e brief history of mobile 3D graphics
e mobile 3D APIs

1.4, Building Scalable 3D Applications

e mobile graphics platforms

1.2. OpenGL ESOverview e how to scale 3D applications

OpenGL, OpenGL ES, and Khronos
design principles

OpenGL ES 1.0: features, which parts of OpenGL were 1.5. M3G API Overview
kept, what was added

e mobile Java
N Open_GL ES 1.1 features e M3G design principles
e EGL: interface between OpenGL ES and the OS e M3G basic structure and features
e devices, implementations, SDKs, demos e performance tips
e deforming meshes
1.3. Using OpenGL ES o keyframe animation
e demos

e Hello OpenGL ES on Symbian

(© The Eurographics Association 2006.

delivered by

www.eg.org

-G EUROGRAPHICS
: DIGITAL LIBRARY

diglib.eg.org

http://www.eg.org
http://diglib.eg.org

K. Pulli and J. Vaarala and V. Miettinen and T. Aarnio and M.lIB& / Developing Mobile 3D Applicationswith OpenGL ES an8®1

1.6. Using M3G

game development process

asset creation

program development

midlet structure

midlet example

challenges in mobile game development
publishing your content

1.7. Closing and Summary

e current status of mobile graphics standards, both 3D and
2D
e roadmap to future

2. Speakers

Kari Pulli has been an active contributor in both OpenGL
ES and M3G (JSR-184) standardization groups. Kari is a
Research Fellow at Nokia and is currently a Visiting Scien-
tist at MIT. Before joining Nokia in 1999, Kari worked on
graphics at Microsoft, SGI, and Alias|Wavefront, obtained a
PhD at University of Washington in graphics in 1997, and
was the technical head of the Digital Michelangelo project
at Stanford Graphics Lab in 1998-99. Kari is a member of
the Eurographics Executive Committee.

Jani Vaarala is a Graphics SW Architect at Nokia. He has
been actively involved with OpenGL ES standardization,
and headed a project that developed a SW OpenGL ES en-
gine and adapted EGL for Symbian OS. Jani started on 3D
graphics in early 90’s on an Amiga, on which he developed
several award-winning graphics demos.

Ville Miettinen is the CTO and co-founder of Hybrid

Graphics, Ltd. During the last decade he has been involved in
the design and implementation of numerous software prod-
ucts in the games and 3D graphics industries. His research
interests include dynamic code generation and software ras-

with Silicon Graphics for 11 years were he created InPerson,
a collaborative desktop video conferencing system; Mark
was also Cosmo Software’s liaison to the MPEG-4 standards
committee. He previously taught several well-received Sig-

graph courses and is a member of ACM, ACM Siggraph,

IEE, the Khronos Group and the JSR-184 expert group.

3. Further information

Course materials and other re-
lated information can be found at
http://people.csail.nit.edu/ kapu/ nobile_3D course/.

terizers, and he has authored conference and journal papers

on graphics hardware and visibility optimization. He is a
member of ACM SIGGRAPH, the Khronos Group and the
JSR-184 expert group.

Tomi Aarnio is the specification editor and one of the main
contributors in the M3G (JSR-184) standardization group,
and a member of the OpenGL ES group. As a Senior Re-
search Engineer at Nokia, he has been involved in designing
and implementing several mobile graphics engines, most re-
cently heading the implementation of M3G.

Mark Callow is Chief Architect at HI Corporation, the
leader in 3D graphics engines for mobile devices, whose
Mascot Capsul@ Micro3D Engine is found on more than
30,000,000 handsets. Mark leads an international team cre-
ating implementations of M3G and OpenGES and was ac-
tive in the creation of both standards. Prior to HI, Mark was

(© The Eurographics Association 2006.

http://people.csail.mit.edu/kapu/mobile_3D_course/

Developing Mobile
3D Applications with
OpenGL ES and M3G

Kari Pulli Nokia Research Center
Jani Vaarala Nokia

Ville Miettinen Hybrid Graphics

Tomi Aarnio Nokia Research Center

Mark Callow HI Corporation

Challenges for mobile gfx

Small displays
getting much better
Computation
speed
power / batteries

thermal barrier

Memory

State-of-the-art in 2001: %
Japan

J-SH51

J-SHO7 by SHARP
by SHARP }L -
Z 2 4 ~

Characters

High-level API with skinning, flat shading /
texturing, orthographic view

Today’'s program

Start at ?:??

Intro & OpenGL ES
overview
25 min, Kari Pulli

Using OpenGL ES
40 min, Jani Vaarala
OpenGL ES

performance
25 min, Ville Miettinen

State-of-the-art in 2001:

GSM world

The world’s most played

electronic game?

According to The Guardian

(May 2001)

Communicator demo 2001
Remake of a 1994 Amiga demo

<10 year from PC to mobile

State-of-the-art in 2002:

GSM world

3410 shipped in May 2002

A SW engine: a subset of OpenGL
including full perspective (even textures)

3D screensavers (artist created content)

FlyText screensaver (end-user content)

£

Break ?:?? — ?2:??

M3G API overview

45 min, Tomi Aarnio

Using M3G
40 min, Mark Callow

Closing & Q&A

5 min, Kari Pulli

a 3D game NOKIA

—
NOKiIA

State-of-the-art in 2002:

Japan

State-of-the-art in 2003:
GSM world

* Gouraud shading,
semi-transparency,
environment maps

1-3D PolyGame
Boxing

State-of-the-art in 2003:

Japan

* Perspective view,
low-level API

Mission Co 1nder
Multi play Gam

2005 and beyond: HW

* N-Gage ships

* Lots of proprietary 3D engines
on various Series 60 phones

Fathammer’s
Geopod |
on XForge

Mobile 3D in 2004

* 6630 shipped late 2004

— First device to have both
OpenGL ES 1.0 (for C++) and
M3G (a.k.a JSR-184, for Java) APIs

* Sharp V602SH in May 2004

— OpenGL ES 1.0 capable HW
but API not exposed

— Java / MascotCapsule API

Mobile 3D APIs %

Native C/C++
Applications
M3G (JSR-184) Java Ul API

Graphics Hardware | Operating System (Symbian, Linux, .

Overview: OpenGL ES % What is OpenGL? %

Background: OpenGL & OpenGL ES The most widely adopted graphics standard
most OS'’s, thousands of applications
OpenGLES 1.0

Map the graphics process into a pipeline s
OpenGL ES 11 matches HW well projgcting

IMAGING PATH

.m Unpack Pixels Pixel Operations. Image Rasterization clip i"g
EGL: the glue between OS and OpenGL ES | : Hi = Hi | ugh%ng&shading
How can I get it and learn more? == R e | ey

GEOMETRY PATH hid(}}en surface

|W—L~[u\mcwemm]—»(Vertex Operations]—t{:wmw\c Rusterization | b|erﬁiing
A foundation for higher level APIs pixels to sereen
Open Inventor; VRML / X3D; Java3D; game engin@GuEs

What is OpenGL ES? % OpenGL ES 1.0 design %
) targets

OpenGL is just too big for Embedded Preserve OpenGL structure
Systems with limited resources Eliminate un-needed functionality
redundant / expensive / unused
Keep it compact and efficient
<= 50KB footprint possible, without HW FPU

Enable innovation
that can still do almost all OpenGL can allow extensions, harmonize them

memory footprint, floating point HW

Create a new, compact API

mostly a subset of OpenGL

Align with other mobile 3D APIs (M3G / JSR-184)

CoerLES CoertLES

Adoption % Outline %

Symbian OS, S60 Background: OpenGL & OpenGL ES

Brew OpenGL ES 1.0

PS3 / Cell architecture OpenGLES 1.1

Sony’s arguments: Why ES over OpenGL EGL: the glue between OS and OpenGL ES

» OpenGL drivers contain many features not needed
by game developers
* ES designed primarily for interactive 3D app devs

» Smaller memory footprint
CooLES CoertLES

How can | get it and learn more?

Functionality: in / out? (1/7) %

Convenience functionality is QUT

GLU gluOrtho2D(0,1,0,1)
P VS.

