
EUROGRAPHICS 2006 Tutorial

Developing Mobile 3D Applications
with OpenGL ES and M3G

K. Pulli and J. Vaarala and V. Miettinen and T. Aarnio and M. Callow

Abstract
Mobile phones offer exciting new opportunities for graphics application developers. However, they also have sig-
nificant limitations compared to traditional desktop graphics environments,including absence of dedicated graph-
ics hardware, limited memory (both RAM and ROM), limited communications bandwidth, and lack of floating
point hardware. Existing graphics APIs ignore these limitations and thus are infeasible to implement in embedded
devices.
This course presents two new 3D graphics APIs that address the special needs and constraints of mobile/embedded
platforms: OpenGL ES and M3G. OpenGL ES is a light-weight version of the well-known workstation standard,
offering a subset of OpenGL 1.5 capability plus support for fixed point arithmetic. M3G, Mobile 3D Graphics
API for Java MIDP (Mobile Information Device Profile), also known as JSR-184, provides scene graph and
animation support, binary file format, and immediate mode rendering that bypasses scene graphs. These APIs
provide powerful graphics capabilities in a form that fits well on today’s devices, and will support hardware
acceleration in the future.
The course begins with a discussion of the target environments and their limitations, and general techniques for
coping with platform/environment constraints (such as fixed point arithmetic). This is followed by detailed presen-
tations of the APIs. For each API, we describe the included functionality andcompare it to related workstation
standards, explaining what was left out and why. We also discuss practical aspects of working with the APIs on
the target platforms, and present strategies for porting existing applicationsand creating new ones.

Categories and Subject Descriptors(according to ACM CCS): I.3.6 [Computer Graphics]: Standards

1. Course Syllabus

1.1. Graphics for Mobile Devices

• characteristics and constraints of mobile devices
• brief history of mobile 3D graphics
• mobile 3D APIs

1.2. OpenGL ES Overview

• OpenGL, OpenGL ES, and Khronos
• design principles
• OpenGL ES 1.0: features, which parts of OpenGL were

kept, what was added
• OpenGL ES 1.1 features
• EGL: interface between OpenGL ES and the OS
• devices, implementations, SDKs, demos

1.3. Using OpenGL ES

• Hello OpenGL ES on Symbian

• fixed point programming
• converting existing OpenGL code to OpenGL ES

1.4. Building Scalable 3D Applications

• mobile graphics platforms
• how to scale 3D applications

1.5. M3G API Overview

• mobile Java
• M3G design principles
• M3G basic structure and features
• performance tips
• deforming meshes
• keyframe animation
• demos

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org

K. Pulli and J. Vaarala and V. Miettinen and T. Aarnio and M. Callow / Developing Mobile 3D Applicationswith OpenGL ES and M3G

1.6. Using M3G

• game development process
• asset creation
• program development
• midlet structure
• midlet example
• challenges in mobile game development
• publishing your content

1.7. Closing and Summary

• current status of mobile graphics standards, both 3D and
2D

• roadmap to future

2. Speakers

Kari Pulli has been an active contributor in both OpenGL
ES and M3G (JSR-184) standardization groups. Kari is a
Research Fellow at Nokia and is currently a Visiting Scien-
tist at MIT. Before joining Nokia in 1999, Kari worked on
graphics at Microsoft, SGI, and Alias|Wavefront, obtained a
PhD at University of Washington in graphics in 1997, and
was the technical head of the Digital Michelangelo project
at Stanford Graphics Lab in 1998-99. Kari is a member of
the Eurographics Executive Committee.

Jani Vaarala is a Graphics SW Architect at Nokia. He has
been actively involved with OpenGL ES standardization,
and headed a project that developed a SW OpenGL ES en-
gine and adapted EGL for Symbian OS. Jani started on 3D
graphics in early 90’s on an Amiga, on which he developed
several award-winning graphics demos.

Ville Miettinen is the CTO and co-founder of Hybrid
Graphics, Ltd. During the last decade he has been involved in
the design and implementation of numerous software prod-
ucts in the games and 3D graphics industries. His research
interests include dynamic code generation and software ras-
terizers, and he has authored conference and journal papers
on graphics hardware and visibility optimization. He is a
member of ACM SIGGRAPH, the Khronos Group and the
JSR-184 expert group.

Tomi Aarnio is the specification editor and one of the main
contributors in the M3G (JSR-184) standardization group,
and a member of the OpenGL ES group. As a Senior Re-
search Engineer at Nokia, he has been involved in designing
and implementing several mobile graphics engines, most re-
cently heading the implementation of M3G.

Mark Callow is Chief Architect at HI Corporation, the
leader in 3D graphics engines for mobile devices, whose
Mascot Capsule̋o Micro3D Engine is found on more than
30,000,000 handsets. Mark leads an international team cre-
ating implementations of M3G and OpenGLőES and was ac-
tive in the creation of both standards. Prior to HI, Mark was

with Silicon Graphics for 11 years were he created InPerson,
a collaborative desktop video conferencing system; Mark
was also Cosmo Software’s liaison to the MPEG-4 standards
committee. He previously taught several well-received Sig-
graph courses and is a member of ACM, ACM Siggraph,
IEE, the Khronos Group and the JSR-184 expert group.

3. Further information

Course materials and other re-
lated information can be found at
http://people.csail.mit.edu/kapu/mobile_3D_course/.

c© The Eurographics Association 2006.

http://people.csail.mit.edu/kapu/mobile_3D_course/

Kari Pulli Nokia Research Center

Jani Vaarala Nokia

Ville Miettinen Hybrid Graphics

Tomi Aarnio Nokia Research Center

Mark Callow HI Corporation

Developing Mobile
3D Applications with
OpenGL ES and M3G

Developing Mobile
3D Applications with
OpenGL ES and M3G

Today’s programToday’s program

• Start at ?:??
• Intro & OpenGL ES

overview
25 min, Kari Pulli

• Using OpenGL ES
40 min, Jani Vaarala

• OpenGL ES
performance
25 min, Ville Miettinen

• Break ?:?? – ?:??
• M3G API overview

45 min, Tomi Aarnio

• Using M3G
40 min, Mark Callow

• Closing & Q&A
5 min, Kari Pulli

Challenges for mobile gfxChallenges for mobile gfx

• Small displays
– getting much better

• Computation
– speed

– power / batteries

– thermal barrier

• Memory

State-of-the-art in 2001:
GSM world
State-of-the-art in 2001:
GSM world

• The world’s most played
electronic game?
– According to The Guardian

(May 2001)

• Communicator demo 2001
– Remake of a 1994 Amiga demo

– <10 year from PC to mobile

State-of-the-art in 2001:
Japan
State-of-the-art in 2001:
Japan

• High-level API with skinning, flat shading /
texturing, orthographic view

J-SH07
by SHARP

GENKI 3D Characters

(C) 2001 GENKI

ULALA

(c)SEGA/UGA.2001

J-SH51
by SHARP

Space Channel 5

©SEGA/UGA,2001 ©SEGA/UGA,2002

Snowboard Rider
©WOW ENTERTAINMENT INC.,
2000-2002all rights reserved.

State-of-the-art in 2002:
GSM world
State-of-the-art in 2002:
GSM world

• 3410 shipped in May 2002
– A SW engine: a subset of OpenGL

including full perspective (even textures)

– 3D screensavers (artist created content)

– FlyText screensaver (end-user content)

– a 3D game

State-of-the-art in 2002:
Japan
State-of-the-art in 2002:
Japan

• Gouraud shading,
semi-transparency,
environment maps

3d menu

C3003P
by Panasonic

KDDI Au 3D Launcher

©SAN-X+GREEN CAMEL

I-3D PolyGame
Boxing

@ Hi Vanguard REZO, BNW

Ulala Channel J

©SEGA/UGA,2001 ©SEGA/UGA,2002

Fathammer’s
Geopod

on XForge

State-of-the-art in 2003:
GSM world
State-of-the-art in 2003:
GSM world

• N-Gage ships

• Lots of proprietary 3D engines
on various Series 60 phones

State-of-the-art in 2003:
Japan
State-of-the-art in 2003:
Japan

• Perspective view,
low-level API

Aqua ModeAqua ModeAqua ModeRidge Racer

@ Namco

Mission Commander
Multi player Fps Game

© IT Telecom

Mobile 3D in 2004Mobile 3D in 2004

• 6630 shipped late 2004
– First device to have both

OpenGL ES 1.0 (for C++) and
M3G (a.k.a JSR-184, for Java) APIs

• Sharp V602SH in May 2004
– OpenGL ES 1.0 capable HW

but API not exposed

– Java / MascotCapsule API

2005 and beyond: HW2005 and beyond: HW Mobile 3D APIsMobile 3D APIs

OpenGL ESOpenGL ES

Java ApplicationsJava Applications

Java UI APIJava UI APIM3G (JSR-184)M3G (JSR-184)

Operating System (Symbian, Linux, …)Operating System (Symbian, Linux, …)

Java Virtual MachineJava Virtual Machine

Native C/C++
Applications

Native C/C++
Applications

Graphics HardwareGraphics Hardware

Overview: OpenGL ESOverview: OpenGL ES

• Background: OpenGL & OpenGL ES

• OpenGL ES 1.0

• OpenGL ES 1.1

• EGL: the glue between OS and OpenGL ES

• How can I get it and learn more?

• The most widely adopted graphics standard
– most OS’s, thousands of applications

• Map the graphics process into a pipeline
– matches HW well

• A foundation for higher level APIs
– Open Inventor; VRML / X3D; Java3D; game engines

What is OpenGL?What is OpenGL?

modeling

projecting

clipping

lighting & shading

texturing

hidden surface

blending

pixels to screen

What is OpenGL ES?What is OpenGL ES?

• OpenGL is just too big for Embedded
Systems with limited resources
– memory footprint, floating point HW

• Create a new, compact API
– mostly a subset of OpenGL

– that can still do almost all OpenGL can

OpenGL ES 1.0 design
targets
OpenGL ES 1.0 design
targets
• Preserve OpenGL structure
• Eliminate un-needed functionality

– redundant / expensive / unused
• Keep it compact and efficient

– <= 50KB footprint possible, without HW FPU
• Enable innovation

– allow extensions, harmonize them
• Align with other mobile 3D APIs (M3G / JSR-184)

AdoptionAdoption

• Symbian OS, S60

• Brew

• PS3 / Cell architecture

Sony’s arguments: Why ES over OpenGL
• OpenGL drivers contain many features not needed

by game developers
• ES designed primarily for interactive 3D app devs
• Smaller memory footprint

OutlineOutline

• Background: OpenGL & OpenGL ES

• OpenGL ES 1.0

• OpenGL ES 1.1

• EGL: the glue between OS and OpenGL ES

• How can I get it and learn more?

Functionality: in / out? (1/7)Functionality: in / out? (1/7)

• Convenience functionality is OUT
– GLU

(utility library)

– evaluators
(for splines)

– feedback mode
(tell what would draw without drawing)

– selection mode
(for picking, easily emulated)

– display lists
(collecting and preprocessing commands)

gluOrtho2D(0,1,0,1)
vs.
glOrtho(0,1,0,1,-1,1)

glNewList(1, GL_COMPILE)
myFuncThatCallsOpenGL()
glEndList()
…
glCallList(1)

Functionality: in / out? (2/7)Functionality: in / out? (2/7)

• Remove old complex functionality
– glBegin – glEnd (OUT); vertex arrays (IN)

– new: coordinates can be given as bytes

glBegin(GL_POLYGON);
glColor3f (1, 0, 0);
glVertex3f(-.5, .5, .5);
glVertex3f(.5, .5, .5);
glColor3f (0, 1, 0);
glVertex3f(.5,-.5, .5);
glVertex3f(-.5,-.5, .5);
glEnd();

static const GLbyte verts[4 * 3] =
{ -1, 1, 1, 1, 1, 1,

1, -1, 1, -1, -1, 1 };
static const GLubyte colors[4 * 3] =
{ 255, 0, 0, 255, 0, 0,

0,255, 0, 0,255, 0 };
glVertexPointer(3,GL_BYTE,0, verts);
glColorPointerf(3,GL_UNSIGNED_BYTE,

0, colors);
glDrawArrays(GL_TRIANGLES, 0, 4);

Functionality: in / out? (3/7)Functionality: in / out? (3/7)

• Simplify rendering modes
– double buffering, RGBA, no front buffer access

• Emulating back-end missing functionality is
expensive or impossible
– full fragment processing is IN

alpha / depth / scissor / stencil tests,
multisampling,
dithering, blending, logic ops)

Functionality: in / out? (4/7)Functionality: in / out? (4/7)

• Raster processing
– ReadPixels IN, DrawPixels and Bitmap OUT

• Rasterization
– OUT: PolygonMode, PolygonSmooth, Stipple

Functionality: in / out? (5/7)Functionality: in / out? (5/7)

• 2D texture maps IN
– 1D, 3D, cube maps OUT

– borders, proxies, priorities, LOD clamps OUT

– multitexturing, texture compression IN (optional)

– texture filtering (incl. mipmaps) IN

– new: paletted textures IN

Functionality: in / out? (6/7)Functionality: in / out? (6/7)

• Almost full OpenGL light model IN
– back materials, local viewer,

separate specular OUT

• Primitives
– IN: points, lines, triangles

– OUT: polygons and quads

Functionality: in / out? (7/7)Functionality: in / out? (7/7)

• Vertex processing
– IN: transformations

– OUT: user clip planes, texcoord generation

• Support only static queries
– OUT: dynamic queries, attribute stacks

• application can usually keep track of its own state

The great “Floats vs. fixed-
point” debate
The great “Floats vs. fixed-
point” debate

• Accommodate both
– integers / fixed-point numbers for efficiency

– floats for ease-of-use and being future-proof

• Details
– 16.16 fixed-point: add a decimal point inside an int

– get rid of doubles

glRotatef(0.5f, 0.f , 1.f, 0.f);
vs.

glRotatex(1 << 15, 0 , 1 << 16, 0);

OutlineOutline

• Background: OpenGL & OpenGL ES

• OpenGL ES 1.0

• OpenGL ES 1.1

• EGL: the glue between OS and OpenGL ES

• How can I get it and learn more?

OpenGL ES 1.1: coreOpenGL ES 1.1: core

• Buffer Objects
allow caching vertex data

• Better Textures
>= 2 tex units, combine (+,-,interp), dot3 bumps, auto mipmap gen.

• User Clip Planes
portal culling (>= 1)

• Point Sprites
particles as points not quads, attenuate size with distance

• State Queries
enables state save / restore, good for middleware

OpenGL ES 1.1: optionalOpenGL ES 1.1: optional

• Draw Texture
fast drawing of pixel rectangles using texturing units
(data can be cached), constant Z, scaling

• Matrix Palette
vertex skinning (>= 3 matrices / vertex, palette >= 9)

OutlineOutline

• Background: OpenGL & OpenGL ES

• OpenGL ES 1.0

• OpenGL ES 1.1

• EGL: the glue between OS and OpenGL ES

• How can I get it and learn more?

EGL glues OpenGL ES to OSEGL glues OpenGL ES to OS

• EGL is the interface between OpenGL ES
and the native platform window system
– similar to GLX on X-windows, WGL on Windows

– facilitates portability across OS’s (Symbian, Linux, …)

• Division of labor
– EGL gets the resources (windows, etc.) and

displays the images created by OpenGL ES

– OpenGL ES uses resources for 3D graphics

EGL surfacesEGL surfaces

• Various drawing surfaces, rendering targets
– windows – on-screen rendering

(“graphics” memory)

– pbuffers – off-screen rendering
(user memory)

– pixmaps – off-screen rendering
(OS native images)

EGL contextEGL context

• A rendering context is an abstract OpenGL
ES state machine
– stores the state of the graphics engine

– can be (re)bound to any matching surface

– different contexts can share data
• texture objects

• vertex buffer objects

• lately even across APIs (OpenGL ES, OpenVG)

Main EGL 1.0 functionsMain EGL 1.0 functions

• Getting started
– eglInitialize() / eglTerminate(), eglGetDisplay(),

eglGetConfigs() / eglChooseConfig(),
eglCreateXSurface() (X = Window | Pbuffer | Pixmap),
eglCreateContext()

• eglMakeCurrent(display, drawsurf, readsurf,
context)

– binds context to current thread, surfaces, display

Main EGL 1.0 functionsMain EGL 1.0 functions

• eglSwapBuffer(display, surface)
– posts the color buffer to a window

• eglWaitGL(), eglWaitNative(engine)
– provides synchronization between OpenGL ES

and native (2D) graphics libraries

• eglCopyBuffer(display, surface, target)
– copy color buffer to a native color pixmap

EGL 1.1 enhancementsEGL 1.1 enhancements

• Swap interval control
– specify # of video frames between buffer swaps

– default 1; 0 = unlocked swaps, >1 save power

• Power management events
– PM event => all Context lost

– Disp & Surf remain, Surf contents unspecified

• Render-to-texture [optional]
– flexible use of texture memory

OutlineOutline

• Background: OpenGL & OpenGL ES

• OpenGL ES 1.0 functionality

• OpenGL ES beyond 1.0

• EGL: the glue between OS and OpenGL ES

• How can I get it and learn more?