(utility library) g10rtho(0,1,0,1,-1,1 z

evaluators Dok

(for splines) L

feedback mode =

(tell what would draw without drawmg) o
gINewList(1l, GL_COMPILE)
myFuncThatCal 1sOpenGL()
glEndList(Q)

selection mode
(for picking, easily emulated)

Functionality: in / out? (2/7) %

Remove old complex functionality
glBegin — glEnd (OUT); vertex arrays (IN)

new: coordinates can be given as bytes
AN J/

display lists glcallList(1)

(collecting and preprocessing commands)
CoertLES

Functionality: in / out? (3/7)

Simplify rendering modes

double buffering, RGBA, no front buffer access
Emulating back-end missing functionality is
expensive or impossible

full fragment processing is IN
alpha / depth / scissor / stencil tests,
multisampling,
dithering, blending, logic ops)

CoertLES

Functionality: in / out? (5/7) %

2D texture maps IN
1D, 3D, cube maps OUT

borders, proxies, priorities, LOD clamps OUT

multitexturing, texture compression IN (optional)

texture filtering (incl. mipmaps) IN
g (pmaps) WOW W
new: paletted textures IN E & £

09
)

CootLES

static const GLbyte verts[4 * 3]
-1, 1, 1, 1,

1, -1, 1, -1, -1, 1 }
static const GLubyte colors[4 *3] =
{ 255, 0, O, 255, 0, O,

0,255, O, 0,255, 0 };

glVertexPointer(3,GL_BYTE,O, verts);
glColorPointerf(3,GL_UNSIGNED_BYTE,

= 0, colors);
/ \ glDrawArrays(GL_TRIANGLES,

Functionality: in / out? (4/7)

Raster processing

ReadPixels IN, DrawPixels and Bitmap OUT
Rasterization

OUT: PolygonMode, PolygonSmooth, Stipple

CoertLES

Functionality: in / out? (6/7)

Almost full OpenGL light model IN

back materials, local viewer,

separate specular OUT w

. .. GL_POINTS
Primitives

IN: points, lines, triangles wﬁ;}ﬁrw

vE
GL_LINES

OUT: polygons and quads

GL_TRIANGLES 1‘EEE£B3LJES4

Functionality: in / out? (7/7) %

Vertex processing
IN: transformations

OUT: user clip planes, texcoord generation

Support only static queries

OUT: dynamic queries, attribute stacks

application can usually keep track of its own state

CoertLES

Outline %

Background: OpenGL & OpenGL ES
OpenGLES 1.0

OpenGL ES 1.1

EGL: the glue between OS and OpenGL ES

How can | get it and learn more?

CoertLES

OpenGL ES 1.1: optional %

Draw Texture
fast drawing of pixel rectangles using texturing units
(data can be cached), constant Z, scaling

Matrix Palette
vertex skinning (>= 3 matrices / vertex, palette >= 9)

CoorLES

The great “Floats vs. fixed- %
point” debate

Accommodate both
integers / fixed-point numbers for efficiency
floats for ease-of-use and being future-proof
Details

16.16 fixed-point: add a decimal point inside an int
glRotatef(0.5f, 0.f ,1.f, 0.f);

VS.
glRotatex(1<<15, 0 ,1<<16, 0);
get rid of doubles

CoertLES

OpenGL ES 1.1: core %

Buffer Objects

allow caching vertex data

Better Textures

>= 2 tex units, combine (+,-,interp), dot3 bumps, auto mipmap gen.

User Clip Planes
portal culling (>= 1)

Point Sprites

particles as points not quads, attenuate size with distance

State Queries
enables state save / restore, good for middleware @GHES

Outline %

Background: OpenGL & OpenGL ES
OpenGLES 1.0

OpenGLES 1.1

EGL: the glue between OS and OpenGL ES

How can | get it and learn more?

CoertLES

W
EGL glues OpenGL ES to OS %

EGL is the interface between OpenGL ES
and the native platform window system

similar to GLX on X-windows, WGL on Windows
facilitates portability across OS’s (Symbian, Linux, ...)
Division of labor

EGL gets the resources (windows, etc.) and
displays the images created by OpenGL ES

OpenGL ES uses resources for 3D graphic
penGL|ES

S
EGL context %

A rendering context is an abstract OpenGL
ES state machine
stores the state of the graphics engine
can be (re)bound to any matching surface
different contexts can share data
texture objects
vertex buffer objects

lately even across APIs (OpenGL ES, OpenVG)

GeoriiLES.

|
Main EGL 1.0 functions %

eglSwapBuffer(display, surface)
posts the color buffer to a window
eglWaitGL(), eglWaitNative(engine)

provides synchronization between OpenGL ES
and native (2D) graphics libraries

eglCopyBuffer(display, surface, target)

copy color buffer to a native color pixmap

CoenLES

n o
EGL surfaces %

Various drawing surfaces, rendering targets

windows — on-screen rendering
(“graphics” memory)

pbuffers — off-screen rendering
(user memory)

pixmaps — off-screen rendering
(OS native images)

CeertLES

I
Main EGL 1.0 functions %

Getting started

eglinitialize() / eglTerminate(), eglGetDisplay(),
eglGetConfigs() / eglChooseConfig(),
eglCreateXSurface() (X = Window | Pbuffer | Pixmap),
eglCreateContext()

eglMakeCurrent(display, drawsurf, readsurf,
context)

binds context to current thread, surfaces, display

GeortiLES.

|
EGL 1.1 enhancements %

Swap interval control
specify # of video frames between buffer swaps
default 1; 0 = unlocked swaps, >1 save power
Power management events
PM event => all Context lost
Disp & Surf remain, Surf contents unspecified
Render-to-texture [optional]
flexible use of texture memory @GLIES

Outline % SW Implementations %

Background: OpenGL & OpenGL ES * Gerbera from Hybrid ¥

. . — Free for non-commercial use @
OpenGL ES 1.0 functionality o o b
— http://www.hybrid.fi

OpenGL ES beyond 1.0 * Vincent
EGL: the glue between OS and OpenGL ES — Open-source OpenGL ES library yu“,‘ﬁ

— http://sourceforge.net/projects/ogl-es

* How can | get it and learn more? -)
* Reference implementation

— Wraps on top of OpenGL

— http://www.khronos.org/opengles/documentation/gles-1.0
GoeriLles @GHE&

On-Device Implementations % SDKs %

* NokiaGL (SW)

* N93 (HW)

* Imagination MBX
* NVidia GoForce 3D
* ATl Imageon
* Toshiba T4G

Nokia S60 SDK (Symbian OS)

— http://www.forum.nokia.com

* Imagination SDK
— http://www.pvrdev.com/Pub/MBX

NVIDIA handheld SDK

— http://www.nvidia.com/object/hhsdk home.html

Brew SDK & documentation

— http://brew.qualcomm.com

CoertLES

OpenGL ES 1.1 Demos % Questions? %

created|by: NOUSEMarque,

GeorGLles

http://www.hybrid.fi
http://sourceforge.net/projects/ogl-es
http://www.khronos.org/opengles/documentation/gles-1.0c.tgz
http://www.forum.nokia.com
http://www.pvrdev.com/Pub/MBX
http://www.nvidia.com/object/hhsdk_home.html
http://brew.qualcomm.com

Using OpenGL ES

- Simple OpenGL ES example
- Fixed point programming
- Converting existing code

Symbian App Classes

DATA

VIEW

Handle Commands (Events, Keys)
Handle Application views

Using OpenGL ES

Jani Vaarala
Nokia

“Hello OpenGL ES”

S e &
Ca\e i
EE‘WTM—
5] Lo (v
o) L) oo e
R o

“Hello OpenGL ES”

“Hello OpenGL ES"™ OpenGL ES code.
Eurographics 2006 course on mobile graphics.

Copyright: Jani Vaarala

LI N N

*/

#include <e32base.h>
#include "SigTriangleGL.h"

static const GLbyte vertices[3 * 3] =

{
-1, 1, o,
i, -1, o,
1, 1, o0

“Hello OpenGL ES” “Hello OpenGL ES”

static const GLubyte colors[3 * 4] = static void initGLESQ
{
255, O, 0, 255, glClearColor (0.f,0.F,0.1F,1.F);
0, 255, O, 255, glDisable (GL_DEPTH_TEST);
0, 0, 255, 255 glMatrixMode (GL_PROJECTION);
}: glFrustumf (-1.f,1.F,-1.F,1.F,3.F,1000.F) ;
glMatrixMode (GL_MODELVIEW);
glShadeModel (GL_SMOOTH) ;
glVertexPointer (3,GL_BYTE,O,vertices);
glColorPointer (4,GL_UNSIGNED_BYTE,O,colors);

glEnableClientState (GL_VERTEX_ARRAY);
glEnableClientState (GL_COLOR_ARRAY);

“Hello OpenGL ES” “Hello OpenGL ES”

TInt CSigTriangleGL: :DrawCal Iback(TAny* alnstance) void CSigTriangleContainer::ConstructL(const TRect& /* aRect */)
CSigTriangleGL* instance = (CSigTriangleGL*) alnstance; iGLInitialized = EFalse;
glClear (GL_COLOR_BUFFER_BIT); CreateWindowL();
glLoadldentity O: SetExtentToWholeScreen();
glTranslatef (0,0,-5.F); ActivateL();
glDrawArrays (GL_TRIANGLES,0,3);
CsigTriangleGL* gl = new (ELeave) CSigTriangleGL();
eglSwapBuffers (instance->iEglDisplay, instance->iEglSurface); gl->Construct(Window());
/* To keep the background light on */ iGLInitialized = ETrue;
if (I(instance->iFrame%100)) User::ResetlnactivityTime(Q); 3}
instance->iFrame++; CSigTriangleContainer: :~CSigTriangleContainer()
return 0;
3 3