SW ImplementationsSW Implementations

• Gerbera from Hybrid
– Free for non-commercial use

– http://www.hybrid.fi

• Vincent
– Open-source OpenGL ES library

– http://sourceforge.net/projects/ogl-es

• Reference implementation
– Wraps on top of OpenGL
– http://www.khronos.org/opengles/documentation/gles-1.0c.tgz

On-Device ImplementationsOn-Device Implementations

• NokiaGL (SW)

• N93 (HW)

• Imagination MBX

• NVidia GoForce 3D

• ATI Imageon

• Toshiba T4G

• …

SDKsSDKs

• Nokia S60 SDK (Symbian OS)
– http://www.forum.nokia.com

• Imagination SDK
– http://www.pvrdev.com/Pub/MBX

• NVIDIA handheld SDK
– http://www.nvidia.com/object/hhsdk_home.html

• Brew SDK & documentation
– http://brew.qualcomm.com

OpenGL ES 1.1 DemosOpenGL ES 1.1 Demos Questions?Questions?

http://www.hybrid.fi
http://sourceforge.net/projects/ogl-es
http://www.khronos.org/opengles/documentation/gles-1.0c.tgz
http://www.forum.nokia.com
http://www.pvrdev.com/Pub/MBX
http://www.nvidia.com/object/hhsdk_home.html
http://brew.qualcomm.com

Using OpenGL ESUsing OpenGL ES

Jani Vaarala

Nokia

Using OpenGL ESUsing OpenGL ES

- Simple OpenGL ES example

- Fixed point programming

- Converting existing code

“Hello OpenGL ES”“Hello OpenGL ES”

Symbian App ClassesSymbian App Classes

EXAMPLE.EXE or EXAMPLE.APP (.DLL)

Application Document

AppUI Container

Handle Commands (Events, Keys)Handle Commands (Events, Keys)
Handle Application viewsHandle Application views

DATADATA

VIEWVIEW

OpenGL ES

“Hello OpenGL ES”“Hello OpenGL ES”

/* ===
* "Hello OpenGL ES" OpenGL ES code.
*
* Eurographics 2006 course on mobile graphics.
*
* Copyright: Jani Vaarala
* ===
*/

#include <e32base.h>
#include "SigTriangleGL.h"

static const GLbyte vertices[3 * 3] =
{

-1, 1, 0,
1, -1, 0,
1, 1, 0

}; OpenGL ES

“Hello OpenGL ES”“Hello OpenGL ES”

static const GLubyte colors[3 * 4] =
{

255, 0, 0, 255,
0, 255, 0, 255,
0, 0, 255, 255

};

OpenGL ES

“Hello OpenGL ES”“Hello OpenGL ES”

static void initGLES()
{

glClearColor (0.f,0.f,0.1f,1.f);
glDisable (GL_DEPTH_TEST);
glMatrixMode (GL_PROJECTION);
glFrustumf (-1.f,1.f,-1.f,1.f,3.f,1000.f);
glMatrixMode (GL_MODELVIEW);
glShadeModel (GL_SMOOTH);
glVertexPointer (3,GL_BYTE,0,vertices);
glColorPointer (4,GL_UNSIGNED_BYTE,0,colors);
glEnableClientState (GL_VERTEX_ARRAY);
glEnableClientState (GL_COLOR_ARRAY);

}

OpenGL ES

“Hello OpenGL ES”“Hello OpenGL ES”

TInt CSigTriangleGL::DrawCallback(TAny* aInstance)
{

CSigTriangleGL* instance = (CSigTriangleGL*) aInstance;

glClear (GL_COLOR_BUFFER_BIT);
glLoadIdentity ();
glTranslatef (0,0,-5.f);
glDrawArrays (GL_TRIANGLES,0,3);

eglSwapBuffers (instance->iEglDisplay,instance->iEglSurface);

/* To keep the background light on */
if (!(instance->iFrame%100)) User::ResetInactivityTime();

instance->iFrame++;
return 0;

}
OpenGL ES

“Hello OpenGL ES”“Hello OpenGL ES”

void CSigTriangleContainer::ConstructL(const TRect& /* aRect */)
{

iGLInitialized = EFalse;

CreateWindowL();
SetExtentToWholeScreen();
ActivateL();

CSigTriangleGL* gl = new (ELeave) CSigTriangleGL();
gl->Construct(Window());

iGLInitialized = ETrue;
}

CSigTriangleContainer::~CSigTriangleContainer()
{
}

Container

“Hello OpenGL ES”“Hello OpenGL ES”

void CSigTriangleContainer::SizeChanged()
{

if(iGLInitialized)
{

glViewport(0,0,Size().iWidth,Size().iHeight);
}

}

void HandleResourceChange(TInt aType)
{

if(aType == KEikDynamicLayoutSwitch)
{

// Screen resolution changed, make window fullscreen in a new resolution
SetExtentToWholeScreen();

}
}

TInt CSigTriangleContainer::CountComponentControls() const
{

return 0;
}

CCoeControl* CSigTriangleContainer::ComponentControl(TInt /* aIndex */) const
{

return NULL;
}

Container

‘‘Hello OpenGL ES”‘‘Hello OpenGL ES”

/**
* Initialize OpenGL ES context and initial OpenGL ES state *
**/
void CSigTriangleGL::Construct(RWindow aWin)
{

iWin = aWin;

iEglDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
if(iEglDisplay == NULL) User::Exit(-1);

if(eglInitialize(iEglDisplay,NULL,NULL) == EGL_FALSE)
User::Exit(-1);

EGLConfig config,colorDepth;
EGLint numOfConfigs = 0;

OpenGL ES

‘‘Hello OpenGL ES”‘‘Hello OpenGL ES”

switch(iWin.DisplayMode())
{

case (EColor4K): { colorDepth = 12; break; }
case (EColor64K): { colorDepth = 16; break; }
case (EColor16M): { colorDepth = 24; break; }
default:

colorDepth = 32;
}

EGLint attrib_list[] = { EGL_BUFFER_SIZE, colorDepth,
EGL_DEPTH_SIZE, 15,
EGL_NONE };

if(eglChooseConfig(iEglDisplay,attrib_list,&config,1,
&numOfConfigs) == EGL_FALSE) User::Exit(-1);

OpenGL ES

“Hello OpenGL ES”“Hello OpenGL ES”

iEglSurface = eglCreateWindowSurface(iEglDisplay, config, &iWin, NULL);
if(iEglSurface == NULL) User::Exit(-1);

iEglContext = eglCreateContext(iEglDisplay,config, EGL_NO_CONTEXT, NULL);
if(iEglContext == NULL) User::Exit(-1);

if(eglMakeCurrent(iEglDisplay, iEglSurface, iEglSurface,
iEglContext) == EGL_FALSE) User::Exit(-1);

OpenGL ES

“Hello OpenGL ES”“Hello OpenGL ES”

/* Create a periodic timer for display refresh */
iPeriodic = CPeriodic::NewL(CActive::EPriorityIdle);

iPeriodic->Start(100, 100, TCallBack(
SigTriangleGL::DrawCallback, this));

initGLES();

OpenGL ES

Carbide C++ ExpressCarbide C++ Express

• Free IDE for S60 development from
– http://www.forum.nokia.com

• Supports 2nd edition and 3rd edition SDKs

• Here we focus on 3rd edition
– Future devices will be 3rd edition (e.g., N93)

Importing projectImporting project Importing projectImporting project

http://www.forum.nokia.com

Importing projectImporting project

Select emulator configuration
and phone configuration (GCCE)
under S60_3rd.

Importing .PKG file (for .SIS)Importing .PKG file (for .SIS)

• Select from menu: File -> Import

• Select “File System”

• Navigate to folder “sis” and import .PKG file
– “EGTriangle_gcce.pkg”

• Build will automatically generate install file

Importing .PKG fileImporting .PKG file Compiling & DebuggingCompiling & Debugging

• Select from menu: Project -> Build ALL

• Select from menu: Run -> Debug

Creating debug configCreating debug config

Click “New” to create new
debug config.

Creating debug configCreating debug config

Selecting applicationSelecting application

• When emulator starts, navigate to “Installat.”
folder

• Select application to launch (EGTriangle)

ApplicationApplication

Click this button to cycle
through resolutions and
check that your application
works in all resolutions.

Getting it to HWGetting it to HW

• Go to menu: Window -> Open Perspective ->
Other

• Select “Symbian (default)”

• Go to menu: Window -> Show view -> Build
Configurations

Selecting build configurationSelecting build configuration

Click this button to open a
list of possible build
configurations. Select
“S60 3.0 Phone (GCCE)
Release”

Installation fileInstallation file

• Build the project (CTRL-B)

• Installation file is generated during build

• Select it from C/C++ Projects view
– EGTriangle_GCCE.sis

• From context menu select “copy”

• Paste it to desktop and send using bluetooth

Fixed point programmingFixed point programming

- Why to use it?
- Most mobile handsets don’t have a FPU

- Where does it make sense to use it?
- Where it makes the most difference

- For per-vertex processing: morphing, skinning, etc.