“Hello OpenGL ES” ‘“Hello OpenGL ES”

void CSigTriangleContainer::SizeChanged() /
if(icLInitialized) * Initialize OpenGL ES context and initial OpenGL ES state *
i i .iwidth,si .iHeight); - - - - -
3} glviewport(0.0.8ize () iWidth. Size().- iHeight) void CSigTriangleGL: :Construct(RWindow awWin)
s
void HandleResourceChange(TInt aType) iWin = aWin;
if(aType == KEikDynamicLayoutSwitch) iEgIDisplay = cglGetDisplay(EGL_DEFAULT DISPLAY):
// Screen resolution changed, make window fullscreen in a new resolution if(iEgIDispIay == NULL) User: :Exit(_l);
SetExtentToWholeScreen();
b
3 if(eglinitialize(iEglDisplay,NULL,NULL) == EGL_FALSE)
TInt CSigTriangleContainer: :CountComponentControls() const User::Exit(-1);
return 0;

EGLConfig config,colorDepth;

CCoeControl* CSigTriangleContainer: :ComponentControl (TInt /* alndex */) const EGLint numOfConfigs = 0;

return NULL;

“Hello OpenGL ES” “Hello OpenGL ES”

switch(iWin.DisplayMode())

case (EColor4K): { colorDepth = 12; break; }

case (EColor64K): { colorDepth = 16; break; } iEglSurface = eglCreateWindowSurface(iEglDisplay, config, &iWin, NULL);

case (EColoriéM): { colorDepth = 24; break; } if(iEglSurface == NULL) User::Exit(-1);

default:

colorDepth = 32; iEglContext = eglCreateContext(iEglDisplay,config, EGL_NO_CONTEXT, NULL);
} if(iEglContext == NULL) User::Exit(-1);
EGLint attrib_list[] = { EGL_BUFFER_SIZE, colorDepth, if(eglVakeCurrent(iEglDisplay, iEglSurface, iEglSurface,
- EGL DEPTH SIZE. 15 iEglContext) == EGL_FALSE) User::Exit(-1);
EGL_NONE 3}

if(eglChooseConfTig(iEglDisplay,attrib_list,&config,1,

&numOfConfigs) == EGL_FALSE) User::Exit(-1);
OpenGL ES i OpenGL ES i

“Hello OpenGL ES” Carbide C++ Express

Free IDE for S60 development from

/* Create a periodic timer for display refresh */ http://www.forum.nokia.com

iPeriodic = CPeriodic::NewL(CActive::EPriorityldle);
Supports 2" edition and 3™ edition SDKs

iPeriodic->Start(100, 100, TCallBack(
SigTriangleGL: :DrawCallback, this));

Here we focus on 3 edition

initGLESQ;
Future devices will be 3 edition (e.g., N93)
OpenGL ES i
Importing project Importing project
”::::;::::me symbnaolg
Sorce [Cempegrangeopgdt | _sowe]

[cony source fies into workspace.

e

Next > Concel

http://www.forum.nokia.com

Importing project Importing .PKG file (for .SIS) %

e p— Select from menu: File -> Import
e Select “File System”

Navigate to folder “sis” and import .PKG file

Select emulator configuration “EGTriangle_gcce.pkg”
and phone configuration (GCCE)

under S60_3" Build will automatically generate install file

Importing .PKG file Compiling & Debugging

Select from menu: Project -> Build ALL

— Select from menu: Run -> Debug

@ Create selected folders only

Creating debug config Creating debug config

(€ Debug,

X

(< ebug ® Create, manage, and run configurations
Create, manage, and run configurations ﬁ
5
S imbien 05 et

Nome: | E6Trnge S50 5.0 Emistor Debug

S | Symbian OS Emuiaton |
EGTriange $60 3.0/ -~ -

{) Ve [0 arumen s | 78 Enveorment | %5 Debugger | 1 x36 Exceptons | B soure | T4

[EGTrnge] Coomse=)
Ercaaie

. 560 ()
[—

=] Comse)

Click “New” to create new

debug config. =D -

Gese

Selecting application %

When emulator starts, navigate to “Installat.”
folder

Select application to launch (EGTriangle)

Getting it to HW %

Go to menu: Window -> Open Perspective ->
Other

Select “Symbian (default)”

Go to menu: Window -> Show view -> Build
Configurations

Installation file %

Build the project (CTRL-B)
Installation file is generated during build

Select it from C/C++ Projects view
EGTriangle_GCCE.sis

From context menu select “copy”

Paste it to desktop and send using bluetooth

Application %

/’

Click this button to cycle
through resolutions and
check that your application
works in all resolutions.

&

=
=

= =
—

e

(6] |Teo) |2

5] w

= =

= ==

-
=
ECH)

|

|
o=l

Click this button to open a
list of possible build
configurations. Select
“S60 3.0 Phone (GCCE)
Release”

Fixed point programming %

Why to use it?
Most mobile handsets don’t have a FPU
Where does it make sense to use it?
Where it makes the most difference
For per-vertex processing: morphing, skinning, etc.

Per vertex data shouldn’t be floating point

OpenGL ES API supports 32-bit FP numbers

Fixed point programming % Fixed point programming %

There are many variants of fixed point: Examples:
Signed / Unsigned 0x0001 0000 = “1.0F”
2’'s complement vs. Separate sign 0x0002 0000 = “2.0F”
OpenGL ES uses 2's complement 0x0010 0000 = *“16.0F~

0x0000 0001
OxXFfFff ffff

1/0x10000(0x10000 = 216)
~1/0x10000(-0x0000 0001)

Numbers in the range of [-32768, 32768 |
16 bits for decimal bits (precision of 1/65536)
All the examples here use .16 fixed point

Fixed point programming Fixed point programming

Convert from floating point to fixed point

#define float_to_fixed(a) (int)((a)*(1<<16))
* —
>>16 = Convert from fixed point to floating point

64-bit #define fixed_to_float(a) (((Float)a)/(1<<16))
1 1 Addition

Intermediate overflow Result overflow #define add_fixed_fixed(a,b) ((@)+(b))

* Higher accuracy (64-bit) + Redo range analysis Multiply fixed point number with integer

« Downscale input * Detect overflow, clamp

] #define mul_fixed_int(a,b) ((@)*(b))
* Redo range analysis

Fixed point programming Fixed point programming
MUL two FP numbers together Power of two MUL & DIV can be done with shifts
#define mul_fixed_fixed(a,b) (((@*(b)) >> 16) Fixed point calculations overflow easily

If another multiplier is in]-1.0, 1.0, no overflow Careful analysis of the range requirements is required

Division of integer by integer to a fixed point result
#define div_int_int(a,b) (((a)*(1<<16))/(b))

Always try to use as low bit ranges as possible

32x8 MUL is faster than 32x32 MUL (some ARM)
Division of fixed point by integer to a fixed point result

#define div_fFixed_int(a,b) ((a)/(b))

Using unnecessary “extra bits” slows execution

Always add debugging code to your fixed point math
Division of fixed point by fixed point

#define div_fixed fixed(a,b) (((a)*(1<<16))/(b))

Fixed point programming

#if defined(DEBUG)

int add_fix_fix_chk(int a, int b)

{
int64 bigresult = ((int64)a) + ((int64)b);
int smallresult = a + b;
assert(smallresult == bigresult);
return smallresult;

}
#endif

#if defined(DEBUG)

define add_fix_fix(a,b) add_fix_fix_chk(a,b)
#else

define add_fix_fix(a,b) ((d)+(b))

#endif

Fixed point programming
Sin
90 ° = 2048 (our angle scale)
Sin table needs to include 0° and 90°
INLINE fp_sin(int angle)
{
int phase = angle & (2048 + 4096);
int subang = angle & 2047;
if(phase == 0) return sin_table (subang);
else if(phase == 2048) return sin_table (2048 - subang);
else if(phase == 4096) return —sin_table (subang);
else return —sin_table (2048 - subang);
3

Converting existing code

OS/device conversions

Programming model, C/C++, compiler, CPU
Windowing API conversion

EGL API is mostly cross platform

EGL Native types are platform specific

OpenGL -> OpenGL ES conversion

Fixed point programming

Complex math functions
Pre-calculate for the range of interest
An example: Sin & Cos
Sin table between [0, 90°]
Fixed point angle
Generate other angles and Cos from the table
Store as fixed point ((short) (sin(angle) * 32767))

Performance vs. space tradeoff: calculate for all angles

Example: Morphing

Simple fixed point morphing loop (16-bit data, 16-bit coeff)

#define DOMORPH_16(a,b,t) (TIntl6) (((((b)-(a))*(t))>>16)+(a))

void MorphGeometry(TIntlé *aOut, const TIntl6é *alnA, const TIntl6
*alnB, TInt aCount, TInt aScale)

int i;
for(i=0; i<aCount; i++)
aoOut[i*3+0] DOMORPH_16(alnB[i*3+0], alnA[i*3+0], aScale);

aOut[i*3+1] = DOMORPH_16(alnB[i*3+1], alnA[i*3+1], aScale);
aOut[i*3+2] = DOMORPH_16(alnB[i*3+2], alnA[i*3+2], aScale);

Example: Symbian porting

Programming model
C++ with some changes (e.g., exceptions)
Event based programming (MVC), no main / main loop
Three level multitasking: Process, Thread, Active Objects
ARM CPU

Unaligned memory accesses will cause exception

Example: EGL porting

Native types are OS specific
EGLNativeWindowType (RWindow)
EGLNativePixmapType (CFbsBitmap)

Pbuffers are portable

Config selection
Select the color depth to be same as in the display

Windowing system issues
What if render window is clipped by a system dialog?