- Per vertex data shouldn’t be floating point

- OpenGL ES API supports 32-bit FP numbers

Fixed point programmingFixed point programming

- There are many variants of fixed point:
- Signed / Unsigned

- 2’s complement vs. Separate sign

- OpenGL ES uses 2’s complement

- Numbers in the range of [-32768, 32768 [

- 16 bits for decimal bits (precision of 1/65536)

- All the examples here use .16 fixed point

Fixed point programmingFixed point programming

- Examples:
0x0001 0000 = “1.0f”

0x0002 0000 = “2.0f”

0x0010 0000 = “16.0f”

0x0000 0001 = 1/0x10000(0x10000 = 216)

0xffff ffff = -1/0x10000(-0x0000 0001)

64-bit

Fixed point programmingFixed point programming

>> 16 = RESULT

Intermediate overflow
• Higher accuracy (64-bit)
• Downscale input
• Redo range analysis

Result overflow
• Redo range analysis
• Detect overflow, clamp

*VALUE 1 VALUE 2
32-bit 32-bit

Fixed point programmingFixed point programming

- Convert from floating point to fixed point
#define float_to_fixed(a) (int)((a)*(1<<16))

- Convert from fixed point to floating point
#define fixed_to_float(a) (((float)a)/(1<<16))

- Addition
#define add_fixed_fixed(a,b) ((a)+(b))

- Multiply fixed point number with integer
#define mul_fixed_int(a,b) ((a)*(b))

Fixed point programmingFixed point programming

- MUL two FP numbers together
#define mul_fixed_fixed(a,b) (((a)*(b)) >> 16)

- If another multiplier is in] -1.0, 1.0 [, no overflow

- Division of integer by integer to a fixed point result
#define div_int_int(a,b) (((a)*(1<<16))/(b))

- Division of fixed point by integer to a fixed point result
#define div_fixed_int(a,b) ((a)/(b))

- Division of fixed point by fixed point
#define div_fixed_fixed(a,b) (((a)*(1<<16))/(b))

Fixed point programmingFixed point programming

- Power of two MUL & DIV can be done with shifts

- Fixed point calculations overflow easily

- Careful analysis of the range requirements is required

- Always try to use as low bit ranges as possible
- 32x8 MUL is faster than 32x32 MUL (some ARM)

- Using unnecessary “extra bits” slows execution

- Always add debugging code to your fixed point math

Fixed point programmingFixed point programming

#if defined(DEBUG)
int add_fix_fix_chk(int a, int b)
{

int64 bigresult = ((int64)a) + ((int64)b);
int smallresult = a + b;
assert(smallresult == bigresult);
return smallresult;

}
#endif

#if defined(DEBUG)
define add_fix_fix(a,b) add_fix_fix_chk(a,b)
#else
define add_fix_fix(a,b) ((a)+(b))
#endif

Fixed point programmingFixed point programming

- Complex math functions
- Pre-calculate for the range of interest

- An example: Sin & Cos
- Sin table between [0, 90°]

- Fixed point angle

- Generate other angles and Cos from the table

- Store as fixed point ((short) (sin(angle) * 32767))

- Performance vs. space tradeoff: calculate for all angles

Fixed point programmingFixed point programming

- Sin
- 90 = 2048 (our angle scale)

- Sin table needs to include 0 and 90

INLINE fp_sin(int angle)
{

int phase = angle & (2048 + 4096);
int subang = angle & 2047;

if(phase == 0) return sin_table (subang);
else if(phase == 2048) return sin_table (2048 - subang);
else if(phase == 4096) return –sin_table (subang);
else return –sin_table (2048 – subang);

}

Example: MorphingExample: Morphing

• Simple fixed point morphing loop (16-bit data, 16-bit coeff)

#define DOMORPH_16(a,b,t) (TInt16)(((((b)-(a))*(t))>>16)+(a))

void MorphGeometry(TInt16 *aOut, const TInt16 *aInA, const TInt16
*aInB, TInt aCount, TInt aScale)

{
int i;

for(i=0; i<aCount; i++)
{

aOut[i*3+0] = DOMORPH_16(aInB[i*3+0], aInA[i*3+0], aScale);
aOut[i*3+1] = DOMORPH_16(aInB[i*3+1], aInA[i*3+1], aScale);
aOut[i*3+2] = DOMORPH_16(aInB[i*3+2], aInA[i*3+2], aScale);

}
}

Converting existing codeConverting existing code

- OS/device conversions
- Programming model, C/C++, compiler, CPU

- Windowing API conversion
- EGL API is mostly cross platform

- EGL Native types are platform specific

- OpenGL -> OpenGL ES conversion

Example: Symbian portingExample: Symbian porting

Programming model
- C++ with some changes (e.g., exceptions)

- Event based programming (MVC), no main / main loop

- Three level multitasking: Process, Thread, Active Objects

- ARM CPU
- Unaligned memory accesses will cause exception

Example: EGL portingExample: EGL porting

- Native types are OS specific
- EGLNativeWindowType (RWindow)

- EGLNativePixmapType (CFbsBitmap)

- Pbuffers are portable

- Config selection
- Select the color depth to be same as in the display

- Windowing system issues
- What if render window is clipped by a system dialog?

- Only full screen windows may be supported

OpenGL portingOpenGL porting

• glBegin/glEnd wrappers
• _glBegin stores the primitive type
• _glColor changes the current per-vertex data
• _glVertex stores the current data behind arrays and increments
• _glEnd calls glDrawArrays with primitive type and length

_glBegin(GL_TRIANGLES);
_glColor4f(1.0,0.0,0.0,1.0);
_glVertex3f(1.0,0.0,0.0);
_glVertex3f(0.0,1.0,0.0);
_glColor4f(0.0,1.0,0.0,1.0);
_glVertex3f(0.0,0.0,1.0);

_glEnd();

OpenGL portingOpenGL porting

• Display list wrapper
– Add the display list functions as wrappers

– Add all relevant GL functions as wrappers

– When drawing a list, go through the collected list

OpenGL portingOpenGL porting

void _glEnable(par1, par2)
{
if(GLOBAL()->iSubmittingDisplayList)
{

*(GLOBAL()->dlist)++ = DLIST_CMD_GLENABLE;
*(GLOBAL()->dlist)++ = (GLuint)par1;
*(GLOBAL()->dlist)++ = (GLuint)par2;

}
else
{

glEnable(par1,par2);
}

}

OpenGL portingOpenGL porting

• Vertex arrays
– OpenGL ES supports only vertex arrays

– SW implementations get penalty from float data

– Use as small types as possible (byte, short)

– For HW it shouldn’t make a difference, mem BW

– With OpenGL ES 1.1 use VBOs

OpenGL portingOpenGL porting

• No quads
– Convert a quad into 2 triangles

• No real two-sided lighting
– If you really need it, submit front and back triangles

• OpenGL ES and querying state
– OpenGL ES 1.0 only supports static getters

– OpenGL ES 1.1 supports dynamic getters

– For OpenGL ES 1.0, create own state tracking if needed

Questions?Questions?

?? ?

Building scalable 3D applications
Ville Miettinen

Hybrid Graphics

What is this
”mobile platform”?
What is this
”mobile platform”?

• CPU speed and available memory varies
– Current range ~30Mhz - 600MHz, no FPUs

• Portability issues
– Different CPUs, OSes, Java VMs, C compilers, ...

• Different resolutions
– QCIF (176x144) to VGA (640x480), antialiasing on higher-

end devices

– Color depths 4-8 bits per channel (12-32 bpp)

Graphics capabilitiesGraphics capabilities

• General-purpose multimedia hardware
– Pure software renderers (all done using CPU & integer ALU)
– Software + DSP / WMMX / FPU / VFPU
– Multimedia accelerators

• Dedicated 3D hardware
– Software T&L + HW tri setup / rasterization
– Full HW

• Performance: 50K – 2M tris, 1M – 100M pixels

Dealing with diversityDealing with diversity

• Problem: running the same game on 100+ different
devices
– Same gameplay but can scale video and audio

• Scalability must be built into game design

• Profile-based approach

3D content is easy to scale3D content is easy to scale

• Separate low and high poly 3D models

• Different texture resolutions & compressed formats

• Scaling down special effects not critical to game
play (particle systems, shadows)
– Important to realize what is a ”special effect”

• Rendering quality controls
– Texture filtering, perspective correction, blend functions,

multi-texturing, antialiasing

Building scalable 3D appsBuilding scalable 3D apps

• OpenGL ES created to standardize the API and
behavior
– ES does not attempt to standardize performance
– Two out of three ain’t bad

• Differences between SW/HW configurations
– Trade-off between flexibility and performance

– Synchronization issues

Building scalable 3D appsBuilding scalable 3D apps

• Scale upwards, not downwards
– Bad experiences of retro-fitting HW titles to SW
– Test during development on lowest-end platform

• Both programmers and artists need education
– Artists can deal with almost anything as long as they know

the rules...
– And when they don’t, just force them (automatic checking in

art pipeline)

Reducing state changesReducing state changes

• Don’t mix 2D and 3D calls !!!!
– Situation may become better in the future, though...