Only full screen windows may be supported

OpenGL porting

Display list wrapper
Add the display list functions as wrappers
Add all relevant GL functions as wrappers

When drawing a list, go through the collected list

OpenGL porting

Vertex arrays
OpenGL ES supports only vertex arrays
SW implementations get penalty from float data
Use as small types as possible (byte, short)
For HW it shouldn’t make a difference, mem BW
With OpenGL ES 1.1 use VBOs

OpenGL porting

- gIBegin/glEnd wrappers
- _glBegin stores the primitive type
« _glColor changes the current per-vertex data
- _glVertex stores the current data behind arrays and increments
- _glEnd calls glDrawArrays with primitive type and length

_glBegin(GL_TRIANGLES);
_glColor4f(1.0,0.0,0.0,1.0);
_glVertex3f(1.0,0.0,0.0);
_glVertex3f(0.0,1.0,0.0);

_gIEndQ;

OpenGL porting

void _glEnable(parl, par2)
1T GLOBAL()->iSubmittingDisplayList)

*(GLOBAL()->dlist)++ = DLIST_CMD_GLENABLE;

*(GLOBAL()->dlist)++ = (GLuint)parl;
*(GLOBAL()->dlist)++ = (GLuint)par2;
¥
else
glEnable(parl,par2);
3

}

OpenGL porting

No quads
Convert a quad into 2 triangles
No real two-sided lighting
If you really need it, submit front and back triangles
OpenGL ES and querying state
OpenGL ES 1.0 only supports static getters
OpenGL ES 1.1 supports dynamic getters

For OpenGL ES 1.0, create own state tracking if needed

Questions? %

Building scalable 3D applications
Ville Miettinen

Hybrid Graphics

Graphics capabilities %

General-purpose multimedia hardware
Pure software renderers (all done using CPU & integer ALU)
Software + DSP / WMMX / FPU / VFPU
Multimedia accelerators
Dedicated 3D hardware
Software T&L + HW tri setup / rasterization
Full HW
Performance: 50K — 2M tris, 1M — 100M pixels

What is this %
"mobile platform”?

CPU speed and available memory varies
Current range ~30Mhz - 600MHz, no FPUs
Portability issues
Different CPUs, OSes, Java VMs, C compilers, ...
Different resolutions

QCIF (176x144) to VGA (640x480), antialiasing on higher-
end devices

Color depths 4-8 bits per channel (12-32 bpp)

Dealing with diversity %

Problem: running the same game on 100+ different
devices

Same gameplay but can scale video and audio
Scalability must be built into game design

Profile-based approach

3D content is easy to scale

Separate low and high poly 3D models
Different texture resolutions & compressed formats
Scaling down special effects not critical to game
play (particle systems, shadows)

Important to realize what is a "special effect”
Rendering quality controls

Texture filtering, perspective correction, blend functions,
multi-texturing, antialiasing

Building scalable 3D apps

Scale upwards, not downwards
Bad experiences of retro-fitting HW titles to SW
Test during development on lowest-end platform

Both programmers and artists need education

Artists can deal with almost anything as long as they know
the rules...

And when they don't, just force them (automatic checking in
art pipeline)

"Shaders”

Combine state changes into blocks ("shaders”)
Minimize number of shaders per frame
Typical application needs only 3-10 "pixel shaders”
Different 3-10 shaders in every application
Enforce this in artists’ tool chain
Sort objects by shaders every frame

Split objects based on shaders

Building scalable 3D apps

OpenGL ES created to standardize the API and
behavior

ES does not attempt to standardize performance
Two out of three ain't bad

Differences between SW/HW configurations
Trade-off between flexibility and performance

Synchronization issues

Reducing state changes

Don’t mix 2D and 3D calls !!!!
Situation may become better in the future, though...
Unnecessary state changes root of all evil
Avoid changes affecting the vertex pipeline
Avoid changes to the pixel pipeline

Avoid changing textures

Complexity of shaders

Software rendering: Important to keep shaders as
simple as possible

Do even if introduces additional state changes

Example: turn off fog & depth buffering when rendering
overlays

Hardware rendering: Usually more important to
keep number of changes small

Of models and stripping

Use buffer objects of ES 1.1

Only models changed manually every frame
need vertex pointers

Many LOD schemes can be done just by
changing index buffers

Keep data formats short and simple

Better cache coherence, less memory used

Transformations and
matrices

Minimize matrix changes
Changing a matrix may involve many hidden costs
Combine simple objects with same transformation
Flatten and cache transformation hierarchies

ES 1.1: Skinning using matrix palettes
CPU doesn't have to touch vertex data
Characters, natural motion: grass, trees, waves

ES 1.1: Point sprites

Lighting: the fast way

While we're waiting for OpenGL ES 2.0...
Pre-computed vertex illumination good if slow T&L
lllumination using texturing

Light mapping
ES 1.1: dot3 bump mapping + texture combine
Less tessellation required

Color material tracking for changing materials

Flat shading is for flat models!

Triangle data

Minimize number of rendering calls
Trade-off between no. of render calls & culling efficiency
Combine strips using degenerate triangles
Understanding vertex caching
Automatically optimize vertex access order
Triangle lists better than their reputation
Optimize data in your art pipeline (exporters)
Welding vertices with same attributes (with tolerance)
Vertices/triangle ratio in good data 0.7-1.0

Give artists as much automatic feedback as possible

Lighting and materials

Fixed-function lighting pipelines are so 1990s
Drivers implemented badly even in desktop space
In practice only single directional light fast
OpenGL's attenuation model difficult to use
Spot cutoff and specular model cause aliasing

No secondary specular color

[llumination using
multitexturing

Textures

Mipmaps always a Good Thing™
Improved cache coherence and visual quality
ES 1.1 supports auto mipmap generation
Different strategies for texture filtering
SW: Perspective correction not always needed
Avoid modifying texture data
Keep textures "right size”, use compressed textures

Textures and shots from Kesmai's Air Warrior 4 (never published) t
P T ——— -

e
R ‘

et

Textures

Multitexturing
Needed for texture-based lighting
Always faster than doing multiple rendering passes
ES 1.1: support at least two texturing units
ES 1.1: TexEnvCombine neat toy

Combine multiple textures into single larger one

Reduce texture state changes (for fonts, animations, light
maps)

Object ordering

Sort objects into optimal rendering order
Minimize shader changes
Keep objects in front-to-back order
Improves Z-buffering efficiency

Satisfying both goals: bucketize objects by shader, sort
buckets by Z

Thank you! %

* Any questions?

% Objectives %

* Get an idea of the API structure and feature set
M3G Overview * Learn practical tricks not found in the spec

Tomi Aarnio

Nokia Research Center

Prerequisites % Mobile 3D Graphics APIs %

* Fundamentals of 3D graphics

* Some knowledge of OpenGL ES Java Applications |
Native C/C++
* Some knowledge of scene graphs Applications
VG (ISR=184)
OpenGIt ES
Graphics Hardware |

Why Should You Use Java?

It has the largest and fastest-growing installed base
— 1.2B Java phones had been sold by June 2006 (source: ovum)
— Nokia alone had sold 350M Java phones by the end of 2005

— Less than 50M of those also supported native S60 applications
 Itincreases productivity compared to C/C++

— Memory protection, type safety =» fewer bugs

— Fewer bugs, object orientation =» better productivity

Why?

+ Array bounds checking 3\
» Dynamic type checking

» No stack allocation (heap only)
No Java compiler or

accelerator can fully
resolve these issues

* Garbage collection

* Slow Java-native interface

* No access to special CPU features
» Stack-based (non-RISC) bytecode

* Unpredictable JIT compilers Y,

M3G Design Principles

ceed| NG Javaicoderalongferiticalipatihs

* Move all graphics processing to native code
— Not only rasterization and transformations
— Also morphing, skinning, and keyframe animation

— Keep all data on the native side to avoid Java-native traffic

Java Will Remain Slower

1.0
OAssembly||
OKVM
2 EJazelle™ ||
§ B HotSpot ||
o |
z 05 04
kS
[}
@ 02 0.26 025
0.0

Vertex transformation Image downsampling

Benchmarked on an ARM926EJ-S processor with hand-optimized Java and assembly code

M3G Overview

Design principles
Getting started
Basic features
Performance tips
Deforming meshes
Keyframe animation

Summary & demos

M3G Design Principles

-rt7) Cater o hoth seftware and hardware

* Do not add features that are too heavy for software engines

— Such as per-pixel mipmapping or floating-point vertices

» Do not add features that break the OpenGL 1.x pipeline

— Such as hardcoded transparency shaders

M3G Design Principles M3G Design Principles

#3 Maximize developer procuctviny) Mimimikze engine complexity,

* Address content creation and tool chain issues
— Export art assets into a compressed file (:m3g) #5 Minimizesiragmentanon

— Load and manipulate the content at run time

— Need scene graph and animation support for that

* Minimize the amount of “boilerplate code” - 0} RPlanerflturerexpansion

Why a New Standard? M3G Overview

° OpenGL ES is too low-level Design principles
— Lots of Java code, function calls needed for simple things .
— No support for animation and scene management Getti ng started
— Fails on Design Principles 1 (performance) and 3 (productivity) Basic features

— ...but may become practical with faster Java virtual machines

Performance tips
= Java 3D is too bloated

— A hundred times larger (!) than M3G
— Sitill lacks a file format, skinning, etc. Keyframe animation

— Fails on Design Principles 1, 3, and 4 (code size)

Deforming meshes

Summary & demos

The Programming Model Main Classes

* Not an “extensible scene graph” / 3D graphics context
— Rather a black box — much like OpenGL Craphicss; Performs all rendering
— No interfaces, events, or render callbacks

— No threads; all methods ret ly when d .
o threads; all methods return only when done Loads individual objects

/ and entire scene graphs

- Scene update is decoupled from rendering (:m3g and .png files)
— render =» Draws an object or scene, no side-effects

— animate = Updates an object or scene to the given time -/I Scene graph root node

Woerd
—align => Aligns scene graph nodes to others

Rendering State Graphics3D: How To Use

* Graphics3D contains global state * Bind a target to it, render, release the target
— Frame buffer, depth buffer
~ Viewport, depth range void paint(Graphics g) {
— Rendering quality hints try {

myGraphics3D.bindTarget(g);
myGraphics3D.render(world);

* Most rendering state is in the scene graph } finally {
— Vertex buffers, textures, matrices, materials, ... myGraphics3D.releaseTarget();
— Packaged into Java objects, referenced by meshes }
— Minimizes Java-native data traffic, enables caching b

M3G Overview Renderable Objects

Design principles

. 2D image placed in 3D space
Getting started /‘ Always facing the camera
Basic features
Performance tips

. Made of triangles

Deforming meshes Base class for meshes
Keyframe animation

Summary & demos

Sprite3D Mesh

+ 2D image with a position in 3D space * A common VertexBuffer, referencing VertexArrays

* Scaled mode for billboards, trees, etc. * IndexBuffers (submeshes) and Appearances match 1:1

* Unscaled mode for text labels, icons, etc.

» Not useful for particle effects — too much overhead Vertexarays
VVerexBuier Gojo)ellpfeliess

normals

APPEAANCE CompositinglVede

IndexBBuiier:

coIorS

Imagez =00 ApPREATANCE IEXCOE0S

VertexBuffer Types

Byte |Short|Fixed|Float| 2D | 3D | 4D
Vertices ViV x| x| x|V |«x
Texcoords vV IV | x| x|V IV]|x
Normals v | v | x| x v
Colors v x | x v |V
Relative to OpenGL ES 1.1

Buffer Objects

* Vertices and indices are stored on server side
— Very similar to OpenGL Buffer Objects

— Allows caching and preprocessing (e.g., bounding volumes)
* Tradeoff — Dynamic updates have some overhead

— At the minimum, just copying in the Java array contents

— In the worst case, may trigger vertex preprocessing

The Fragment Pipeline

Colored
Fragment Texture2D

dexiure
Blend

lexiure
Blend

Erame
Buffer

IndexBuffer Types
3
Byte | Short '% Strip | Fan | List
Triangles x v v v x
Lines x x x x x
Points x x x x
Point sprites x x x X

Relative to OpenGL ES 1.1 + point sprite extension

Appearance Components

CompositioViede
Winding, culling, shading
Perspective correction hint
PolyoeniViede

/‘ Fades colors based on distance
Linear and exponential mode

Material colors for lighting
Can track per-vertex colors

Blending, depth buffering
Alpha testing, color masking

oo

Texture matrix, blending, filtering

/‘ Multitexturing: One Texture2D for each unit
JExiuyeZIv

The Scene Graph

Group

MorphingMesh

Not allowed!

Node Transformations Other Node Features

From this node to the parent node Automatic alignment
Composed of four parts Aligns the node’s Z and/or Y axes towards a target

Translation T Recomputes the orientation component (R)

Orientation R
Non-uniform scale S Alpha factor (for fading in/out)
w Rendering enable (on/off)
Picking enable (on/off)

Inherited properties

Generic 3x4 matrix M

Composite: C=TRSM

The File Format M3G Overview

Characteristics Design principles

Individual objects, entire scene graphs, anything in between

Getting started
Object types match 1:1 with those in the API

Optional ZLIB compression of selected sections Basic features

Can be decoded in one pass — no forward references Performance ti ps
Can reference external files or URIs (e.g. textures)

Deforming meshes
Strong error checking

Keyframe animation

Summary & demos

Retained Mode Rendering Order
Use the retained mode Use layers to impose a rendering order
Do not render objects separately — place them in a World Appearance contains a layer index (an integer)
Minimizes the amount of Java code and method calls Defines a global ordering for submeshes & sprites
Allows the implementation to do view frustum culling, etc. Can simplify shader state for backgrounds, overlays

Also enables multipass rendering in retained mode
Keep Node properties simple
Favor the T R S components over M Optimize the rendering order
Avoid non-uniform scales in S Shader state sorting done by the implementation

Avoid using the alpha factor Use layers to force back-to-front ordering

Textures

Use multitexturing to save in T&L and triangle setup
Use mipmapping to save in memory bandwidth
Combine small textures into texture atlases

Use the perspective correction hint (where needed)

Usually much faster than increasing triangle count

Nokia: 2% fixed overhead, 20% in the worst case

Shading State

Software vs. hardware implementations
SW: Minimize per-pixel operations
HW: Minimize shading state changes

HW: Do not mix 2D and 3D rendering

In general, OpenGL ES performance tips apply

Terrain Rendering

Easy terrain rendering
Split the terrain into tiles (Meshes)
Put the meshes into a scene graph

The engine will do view frustum culling

Terrain rendering with LOD
Preprocess the terrain into a quadtree
Quadtree leaf node == Mesh object
Quadtree inner node == Group object

Enable nodes yourself, based on the view frustum

Meshes

Minimize the number of objects
Per-mesh overhead is high, per-submesh also fairly high
Lots of small meshes and sprites to render =» bad
Ideally, everything would be in one big triangle strip

But then view frustum culling doesn’t work =» bad

Strike a balance
Merge simple meshes that are close to each other

Criteria for “simple” and “close” will vary by device

Particle Effects

Several problems
Point sprites are not supported

Sprite3D has too much overhead

\

Use additive
alpha blend and
per-vertex colors

Put all particles in one Mesh

One particle == two triangles

All glued into one triangle strip /'
Update vertices to animate Triangle strip Particles glued into
starts here one tri-strip using
XYZ, RGBA, maybe UV degenerate triangles

M3G Overview

Design principles
Getting started
Basic features
Performance tips
Deforming meshes
Keyframe animation

Summary & demos

Deforming Meshes

Vertex morphing mesh

MorphingMesh

TS /ISkeIetaIIy animated mesh
IRne ES|

MorphingMesh
Base Target 1 Target 2 Animate eyes
eyes closed mouth closed and mouth
independently
SkinnedMesh
shared vertex, : nskin® } ! non-shared
weights = (0.5, 0.5) |, N /4‘ vertex
\\\ \ /’
L 4

Neurallpesey; NeNES at es

MorphingMesh

* Traditional vertex morphing animation

— Can morph any vertex attribute(s)

— A base mesh B and any number of morph targets T,
— Result = weighted sum of morph deltas

R=B+> w(T,-B)

* Change the weights w; to animate

SkinnedMesh

 Articulated characters without cracks at joints

* Stretch a mesh over a hierarchic “skeleton”
— The skeleton consists of scene graph nodes