• Unnecessary state changes root of all evil
– Avoid changes affecting the vertex pipeline

– Avoid changes to the pixel pipeline

– Avoid changing textures

”Shaders””Shaders”

• Combine state changes into blocks (”shaders”)
– Minimize number of shaders per frame

– Typical application needs only 3-10 ”pixel shaders”

• Different 3-10 shaders in every application

• Enforce this in artists’ tool chain

• Sort objects by shaders every frame
– Split objects based on shaders

Complexity of shadersComplexity of shaders

• Software rendering: Important to keep shaders as
simple as possible
– Do even if introduces additional state changes

– Example: turn off fog & depth buffering when rendering
overlays

• Hardware rendering: Usually more important to
keep number of changes small

Of models and strippingOf models and stripping

• Use buffer objects of ES 1.1
– Only models changed manually every frame

need vertex pointers

– Many LOD schemes can be done just by
changing index buffers

• Keep data formats short and simple
– Better cache coherence, less memory used

Triangle dataTriangle data

• Minimize number of rendering calls
– Trade-off between no. of render calls & culling efficiency
– Combine strips using degenerate triangles
– Understanding vertex caching

• Automatically optimize vertex access order

• Triangle lists better than their reputation

• Optimize data in your art pipeline (exporters)
– Welding vertices with same attributes (with tolerance)

• Vertices/triangle ratio in good data 0.7-1.0

– Give artists as much automatic feedback as possible

Transformations and
matrices
Transformations and
matrices

• Minimize matrix changes
– Changing a matrix may involve many hidden costs

– Combine simple objects with same transformation

– Flatten and cache transformation hierarchies

• ES 1.1: Skinning using matrix palettes
– CPU doesn’t have to touch vertex data

– Characters, natural motion: grass, trees, waves

• ES 1.1: Point sprites

Lighting and materialsLighting and materials

• Fixed-function lighting pipelines are so 1990s
– Drivers implemented badly even in desktop space

– In practice only single directional light fast

– OpenGL’s attenuation model difficult to use

– Spot cutoff and specular model cause aliasing

– No secondary specular color

Lighting: the fast wayLighting: the fast way

• While we’re waiting for OpenGL ES 2.0...
– Pre-computed vertex illumination good if slow T&L

– Illumination using texturing

• Light mapping

• ES 1.1: dot3 bump mapping + texture combine

• Less tessellation required

• Color material tracking for changing materials

• Flat shading is for flat models!

Illumination using
multitexturing
Illumination using
multitexturing

TexturesTextures

• Mipmaps always a Good Thing™
– Improved cache coherence and visual quality

– ES 1.1 supports auto mipmap generation

• Different strategies for texture filtering

• SW: Perspective correction not always needed

• Avoid modifying texture data

• Keep textures ”right size”, use compressed textures

TexturesTextures

• Multitexturing
– Needed for texture-based lighting

– Always faster than doing multiple rendering passes

– ES 1.1: support at least two texturing units

– ES 1.1: TexEnvCombine neat toy

• Combine multiple textures into single larger one
– Reduce texture state changes (for fonts, animations, light

maps)

Textures and shots from Kesmai’s Air Warrior 4 (never published)

Object orderingObject ordering

• Sort objects into optimal rendering order
– Minimize shader changes

– Keep objects in front-to-back order

• Improves Z-buffering efficiency

– Satisfying both goals: bucketize objects by shader, sort
buckets by Z

Thank you!Thank you!

• Any questions?

M3G OverviewM3G Overview

Tomi Aarnio

Nokia Research Center

ObjectivesObjectives

• Get an idea of the API structure and feature set

• Learn practical tricks not found in the spec

PrerequisitesPrerequisites

• Fundamentals of 3D graphics

• Some knowledge of OpenGL ES

• Some knowledge of scene graphs

Mobile 3D Graphics APIsMobile 3D Graphics APIs

OpenGL ESOpenGL ESOpenGL ES

Java ApplicationsJava ApplicationsJava Applications

M3G (JSR-184)M3G (JSRM3G (JSR--184)184)

Native C/C++
Applications

Native C/C++Native C/C++
ApplicationsApplications

Graphics HardwareGraphics HardwareGraphics Hardware

Why Should You Use Java?Why Should You Use Java?

• It has the largest and fastest-growing installed base
– 1.2B Java phones had been sold by June 2006 (source: Ovum)

– Nokia alone had sold 350M Java phones by the end of 2005

– Less than 50M of those also supported native S60 applications

• It increases productivity compared to C/C++
– Memory protection, type safety fewer bugs

– Fewer bugs, object orientation better productivity
0.07 0.04

0.22 0.26

0.4

0.25

0.0

0.5

1.0

Vertex transformation Image downsampling

R
el

at
iv

e
sp

ee
d

Assembly
KVM
Jazelle™
HotSpot

Java Will Remain SlowerJava Will Remain Slower

Benchmarked on an ARM926EJ-S processor with hand-optimized Java and assembly code

Why?Why?

• Array bounds checking

• Dynamic type checking

• No stack allocation (heap only)

• Garbage collection

• Slow Java-native interface

• No access to special CPU features

• Stack-based (non-RISC) bytecode

• Unpredictable JIT compilers

No Java compiler or
accelerator can fully
resolve these issues

M3G OverviewM3G Overview

Design principles
Getting started

Basic features

Performance tips

Deforming meshes

Keyframe animation

Summary & demos

M3G Design PrinciplesM3G Design Principles

#1#1#1 No Java code along critical pathsNo Java code along critical pathsNo Java code along critical paths

• Move all graphics processing to native code
– Not only rasterization and transformations

– Also morphing, skinning, and keyframe animation

– Keep all data on the native side to avoid Java-native traffic

M3G Design PrinciplesM3G Design Principles

• Do not add features that are too heavy for software engines

– Such as per-pixel mipmapping or floating-point vertices

• Do not add features that break the OpenGL 1.x pipeline

– Such as hardcoded transparency shaders

#2#2#2 Cater for both software and hardwareCater for both software and hardwareCater for both software and hardware

M3G Design PrinciplesM3G Design Principles

• Address content creation and tool chain issues
– Export art assets into a compressed file (.m3g)

– Load and manipulate the content at run time

– Need scene graph and animation support for that

• Minimize the amount of “boilerplate code”

#3#3#3 Maximize developer productivityMaximize developer productivityMaximize developer productivity

M3G Design PrinciplesM3G Design Principles

#4#4#4 Minimize engine complexityMinimize engine complexityMinimize engine complexity

#5#5#5 Minimize fragmentationMinimize fragmentationMinimize fragmentation

#6#6#6 Plan for future expansionPlan for future expansionPlan for future expansion

Why a New Standard?Why a New Standard?

• OpenGL ES is too low-level
– Lots of Java code, function calls needed for simple things

– No support for animation and scene management

– Fails on Design Principles 1 (performance) and 3 (productivity)

– …but may become practical with faster Java virtual machines

• Java 3D is too bloated
– A hundred times larger (!) than M3G

– Still lacks a file format, skinning, etc.

– Fails on Design Principles 1, 3, and 4 (code size)

M3G OverviewM3G Overview

Design principles

Getting started
Basic features

Performance tips

Deforming meshes

Keyframe animation

Summary & demos

The Programming ModelThe Programming Model

• Not an “extensible scene graph”
– Rather a black box – much like OpenGL

– No interfaces, events, or render callbacks

– No threads; all methods return only when done

• Scene update is decoupled from rendering
– render Draws an object or scene, no side-effects

– animate Updates an object or scene to the given time

– align Aligns scene graph nodes to others
WorldWorld

Graphics3DGraphics3D

LoaderLoader

3D graphics context
Performs all rendering

Scene graph root node

Loads individual objects
and entire scene graphs
(.m3g and .png files)

Main ClassesMain Classes

Rendering StateRendering State

• Graphics3D contains global state
– Frame buffer, depth buffer

– Viewport, depth range

– Rendering quality hints

• Most rendering state is in the scene graph
– Vertex buffers, textures, matrices, materials, …

– Packaged into Java objects, referenced by meshes

– Minimizes Java-native data traffic, enables caching

Graphics3D: How To UseGraphics3D: How To Use

• Bind a target to it, render, release the target

void paint(Graphics g) {

try {

myGraphics3D.bindTarget(g);

myGraphics3D.render(world);

} finally {

myGraphics3D.releaseTarget();

}

}

M3G OverviewM3G Overview

Design principles

Getting started

Basic features
Performance tips

Deforming meshes

Keyframe animation

Summary & demos

Renderable ObjectsRenderable Objects

MeshMesh
Made of triangles
Base class for meshes

Sprite3DSprite3D
2D image placed in 3D space
Always facing the camera

Sprite3DSprite3D

• 2D image with a position in 3D space

• Scaled mode for billboards, trees, etc.

• Unscaled mode for text labels, icons, etc.

• Not useful for particle effects – too much overhead

Image2D

Sprite3DSprite3D AppearanceAppearance

Image2DImage2D

CompositingModeCompositingMode

FogFog

MeshMesh

• A common VertexBuffer, referencing VertexArrays

• IndexBuffers (submeshes) and Appearances match 1:1

MeshMesh VertexBufferVertexBuffer coordinatescoordinates

normalsnormals

colorscolors

texcoordstexcoords

IndexBufferIndexBuffer

AppearanceAppearance

VertexArraysVertexArrays

VertexBuffer TypesVertexBuffer Types

FloatByte Short Fixed

Colors

Normals
Texcoords

Vertices

4D3D2D

Relative to OpenGL ES 1.1

IndexBuffer TypesIndexBuffer Types

Im
plicit

Byte Short Strip Fan List

Point sprites

Points

Lines

Triangles

Relative to OpenGL ES 1.1 + point sprite extension

Buffer ObjectsBuffer Objects

• Vertices and indices are stored on server side
– Very similar to OpenGL Buffer Objects

– Allows caching and preprocessing (e.g., bounding volumes)

• Tradeoff – Dynamic updates have some overhead
– At the minimum, just copying in the Java array contents

– In the worst case, may trigger vertex preprocessing

Appearance ComponentsAppearance Components

CompositingModeCompositingMode

Material colors for lighting
Can track per-vertex colors

PolygonModePolygonMode

FogFog

Texture2DTexture2D

MaterialMaterial
Blending, depth buffering
Alpha testing, color masking

Winding, culling, shading
Perspective correction hint

Fades colors based on distance
Linear and exponential mode

Texture matrix, blending, filtering
Multitexturing: One Texture2D for each unit

The Fragment PipelineThe Fragment Pipeline

Alpha TestAlpha Test Depth TestDepth TestFogFog BlendBlend

TextureTexture
BlendBlend

TexelTexel
FetchFetch

TextureTexture
BlendBlend

FrameFrame
BufferBuffer

DepthDepth
BufferBuffer

Colored
Fragment

TexelTexel
FetchFetch

CompositingMode

Texture2D

Fog

The Scene GraphThe Scene Graph

SkinnedMeshSkinnedMesh

GroupGroup

GroupGroup

GroupGroup

MeshMesh

SpriteSprite

LightLight

WorldWorld

GroupGroup CameraCamera

GroupGroup MorphingMeshMorphingMesh

Not allowed!