— Each node (“bone”) defines a transformation

— Each vertex is linked to one or more bones
V'=) WM BV
i

— M are the node transforms — v, w, B are constant

SkinnedMesh

|
P position in A's
| coordinate system

) J interpolated

" | position
I—» Bone A —: !

o—H

o
.| position in B's
I coordinate system

Bone BiciaiediO0/deqrees

SkinnedMesh

N

S

No skinning Smooth skinning
two bones per vertex

Animation Classes

Storage for keyframes

KeyframeSequence Defines interpolation mode

Controls the playback of
AnimeticnEontroelles one or more sequences

A link between sequence,
AnimationTrack controller and target

Base class for all objects
Objectel that can be animated

KeyframeSequence

Keyframe is a time and the value of a property at that time
KeyirameSeduence Bk propery

Can store any number of keyframes

Several keyframe interpolation modes

Can be open or closed (looping)

"
1
'

b :
P i

<?—‘

sequence time

Diagram courtesy of Sean Ellis, Superscape

M3G Overview

Design principles
Getting started

Basic features
Performance tips
Deforming meshes
Keyframe animation

Summary & demos

Animation Classes

; Identifies
O1)]ECTSID) Attt ; animated
i property on AnimationController
i this object

Animateniiack

KeyirameSeguence

KeyframeSequence

Keyframe is a time and the value of a property at that time
KeyirameSeduence Bk propery

Can store any number of keyframes

Several keyframe interpolation modes

Can be open or closed (looping)

e

4

sequence time

Diagram courtesy of Sean Elis, Superscape

KeyframeSequence

Keyframe is a time and the value of a property at that time
KEViiiameSEJUENCE
Can store any number of keyframes

Several keyframe interpolation modes

Can be open or closed (looping)

.

sequence time

Diagram courtesy of Sean Ellis, Superscape

Animation

1. Call animate(worldTime)

4. Apply value to

! 2. Calculate sequence
animated property

time from world time

AnimationController

@bject3b

Animateniiack

KeyirameSeauence

0 sequence time | d

Swawayy

3. Look up value at
this sequence time

Diagram courtesy of Sean Ellis, Superscape

M3G Overview

Design principles
Getting started
Basic features
Performance tips
Deforming meshes
Keyframe animation

Summary & demos

AnimationController

P . Can control several animation sequences together
Ayt Cosifoller q 9
Defines a linear mapping from world time to sequence time

Multiple controllers can target the same property

0 sequence time d

]

t world time

Diagram courtesy of Sean Ellis, Superscape

Animation

Tip: Interpolate quaternions as ordinary 4-vectors
— Supported in the latest M3G Exporter from HI Corp
— SLERP and SQUAD are slower, but need less keyframes

— Quaternions are automatically normalized before use

Predictions

* Resolutions will grow rapidly from 128x128 to VGA
— Drives graphics hardware into all high-resolution devices

— Software rasterizers can’t compete above 128x128

* Bottlenecks will shift to Physics and Al
— Bottlenecks today: Rasterization and any Java code
— Graphics hardware will take care of geometry and rasterization

— Java hardware will increase performance to within 50% of C/C++

» Java will reinforce its position as the dominant platform

Summary

* M3G enables real-time 3D on mobile Java
— By minimizing the amount of Java code along critical paths De m O S

— Designed for both software and hardware implementations

* Flexible design leaves the developer in control
— Subset of OpenGL ES features at the foundation

— Animation & scene graph features layered on top

Installediyase giewinorby themillicns eachimoiith

Playman Winter Games — % Playman World Soccer —
Mr. Goodliving Mr. Goodliving

SERIES 60 SCREENSHOTS

* An interesting
2D/3D hybrid

* Cartoon-like 2D
characters set
in a 3D scene

* 2D overlays for E
particle effects i
and status info

Tower Bloxx — Sumea Mini Golf Castles — Sumea

* Puzzle/arcade « 3D with 2D
mixture background

* Tower building and overlays
mode is in 3D, with « Skinning
2D overlays and used for
backgrounds characters

{ * City building mode + Realistic ball

is in pure 2D

physics

s

Q&A

Thanks: Sean Ellis, Kimmo Roimela,
Nokia M3G team, JSR-184 Expert Group,
Mr. Goodliving (RealNetworks),
Sumea (Digital Chocolate)

EG o EG

* Game Development Process
Using M3G - Asset Creation
* Program Development
* MiDlet Structure

Mark Callow
. . * A MIDlet Example
Chief Architect _ P .
* Challenges in Mobile Game Development
o * Publishing Your Content
',HI CORPORATION

M3G Game Demo % Game Development Process %

RN P — o
AEXTREMESN Rl * Traditional Java Game
= wBME_P’hG Game logic Compile) |Java MIDlet Package | JAR file
Assets | ﬁ

l Images H Sounds H Music H Other ‘

Game Platform
2D Graphics
Sound H Network

Copyright 2005, Digital Chocolate Inc.

Screen Image: Boulder Dash@-M.E.™

M3G Development Process

* How M3G Fits

Expanded [cOmpi|e> lJava M|Dlet‘ [Package>| JAR fiIe‘
game logic .

Assets
l Images H Sounds H Music “ 3D World |

Game Platform
2D Graphics
Sound H Network

Proprietary

Diagram courtesy of Sean Ellis, ARM. 3D Grap hics

Screen Image: Sega/Wow Entertainment RealTennis.™

Asset Creation

* Audio Tools

Audio Production Tool; €. .

*Soeny Sound Forge®

Commonly Used Formats:

\Wave, AU, VP8, SMAE

Asset Creation

* 3D Models

3d Modeler with M3G plug-in; e.g.

Lightwave
s\Vaya
+3d studio max

*Softimage| XSl

Asset Creation

* Textures & Backgrounds

Eb B G ot ety Dt Gk s Mk by

ols(elplpia] oo

Gt o 2L s

Images

d

Image Editor withi PNG
output. E. g:

sMacromedia Eireworks

*Adobe Photoshop

Asset Creation

* Music Tools

MIDI Seguencer; e: d.
*Steinberg| Cubase
EFoermats:
*SMAFE, MIBI; eMIBI; MES

Export 3d Model to M3G

B it fninatin Grpn Efrs Fondeng Cusore UASpl Ho
E

I~ o3 I

et D s -

2.... [.

R e T

e eI |
saatwgarel [T 3l EToarel [0 3 o e

oo RS S
s

i)
o]
e

[—

I
Sepottak [T

Pick Z Alienment Node |
2Toge o]
il At tod
a1

EREED) ¥ =T <l e Bl o)
I }\c\nw prer v oy el = [0 R R

B
=l

ot € Tests © Mot € Gants & Al

Bt | Gmert

M3G File Viewer Demo: On a Real Phone

Powered by

@)Biend

Tips for Designers 1 Tips for Designers 2
° TIP: Don't use GIF files * TIP: Use light maps for lighting effects
— The specification does not require their support — Usually faster than per-vertex lighting
* TIP: Create the best possible quality audio & music — Use luminance textures, not RGB
~ It's much easier to reduce the quality later than increase it — Multitexturing is your friend
- TIP: Polygon reduction tools & polygon counters * TIP: Try LINEAR interpolation for Quaternions
are your friends — Faster than SLERP
— Use the minimum number of polygons that conveys your — But less smooth

vision satisfactorily

Tips for Designers 3 Agenda
* TIP: Use background images * Game Development Process
— Can be scaled, tiled and scrolled very flexibly + Asset Creation

— Generally much faster than sky boxes or similar - Program Development

* MIDlet Structure
* A MIDlet Example

* TIP: Use sprites as impostors & labels
— Generally faster than textured quads

— Unscaled mode is (much) faster than scaled

* LIMITATION: Sprites are not useful for particle * Challenges in Mobile Game Development

systems * Publishing Your Content

Program Development

Edit, Compi
Expanded - -
game logic IComp|Ie> IJava MIDIetI Package /| JAR file

Traditional
= Wik, shell, editor, make, javac |

Integrated Development Environment T oy

* Eclipse

» Borland JBuilder

» Sun Java Studio;

e

Agenda

Game Development Process

Asset Creation

Program Development

MiDlet Structure

A MIDlet Example

Challenges in Mobile Game Development
Publishing Your Content

A More Interesting MIDlet

MIDlet.StartApp()

Create canvas; load
world, start update
thread

initialize

e]
s

Get any user input via
Canvas.commandListener

Game logic, animate,

Update loop. align if necessary

Runnable.run() !

Read user input, : request |
update scene | redraw draw

Canvas.paint()

3 - Wait to ensure
: wait consistent T i
; frame rate using Graphics3D
object

'
Exit request i_ MiDlet.destroyApp()
shut down Tidy up; exit MiDlet

Flow-chart courtesy of Sean Ellis, Superscape

performs rendering

Program Development

Test & Debug

Carrier/Maker supplied SDK

*Emulator

*Simulator

*Reall device

Screen Image: Sega/Wow Entertainment RealTennis.™

Game Platform

2D Graphics
Sound || Network

Proprietary
3D Graphics

The Simplest MIDlet

Derived from MIDlet

Overrides three methods

MIDlet.StartApp()
[initialize]
[request redraw]

MiDlet.destroyApp()

[shut down]

And that's it.

MIDlet Phases

Initialize
Update
Draw

Shutdown

Create canvas; load
world.

Canvas.paint()

Tidy up; exit MIDlet.

performs rendering
using Graphics3D
object.

Initialize %

Load assets: world, other 3D objects, sounds, etc.
Find any objects that are frequently used

Perform game logic initialization

Initialize display

Initialize timers to drive main update loop

Update Tips %

TIP: Don't create or release objects if possible

TIP: Call system.gc() regularly to avoid long
pauses

TIP: cache any value that does not change every
frame; compute only what is absolutely necessary

Draw Tips %

TIP: Don't do 2D drawing while Graphics3D is
bound

Update %

Usually a thread driven by timer events

Get user input

Get current time

Run game logic based on user input

Game logic updates world objects if necessary
Animate

Request redraw

praw £

Usually on overridden paint method
Bind Graphics3D to screen
Render 3D world or objects
Release Graphics3D
...whatever happens!
Perform any other drawing (Ul, score, etc)

Request next timed update

Shutdown £

Tidy up all unused objects
Ensure once again that Graphics3D is released
Exit cleanly

Graphics3D should also be released during
pauseApp

MiIDlet Review Agenda

Set up display, load

S ohjects. ntate Game Development Process
update thread.
et any user inpu Asset Creatlon
Update loop. : B Set:/vori play, et’:?-t'
Don't create/destroy 3 Game logic, P rogram Develo pment

objects if possible animate, align if

necessary

! | scene update
Throttle to consistent |

; MiIDlet Structure
frame rate : request
Keep pajm() as simple i redraw | 7
as possible 3 A MIDIet Example

Graphics3D object

- ! Wait to ensure :
Be careful with threads ! wait consistent performs rendering

frame rate Challenges in Mobile Game Development

Exit request 3, ::;Je\?;e assets, PUblIShlng Your Content

Diagram courtesy of Sean Ellis, Superscape

Demo: UsingM3G MIDlet UsingM3G MIDlet

Displays Mesh, MorphingMesh and SkinnedMesh
Loads data from .m3g files

View can be changed with arrow keys

Animation can be stopped and started

Animation of individual meshes can be stopped
and started.

' ers Displays fram r nd.
‘ffsb"@mﬁ:;- splays frames per second

UsingM3G Framework UsingM3G Framework

import java.io.lOException; public void pauseApp() {
import javax.microedition.lcdui.*; if (tcanvas.isPlaying)
import javax.microedition.midlet.*; tcanvas.pausePlay();
renderingT.yield(Q);
public class Cans extends MIDlet implements CommandListener { renderingT = null;

Command cmdExit = new Command("'Exit', Command.SCREEN, 1);
Command cmdPlayPause = new Command(*‘Ctrl*,Command.SCREEN,1);

private TargetCanvas tcanvas = null; public void destroyApp(boolean u) {
Thread renderingT = null; pauseApp()
private String Filename = "/coffee.m3g"; tcanvas = null;
public void startApp() {
if (tcanvas == null)
initQ;

renderingT = new Thread(tcanvas);
renderingT.start();
tcanvas.startPlay();

¥

UsingM3G Framework

synchronized public void commandAction(Command c,
Displayable d)

if (c==cmdExit) {
notifyDestroyed();
return;
} else if (c==cmdPlayPause) {
if (tcanvas.isPlaying)
tcanvas.pausePlay();
else
tcanvas.startPlay();
¥

}

UsingM3G Initialization

class TargetCanvas extends Canvas implements Runnable
.. // instance variable declarations elided
public TargetCanvas(String m3gFile)

try
{

FileName = m3gFile;

g3d = Graphics3D.getlnstance();
Load(Q);

w = getWidth(Q);

h = getHeight(Q);

cameraManip = new CameraManip(gWorld);

}
catch(10Exception e)
{

System.out.printin(*loading fails:"+fileName);
hasException = true;

Loading the 3D Data (Cont.) %

meshController =
(AnimationController)gWorld.find(meshControllerid);
morphingMeshController =
(AnimationController)gWorld.find(morphingMeshControll
erld);
skinnedMeshController =
(AnimationController)gWorld. find(skinnedVeshControlle
rid);

/* Clean up after the loading process. */
System.gc();

UsingM3G Initialization

// From class Cans

public void initQ) {
Display disp = Display.getDisplay(this);
tcanvas = new TargetCanvas(Filename);
if (tcanvas.hasException)

notifyDestroyed();

tcanvas.setCommandListener(this);
tcanvas.addCommand(cmdExit) ;
tcanvas.addCommand(cmdP layPause) ;
disp.setCurrent(tcanvas);

Loading the 3D data

// class TargetCanvas
void Load() throws 10Exception {
loadObjs = Loader.load(fileName);
if (loadObjs==null)
throw new RuntimeException(**M3G file error™);

/* find the world node */

for (int i=0; i<loadObjs.length; ++i) {
if (loadObjs[i] instanceof World) {
gWorld = (World)loadObjs[i];
hasWorld = true;
break;
}

3

if (ThasWorld)
throw new RuntimeException(
“World node not found; incorrect m3g file?*);

TargetCanvas run method

public void runQ)

{
for(;:) {
long start, elapsed;
start = System.currentTimeMillisQ;
handlelnput();
repaint(); // Request paint()
elapsed = System.currentTimeMillis() - start;
// if (want to measure true frame rate)
// Unfriendly to system!!
//renderTime += (int)elapsed;
/7 else {
renderTime += (elapsed < 50) ? 50 : (int)elapsed;
try {
if (elapsed < 50) Thread.sleep(50-elapsed);
} catch (InterruptedException e) { }
/7%

TargetCanvas paint method

synchronized protected void paint(Graphics g)
if (loadObjs == null) return;
g.setClip(0, 0, w, h);
try
g3d.bindTarget(g);
g3d.setViewport(0, 0, w, h);
render();
} finally { g3d.releaseTarget(); }

g.setColor (OXFFFfFfff);
g-drawString("fps: " + fps, 2, 2, g.TOP|g.LEFT);

Camera Manipulation

/**

* A camera manipulator. This class applies rotations to
* a World’s activeCamera that make it rotate around the
* prime axes passing through the World®s origin.

*/
public class CameraManip

public CameraManip(World world) { }

public void buildCameraXform() { }

public void
baseRotate(float dAngleX, float dAngleY, float dAngleZ){ }

public void
rotate(float dAngleX, float dAngleY, float dAnglez) { }

public void setCameraxform(Q) { }

Rotating the Camera

public void rotate(float dAngleX, float dAngleY,
float dAnglez) {
if (curCamera == null) return;

baseRotate(dAngleX, dAngleY, dAngleZ);
Transform rotTrans = new Transform();

rotTrans.postRotate(angleY, 0, 1, 0);
rotTrans.postRotate(angleX, 1, 0, 0);

float pos[] = { 0, 0, distToTarget, 1 };
rotTrans.transform(pos);

dx = pos[0];
dy = pos[1];
dz = pos[2] - distToTarget;

buildCameraXform(Q);
setCameraXform();
rotTrans = null;

TargetCanvas render
method

void render()

if (isPlaying) {
frameCount++;
fps = (int)((1000*frameCount) / renderTime) ;
/* update the scene */
gWorld.animate((int)renderTime);

}
g3d.render(gWorld);

Initializing CameraManip

public CameraManip(World world) {

Transform world2Cam = new Transform();
float[] matrix = new float[16];
/* class variable initialization elided */

curCamera = world.getActiveCamera();
if (curCamera !'= null) {
curCamera.getTransformTo(world, world2Cam);
world2Cam.get(matrix);
distToTarget = (float)Math._sgrt(matrix[3]*matrix[3]
+ matrix[7]*matrix[7]
+ matrix[11]*matrix[11]);

curCamera.getTransform(curOriginalXform);
rotate(0, 0, 0);
world2Cam = null;

Building the Camera
Transform

public void buildCameraXform() {

}

cameraXxform.setldentity();
rotateXform.setldentity();
transXform.setldentity();

transXform.postTranslate(dx, dy, dz);

// rotate about the x-axis then the y-axis
rotatexXxform._postRotate(angleY, 0, 1, 0);
rotatexXform.postRotate(angleX, 1, 0, 0);

cameraxXform.postMultiply(transxform);
cameraXform.postMultiply(rotatexform);

public void setCameraXxform() {

¥

cameraXform._postMultiply(curOriginalXform);
curCamera.setTransform(cameraxform);

el g . v
Adgenda % Why Mobile Game %
J Development is Difficult

Game Development Process Application size severely limited
Asset Creation Download size limits