Node TransformationsNode Transformations

• From this node to the parent node

• Composed of four parts
– Translation T

– Orientation R

– Non-uniform scale S

– Generic 3x4 matrix M

• Composite: C = T R S M
GroupGroup

GroupGroup

GroupGroup

MeshMesh

SpriteSprite

C

CC

C C

WorldWorld

Other Node FeaturesOther Node Features

• Automatic alignment
– Aligns the node’s Z and/or Y axes towards a target

– Recomputes the orientation component (R)

• Inherited properties
– Alpha factor (for fading in/out)

– Rendering enable (on/off)

– Picking enable (on/off)

• Scope mask

The File FormatThe File Format

Characteristics
– Individual objects, entire scene graphs, anything in between

– Object types match 1:1 with those in the API

– Optional ZLIB compression of selected sections

– Can be decoded in one pass – no forward references

– Can reference external files or URIs (e.g. textures)

– Strong error checking

M3G OverviewM3G Overview

Design principles

Getting started

Basic features

Performance tips
Deforming meshes

Keyframe animation

Summary & demos

Retained ModeRetained Mode

• Use the retained mode
– Do not render objects separately – place them in a World

– Minimizes the amount of Java code and method calls

– Allows the implementation to do view frustum culling, etc.

• Keep Node properties simple
– Favor the T R S components over M

– Avoid non-uniform scales in S

– Avoid using the alpha factor

Rendering OrderRendering Order

• Use layers to impose a rendering order
– Appearance contains a layer index (an integer)

– Defines a global ordering for submeshes & sprites

– Can simplify shader state for backgrounds, overlays

– Also enables multipass rendering in retained mode

• Optimize the rendering order
– Shader state sorting done by the implementation

– Use layers to force back-to-front ordering

TexturesTextures

• Use multitexturing to save in T&L and triangle setup

• Use mipmapping to save in memory bandwidth

• Combine small textures into texture atlases

• Use the perspective correction hint (where needed)
– Usually much faster than increasing triangle count

– Nokia: 2% fixed overhead, 20% in the worst case

MeshesMeshes

• Minimize the number of objects
– Per-mesh overhead is high, per-submesh also fairly high

– Lots of small meshes and sprites to render bad

– Ideally, everything would be in one big triangle strip

– But then view frustum culling doesn’t work bad

• Strike a balance
– Merge simple meshes that are close to each other

– Criteria for “simple” and “close” will vary by device

Shading StateShading State

• Software vs. hardware implementations
– SW: Minimize per-pixel operations

– HW: Minimize shading state changes

– HW: Do not mix 2D and 3D rendering

• In general, OpenGL ES performance tips apply

Particle EffectsParticle Effects

Several problems
– Point sprites are not supported

– Sprite3D has too much overhead

Put all particles in one Mesh
– One particle == two triangles

– All glued into one triangle strip

– Update vertices to animate
• XYZ, RGBA, maybe UV

3
5

4

6

1

2

Triangle strip
starts here

Particles glued into
one tri-strip using

degenerate triangles

Use additive
alpha blend and
per-vertex colors

Terrain RenderingTerrain Rendering

Easy terrain rendering
– Split the terrain into tiles (Meshes)

– Put the meshes into a scene graph

– The engine will do view frustum culling

Terrain rendering with LOD
– Preprocess the terrain into a quadtree

– Quadtree leaf node == Mesh object

– Quadtree inner node == Group object

– Enable nodes yourself, based on the view frustum

M3G OverviewM3G Overview

Design principles

Getting started

Basic features

Performance tips

Deforming meshes
Keyframe animation

Summary & demos

Deforming MeshesDeforming Meshes

SkinnedMeshSkinnedMesh
Skeletally animated mesh

MorphingMeshMorphingMesh
Vertex morphing mesh

MorphingMeshMorphingMesh

• Traditional vertex morphing animation
– Can morph any vertex attribute(s)

– A base mesh B and any number of morph targets Ti

– Result = weighted sum of morph deltas

• Change the weights wi to animate

i
iiw BTBR

MorphingMeshMorphingMesh

Base Target 1
eyes closed

Target 2
mouth closed

Animate eyes
and mouth

independently

SkinnedMeshSkinnedMesh

• Articulated characters without cracks at joints
• Stretch a mesh over a hierarchic “skeleton”

– The skeleton consists of scene graph nodes

– Each node (“bone”) defines a transformation

– Each vertex is linked to one or more bones

– Mi are the node transforms – v, w, B are constant
i

iii vwv BM'

SkinnedMeshSkinnedMesh

Neutral pose, bones at restNeutral pose, bones at rest

Bone BBone A

"skin"shared vertex,
weights = (0.5, 0.5)

non-shared
vertex

SkinnedMeshSkinnedMesh

Bone A

B
one B

position in A's
coordinate system

position in B's
coordinate system

interpolated
position

Bone B rotated 90 degreesBone B rotated 90 degrees

SkinnedMeshSkinnedMesh

No skinning Smooth skinning
two bones per vertex

M3G OverviewM3G Overview

Design principles

Getting started

Basic features

Performance tips

Deforming meshes

Keyframe animation
Summary & demos

Animation ClassesAnimation Classes

KeyframeSequenceKeyframeSequence

AnimationControllerAnimationController

AnimationTrackAnimationTrack
A link between sequence,
controller and target

Object3DObject3D
Base class for all objects
that can be animated

Controls the playback of
one or more sequences

Storage for keyframes
Defines interpolation mode

AnimationControllerAnimationController

Animation ClassesAnimation Classes

Identifies
animated
property on
this object

Object3DObject3D

AnimationTrackAnimationTrack

KeyframeSequenceKeyframeSequence

KeyframeSequenceKeyframeSequence

sequence time

KeyframeSequenceKeyframeSequence

Diagram courtesy of Sean Ellis, Superscape

Keyframe is a time and the value of a property at that time

Can store any number of keyframes

Several keyframe interpolation modes

Can be open or closed (looping)

KeyframeSequenceKeyframeSequence

sequence time

KeyframeSequenceKeyframeSequence

Diagram courtesy of Sean Ellis, Superscape

Keyframe is a time and the value of a property at that time

Can store any number of keyframes

Several keyframe interpolation modes

Can be open or closed (looping)

KeyframeSequenceKeyframeSequence

Keyframe is a time and the value of a property at that time

Can store any number of keyframes

Several keyframe interpolation modes

Can be open or closed (looping)

sequence timet

v

KeyframeSequenceKeyframeSequence

Diagram courtesy of Sean Ellis, Superscape

AnimationControllerAnimationController

Can control several animation sequences together

Defines a linear mapping from world time to sequence time

Multiple controllers can target the same property

0 dsequence time

world timet

0

0 dsequence time

AnimationControllerAnimationController

Diagram courtesy of Sean Ellis, Superscape

AnimationControllerAnimationController

AnimationAnimation

4. Apply value to
animated property

0 dsequence time

1. Call animate(worldTime)

s
v

2. Calculate sequence
time from world time

3. Look up value at
this sequence time

Object3DObject3D

AnimationTrackAnimationTrack

KeyframeSequenceKeyframeSequence

Diagram courtesy of Sean Ellis, Superscape

AnimationAnimation

Tip: Interpolate quaternions as ordinary 4-vectors
– Supported in the latest M3G Exporter from HI Corp

– SLERP and SQUAD are slower, but need less keyframes

– Quaternions are automatically normalized before use

M3G OverviewM3G Overview

Design principles

Getting started

Basic features

Performance tips

Deforming meshes

Keyframe animation

Summary & demos

PredictionsPredictions

• Resolutions will grow rapidly from 128x128 to VGA
– Drives graphics hardware into all high-resolution devices

– Software rasterizers can’t compete above 128x128

• Bottlenecks will shift to Physics and AI
– Bottlenecks today: Rasterization and any Java code

– Graphics hardware will take care of geometry and rasterization

– Java hardware will increase performance to within 50% of C/C++

• Java will reinforce its position as the dominant platform

SummarySummary

• M3G enables real-time 3D on mobile Java
– By minimizing the amount of Java code along critical paths

– Designed for both software and hardware implementations

• Flexible design leaves the developer in control
– Subset of OpenGL ES features at the foundation

– Animation & scene graph features layered on top

Installed base growing by the millions each monthInstalled base growing by the millions each monthInstalled base growing by the millions each month

DemosDemos

2D

3D

Playman Winter Games –
Mr. Goodliving
Playman Winter Games –
Mr. Goodliving

Playman World Soccer –
Mr. Goodliving
Playman World Soccer –
Mr. Goodliving

• An interesting
2D/3D hybrid

• Cartoon-like 2D
characters set
in a 3D scene

• 2D overlays for
particle effects
and status info

Tower Bloxx – SumeaTower Bloxx – Sumea

• Puzzle/arcade
mixture

• Tower building
mode is in 3D, with
2D overlays and
backgrounds

• City building mode
is in pure 2D

Mini Golf Castles – SumeaMini Golf Castles – Sumea

• 3D with 2D
background
and overlays

• Skinning
used for
characters

• Realistic ball
physics

Q&AQ&A

Thanks: Sean Ellis, Kimmo Roimela,
Nokia M3G team, JSR-184 Expert Group,

Mr. Goodliving (RealNetworks),
Sumea (Digital Chocolate)

Using M3GUsing M3G

Mark Callow

Chief Architect

AgendaAgenda

• Game Development Process

• Asset Creation

• Program Development

• MIDlet Structure

• A MIDlet Example

• Challenges in Mobile Game Development

• Publishing Your Content

M3G Game DemoM3G Game Demo

Copyright 2005, Digital Chocolate Inc.

Game Development ProcessGame Development Process

• Traditional Java Game

Assets

Game logic Compile Java MIDlet JAR file

Images Sounds Music

Package

Other

D
istribute

Screen Image: Boulder Dash®-M.E.™

Game Platform

Sound

2D Graphics

Network

Other

Proprietary

Diagram courtesy of Sean Ellis, ARM.

M3G Development ProcessM3G Development Process

• How M3G Fits

Assets

Game logic Compile Java MIDlet Package JAR file

Images Sounds Music Other3D World

Expanded
game logic

Game Platform

Sound

2D Graphics

Network

Other

Proprietary

3D Graphics

D
istribute

Diagram courtesy of Sean Ellis, ARM.
Screen Image: Boulder Dash®-M.E.™Screen Image: Sega/Wow Entertainment RealTennis.™

Assets
3D World

Expanded
game logic Compile Java MIDlet Package JAR file

Images Sounds Music

D
istribute

Game Platform

3D Graphics

Sound

2D Graphics

Network

Proprietary

Asset CreationAsset Creation

• Textures & Backgrounds

Images

Image EditorImage Editor with PNGwith PNG
output. E. g:output. E. g:

••Macromedia FireworksMacromedia Fireworks

••Adobe PhotoshopAdobe Photoshop

Asset CreationAsset Creation

• Audio Tools

Assets
3D World

Expanded
game logic Compile Java MIDlet Package JAR file

Images Sounds Music

D
istribute

Audio Production Tool; e. g.Audio Production Tool; e. g.

••Sony Sound ForgeSony Sound Forge®®

Commonly Used Formats:Commonly Used Formats:

••Wave, AU, MP3, SMAFWave, AU, MP3, SMAF

Sounds

Game Platform

3D Graphics

Sound

2D Graphics

Network

Proprietary

• Music Tools

Asset CreationAsset Creation

Assets
3D World

Expanded
game logic Compile Java MIDlet Package JAR file

Images Sounds Music

D
istribute

MIDI Sequencer; e. g.MIDI Sequencer; e. g.

••SteinbergSteinberg CubaseCubase

Formats:Formats:

••SMAF, MIDI,SMAF, MIDI, cMIDIcMIDI,, MFiMFi

Music

Game Platform

3D Graphics

Sound

2D Graphics

Network

Proprietary

Asset CreationAsset Creation

• 3D Models

Assets
3D World

Expanded
game logic Compile Java MIDlet Package JAR file

Images Sounds Music

D
istribute

Game Platform

3D Graphics

Sound

2D Graphics

Network

Proprietary

3D World

3d Modeler with M3G plug3d Modeler with M3G plug--in; e.g.in; e.g.

••LightwaveLightwave

••MayaMaya

••3d studio max3d studio max

••Softimage|XSISoftimage|XSI

Export 3d Model to M3GExport 3d Model to M3G

M3G File ViewerM3G File Viewer Demo: On a Real PhoneDemo: On a Real Phone

Tips for Designers 1Tips for Designers 1

• TIP: Don’t use GIF files
– The specification does not require their support

• TIP: Create the best possible quality audio & music
– It’s much easier to reduce the quality later than increase it

• TIP: Polygon reduction tools & polygon counters
are your friends
– Use the minimum number of polygons that conveys your

vision satisfactorily

Tips for Designers 2Tips for Designers 2

• TIP: Use light maps for lighting effects
– Usually faster than per-vertex lighting

– Use luminance textures, not RGB

– Multitexturing is your friend

• TIP: Try LINEAR interpolation for Quaternions
– Faster than SLERP

– But less smooth

Tips for Designers 3Tips for Designers 3

• TIP: Use background images
– Can be scaled, tiled and scrolled very flexibly

– Generally much faster than sky boxes or similar

• TIP: Use sprites as impostors & labels
– Generally faster than textured quads

– Unscaled mode is (much) faster than scaled

• LIMITATION: Sprites are not useful for particle
systems

AgendaAgenda

• Game Development Process

• Asset Creation

• Program Development

• MIDlet Structure

• A MIDlet Example

• Challenges in Mobile Game Development

• Publishing Your Content

Program DevelopmentProgram Development

Assets
3D World

Expanded
game logic Compile Java MIDlet Package JAR file

Images Sounds Music

D
istribute

Compile Java MIDletExpanded
game logic Package JAR file

• Edit, Compile, Package

Game Platform

3D Graphics

Sound

2D Graphics

Network

Proprietary

TraditionalTraditional

•• WtkWtk, shell, editor, make,, shell, editor, make, javacjavac

Integrated Development EnvironmentIntegrated Development Environment

•• EclipseEclipse

•• BorlandBorland JBuilderJBuilder

•• Sun Java StudioSun Java Studio

Assets
3D World

Program DevelopmentProgram Development

• Test & Debug
Expanded
game logic Compile Java MIDlet Package JAR file

Images Sounds Music

Game Platform

3D Graphics

Sound

2D Graphics

Network

Proprietary

Game Platform

Sound

2D Graphics

Network

Proprietary

3D Graphics

D
istribute

Carrier/Maker supplied SDKCarrier/Maker supplied SDK

••EmulatorEmulator

••SimulatorSimulator

••Real deviceReal device

Screen Image: Sega/Wow Entertainment RealTennis.™

AgendaAgenda

• Game Development Process
• Asset Creation
• Program Development
• MIDlet Structure
• A MIDlet Example
• Challenges in Mobile Game Development
• Publishing Your Content

• Derived from MIDlet,
• Overrides three methods

• And that’s it.

The Simplest MIDletThe Simplest MIDlet

Canvas.paint() performs rendering
using Graphics3D
object.

MIDlet.StartApp()

[initialize]
[request redraw]

MIDlet.destroyApp()

[shut down]
exit MIDlet.

Create canvas; load
world.

A More Interesting MIDletA More Interesting MIDlet
MIDlet.StartApp()

Create canvas; load
world, start update
thread

draw

Canvas.paint()

performs rendering
using Graphics3D
object

initialize

user input

scene update

request
redraw

wait

shut down

Get any user input via
Canvas.commandListener

Game logic, animate,
align if necessary

Wait to ensure
consistent
frame rate

MIDlet.destroyApp()
exit MIDlet

Exit request

Update loop.

Runnable.run()

Read user input,
update scene

Flow-chart courtesy of Sean Ellis, Superscape

MIDlet PhasesMIDlet Phases

• Initialize

• Update

• Draw

• Shutdown

InitializeInitialize

• Load assets: world, other 3D objects, sounds, etc.

• Find any objects that are frequently used

• Perform game logic initialization

• Initialize display

• Initialize timers to drive main update loop

UpdateUpdate

• Usually a thread driven by timer events

• Get user input

• Get current time

• Run game logic based on user input

• Game logic updates world objects if necessary

• Animate

• Request redraw

Update TipsUpdate Tips

• TIP: Don’t create or release objects if possible

• TIP: Call system.gc() regularly to avoid long
pauses

• TIP: cache any value that does not change every
frame; compute only what is absolutely necessary

DrawDraw

• Usually on overridden paint method

• Bind Graphics3D to screen

• Render 3D world or objects

• Release Graphics3D
– …whatever happens!

• Perform any other drawing (UI, score, etc)

• Request next timed update

Draw TipsDraw Tips

• TIP: Don’t do 2D drawing while Graphics3D is
bound

ShutdownShutdown

• Tidy up all unused objects

• Ensure once again that Graphics3D is released

• Exit cleanly

• Graphics3D should also be released during
pauseApp

MIDlet ReviewMIDlet Review

draw

Graphics3D object
performs rendering

initialize

user input

scene update

request
redraw

wait

shut down

Get any user input,
network play, etc.