Small H

Program Development mafl Heap memory

MIDlet Structure

A MIDlet Example

Challenges in Mobile Game Development

Small screen
Poor input devices
Poor quality sound

Slow system bus and memory system
Publishing Your Content

Why Mobile Game % Memor %
Development is Difficult y

No floating point hardware Problems

No integer divide hardware Small application/download size

e Small heap memory size
Many tasks other than application itself P Y

) . Solutions
Incoming calls or mail

o Compress data @
Other applications .)
Use single large file @

Short development period Use separately downloadable levels D

Tight budget, typically $100k — 250k Limit contents @

Get makers to increase memory @

| |
Performance % User-Friendly Operation %

Problems Problems
Slow system bus & memory Button layouts differ

No integer divide hardware Diagonal input may be impossible

Solutions Multiple simultaneous button presses not recognized

Use smaller textures D Solutions
Use mipmapping (D Plan carefully
Use byte or short coordinates and key values D
Use shifts @

Let the compiler do it @

Different difficulty levels
Same features on multiple buttons

Key customize feature

Many Other Tasks

Problem
Incoming calls or mail
Other applications
Solution

Create library for each handset terminal

Publishing Your Content

Can try setting up own site but
it will be difficult for customers to find you
impossible to get paid
may be impossible to install MIDlets from own site

Must use a carrier approved publisher

Publishers often run own download sites but
always with link from carrier's game menu.

As with books, publishers help with distribution
and marketing

Publishers

Find a publisher and build a good relationship with
them

Japan: Square Enix, Bandai Networks, Sega WOW,
Namco, Infocom, etc.

America: Bandai America, Digital Chocolate, EA
Mobile, MForma, Sorrent

Europe: Digital Chocolate, Superscape,
Macrospace, Upstart Games

Agenda

Game Development Process

Asset Creation

Program Development

MiIDlet Structure

A MIDlet Example

Challenges in Mobile Game Development
Publishing Your Content

Publishing Your Content

Typical end-user cost is $2 - $5.
Sometimes a subscription model is used.
Carrier provides billing services

Carriers in Japan take around 6%

Carriers in Europe have been known to demand as much as
40%! They drive away content providers.

In some cases, only carrier approved games can be
downloaded to phones

Enforced by handsets that only download applets OTA
Developers must have their handsets modified by the carrier

Other 3D Java Mobile APIs

Mascot Capsule Micro3D Family APIs
Motorola iDEN, Sony Ericsson, Sprint, etc.)
com.mascotcapsule.micro3d.v3 (V3)
Vodafone KK JSCL
com.j_phone.amuse.j3d (\V2), com.jblend.graphics.j3d (\/3)
Vodafone Global
com.vodafone.amuse.j3d (\V2)
NTT Docomo (DoJa)
com.nttdocomo.opt.ui.j3d (DoJa2, DoJa 3) (V2, VV3)

com.nttdocomo.ui.graphics3D (DoJa 4) (V4)

ascot Capsule Micro3D Version Number

Mascot Capsule V3 Game

LABYRINTH

% @EEMSEE EI?T?.N W

Copyrlght 2005 bylnteractlve Bralns Co Ltd

Exporters
3ds max Cinema 4D
Simple built-in exporter since 7.0 www.c4d2m3g.com

www.digi-element.com/Export184/ . Site appears to be defunct

www.mascotcapsule.com/M3G/ " |_|ghtwave

www.m3gexporter.com www.mascotcapsule.com/M3G/ "

Maya . Blender

www.mascotcapsule.com/M3G/ '

http://www.nelson-games.de/bl2m3g/

www.m3gexport.com
Softimage| XSl .

www.mascotcapsule.com/M3G/

SDKs

VFX SDK (Vodafone Global)

via.vodafone.com/vodafone/via/lHome.do

VFX & WTKforJSCL (Vodafone KK)

developers.vodafone.jp/dp/tool_dl/java/emu.php

Summary

Use standard tools to create assets
Basic M3G MiDlet is relatively easy
Programming 3D Games for mobile is hard

Need good relations with carriers and publishers to
get your content distributed

SDKs

Motorola iDEN J2ME SDK
idenphones.motorola.com/iden/developer/developer_tools.jsp
Nokia Series 40, Series 60 & J2ME
www.forum.nokia.com/java
Sony Ericsson
developer.sonyericsson.com/java
Sprint Wireless Toolkit for Java
developer.sprintpcs.com
Sun Wireless Toolkit

java.sun.com/products/j2mewtoolkit/download-2_2.html

IDE’s for Java Mobile

Eclipse Open Source IDE
www.eclipse.org

JBuilder 2005 Developer
www.borland.com/jbuilder/developer/index.html

Sun Java Studio Mobility

www.sun.com/software/products/jsmobility

Comparison of IDE’s for J2ME

www.microjava.com/articles/J2ME_IDE Comparison.pdf

http://www.digi-element.com/Export184/
http://www.mascotcapsule.com/M3G/
http://www.m3gexporter.com
http://www.mascotcapsule.com/M3G/
http://www.m3gexport.com
http://www.mascotcapsule.com/M3G/
http://www.c4d2m3g.com
http://www.mascotcapsule.com/M3G/
http://www.nelson-games.de/bl2m3g/
http://www.forum.nokia.com/java
http://www.eclipse.org
http://www.borland.com/jbuilder/developer/index.html
http://www.sun.com/software/products/jsmobility
http://www.microjava.com/articles/J2ME_IDE_Comparison.pdf

Other Tools

Macromedia Fireworks
www.adobe.com/products/fireworks/
Adobe Photoshop

www.adobe.com/products/photoshop/main.html

Sony SoundForge

www.sonymediasoftware.com/products/showproduct.asp?PID=961

Steinberg Cubase
www.steinberg.de/33 1.html
Yamaha SMAF Tools

smaf-yamaha.com/

227

Thanks: HI Mascot Capsule Version 4
Development Team, Koichi Hatakeyama,
Sean Ellis, JSR-184 Expert Group

Closing & Summary

We have covered
OpenGL ES
M3G

R K (Dear Dog) Demo

~lnix|

File(E) Display() ipulate() Immedists ModeQ) Retained Mode(® Help(G)

RS SR

Fps: 0 (17657 vertices, 11249 polyeons (6466Kb used mummmmm—Ready

KHRON

GROU

S API palette

’ The Khronos API family provides a complete ROYALTY-FREE, ‘

pl 'm media f
— |
Applications or middleware libraries (JSR 184 engines, Flash players, media players etc.)
. OpenMAX aL
OpenSLES. o
- layback an "
i Platform Media
Goor6iLEs Orenva. mcordng | Platform Med
Small fog Iznl 3D for Yocton2D s'-g"l"'le"’el') o Component interfaces
embeddeg systems L°W'I°V°I.V°°A°P"I gaming audio penMAX 1L TorCadec integration
API Image Libraries, Video Codecs,
EGL g , Vide)
Ah’é’? cée et ™ Sound Libraries
esources
i Accelerated medi
R o COOpenMAX DL priviiees o e
development
Media Engines - CPUs, DSP, Hardware Accelerators etc.
[o—

I
Khronos defines low-level, FOUNDATION-level APIs.
“Close to the hardware” abstraction provides portability AND flexibility

http://www.adobe.com/products/fireworks/
http://www.adobe.com/products/photoshop/main.html
http://www.sonymediasoftware.com/products/showproduct.asp?PID=961
http://www.steinberg.de/33_1.html

CC JLLADA %

An open interchange format

to exchange data between
content tools

allows mixing and
matching tools for
the same project

NS Ty
e

allows using desktop
tools for mobile content

2D Vector Graphics %

OpenVG
low-level API, HW acceleration
spec draft at SIGGRAPH 05, conformance tests summer 06

JSR 226: 2D vector graphics for Java

SVG-Tiny compatible features
completed Mar 05

JSR 287: 2D vector graphics for Java 2.0
rich media (audio, video) support, streaming

work just starting

Summary %

Fixed functionality mobile 3D is reality NOW
these APIs and devices are out there

go get them, start developing!
Better content with Collada
Solid roadmap to programmable 3D

Standards for 2D vector graphics

Shaders? Yes! %

OpenGL ES 2.0

subset of OpenGL 2.0, with very similar shading
language

spec draft at SIGGRAPH 05, conformance tests
summer 06, devices 08 (?)

M3G 2.0
adds shaders and more to M3G 1.1
first Expert Group meeting June 06

EGL evolution %

It's not trivial to efficiently combine use of
various multimedia APlIs in a single
application

EGL is evolving towards simultaneous
support of several APIs
OpenGL ES and OpenVG now

all Khronos APIs later

	mobile_3D_APIs.pdf
	mobile3D_handout.pdf