Game logic,
animate, align if
necessary

Wait to ensure
consistent
frame rate

Release assets,
tidy up

Exit request

Update loop.

Don’t create/destroy
objects if possible

Throttle to consistent
frame rate

Keep paint() as simple
as possible

Be careful with threads

Diagram courtesy of Sean Ellis, Superscape

Set up display, load
assets, find commonly
used objects, initiate
update thread.

AgendaAgenda

• Game Development Process
• Asset Creation
• Program Development
• MIDlet Structure
• A MIDlet Example
• Challenges in Mobile Game Development
• Publishing Your Content

Demo: UsingM3G MIDletDemo: UsingM3G MIDlet UsingM3G MIDletUsingM3G MIDlet

• Displays Mesh, MorphingMesh and SkinnedMesh

• Loads data from .m3g files

• View can be changed with arrow keys

• Animation can be stopped and started

• Animation of individual meshes can be stopped
and started.

• Displays frames per second.

UsingM3G FrameworkUsingM3G Framework

import java.io.IOException;
import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;

public class Cans extends MIDlet implements CommandListener {
Command cmdExit = new Command("Exit", Command.SCREEN, 1);
Command cmdPlayPause = new Command("Ctrl",Command.SCREEN,1);
private TargetCanvas tcanvas = null;
Thread renderingT = null;
private String Filename = "/coffee.m3g";

public void startApp() {
if (tcanvas == null)
init();

renderingT = new Thread(tcanvas);
renderingT.start();
tcanvas.startPlay();

}

UsingM3G FrameworkUsingM3G Framework

public void pauseApp() {
if (tcanvas.isPlaying)
tcanvas.pausePlay();

renderingT.yield();
renderingT = null;

}

public void destroyApp(boolean u) {
pauseApp()
tcanvas = null;

}

UsingM3G FrameworkUsingM3G Framework

synchronized public void commandAction(Command c,
Displayable d)

{
if (c==cmdExit) {

notifyDestroyed();
return;

} else if (c==cmdPlayPause) {
if (tcanvas.isPlaying)
tcanvas.pausePlay();

else
tcanvas.startPlay();

}
}

UsingM3G InitializationUsingM3G Initialization

// From class Cans
public void init() {
Display disp = Display.getDisplay(this);
tcanvas = new TargetCanvas(Filename);
if (tcanvas.hasException)
notifyDestroyed();

tcanvas.setCommandListener(this);
tcanvas.addCommand(cmdExit);
tcanvas.addCommand(cmdPlayPause);
disp.setCurrent(tcanvas);

}

UsingM3G InitializationUsingM3G Initialization

class TargetCanvas extends Canvas implements Runnable
… // instance variable declarations elided
public TargetCanvas(String m3gFile)
{
try
{
fileName = m3gFile;
g3d = Graphics3D.getInstance();
Load();
w = getWidth();
h = getHeight();
cameraManip = new CameraManip(gWorld);

}
catch(IOException e)
{
System.out.println("loading fails:"+fileName);
hasException = true;

}
}

Loading the 3D dataLoading the 3D data

// class TargetCanvas
void Load() throws IOException {
loadObjs = Loader.load(fileName);
if (loadObjs==null)
throw new RuntimeException("M3G file error");

/* find the world node */
for (int i=0; i<loadObjs.length; ++i) {
if (loadObjs[i] instanceof World) {
gWorld = (World)loadObjs[i];
hasWorld = true;
break;
}

}

if (!hasWorld)
throw new RuntimeException(

"World node not found; incorrect m3g file?“);

Loading the 3D Data (Cont.)Loading the 3D Data (Cont.)

meshController =
(AnimationController)gWorld.find(meshControllerId);

morphingMeshController =
(AnimationController)gWorld.find(morphingMeshControll

erId);
skinnedMeshController =

(AnimationController)gWorld.find(skinnedMeshControlle
rId);

/* Clean up after the loading process. */
System.gc();

}

TargetCanvas run methodTargetCanvas run method

public void run()
{
for(;;) {
long start, elapsed;
start = System.currentTimeMillis();
handleInput();
repaint(); // Request paint()
elapsed = System.currentTimeMillis() - start;
// if (want to measure true frame rate)
// Unfriendly to system!!
//renderTime += (int)elapsed;
// else {
renderTime += (elapsed < 50) ? 50 : (int)elapsed;
try {
if (elapsed < 50) Thread.sleep(50-elapsed);

} catch (InterruptedException e) { }
//}

}
}

TargetCanvas paint methodTargetCanvas paint method

synchronized protected void paint(Graphics g)
{
if (loadObjs == null) return;
g.setClip(0, 0, w, h);
try
{
g3d.bindTarget(g);
g3d.setViewport(0, 0, w, h);
render();

} finally { g3d.releaseTarget(); }

g.setColor(0xffffffff);
g.drawString("fps: " + fps, 2, 2, g.TOP|g.LEFT);

}

TargetCanvas render
method
TargetCanvas render
method

void render()
{

if (isPlaying) {
frameCount++;
fps = (int)((1000*frameCount) / renderTime) ;
/* update the scene */
gWorld.animate((int)renderTime);

}
g3d.render(gWorld);

}

Camera ManipulationCamera Manipulation

/**
* A camera manipulator. This class applies rotations to
* a World’s activeCamera that make it rotate around the
* prime axes passing through the World's origin.
*/

public class CameraManip
{
public CameraManip(World world) { }

public void buildCameraXform() { }

public void
baseRotate(float dAngleX, float dAngleY, float dAngleZ){ }

public void
rotate(float dAngleX, float dAngleY, float dAngleZ) { }

public void setCameraXform() { }
}

Initializing CameraManipInitializing CameraManip

public CameraManip(World world) {
Transform world2Cam = new Transform();
float[] matrix = new float[16];
/* … class variable initialization elided */

curCamera = world.getActiveCamera();
if (curCamera != null) {
curCamera.getTransformTo(world, world2Cam);
world2Cam.get(matrix);
distToTarget = (float)Math.sqrt(matrix[3]*matrix[3]

+ matrix[7]*matrix[7]
+ matrix[11]*matrix[11]);

curCamera.getTransform(curOriginalXform);
rotate(0, 0, 0);
world2Cam = null;

}
}

Rotating the CameraRotating the Camera

public void rotate(float dAngleX, float dAngleY,
float dAngleZ) {

if (curCamera == null) return;

baseRotate(dAngleX, dAngleY, dAngleZ);
Transform rotTrans = new Transform();

rotTrans.postRotate(angleY, 0, 1, 0);
rotTrans.postRotate(angleX, 1, 0, 0);

float pos[] = { 0, 0, distToTarget, 1 };
rotTrans.transform(pos);
dx = pos[0];
dy = pos[1];
dz = pos[2] - distToTarget;

buildCameraXform();
setCameraXform();
rotTrans = null;

}

Building the Camera
Transform
Building the Camera
Transform
public void buildCameraXform() {

cameraXform.setIdentity();
rotateXform.setIdentity();
transXform.setIdentity();

transXform.postTranslate(dx, dy, dz);

// rotate about the x-axis then the y-axis
rotateXform.postRotate(angleY, 0, 1, 0);
rotateXform.postRotate(angleX, 1, 0, 0);

cameraXform.postMultiply(transXform);
cameraXform.postMultiply(rotateXform);

}

public void setCameraXform() {
cameraXform.postMultiply(curOriginalXform);
curCamera.setTransform(cameraXform);

}

AgendaAgenda

• Game Development Process
• Asset Creation
• Program Development
• MIDlet Structure
• A MIDlet Example
• Challenges in Mobile Game Development
• Publishing Your Content

Why Mobile Game
Development is Difficult
Why Mobile Game
Development is Difficult

• Application size severely limited
– Download size limits

– Small Heap memory

• Small screen

• Poor input devices

• Poor quality sound

• Slow system bus and memory system

Why Mobile Game
Development is Difficult
Why Mobile Game
Development is Difficult

• No floating point hardware

• No integer divide hardware

• Many tasks other than application itself
– Incoming calls or mail

– Other applications

• Short development period

• Tight budget, typically $100k – 250k

MemoryMemory

• Problems
Small application/download size

Small heap memory size

• Solutions
– Compress data

– Use single large file

– Use separately downloadable levels

– Limit contents

– Get makers to increase memory

PerformancePerformance

• Problems
Slow system bus & memory

No integer divide hardware

• Solutions
– Use smaller textures

– Use mipmapping

– Use byte or short coordinates and key values
– Use shifts

– Let the compiler do it

User-Friendly OperationUser-Friendly Operation

• Problems
– Button layouts differ

– Diagonal input may be impossible

– Multiple simultaneous button presses not recognized

• Solutions
– Plan carefully

– Different difficulty levels

– Same features on multiple buttons

– Key customize feature

Many Other TasksMany Other Tasks

• Problem
– Incoming calls or mail

– Other applications

• Solution
– Create library for each handset terminal

AgendaAgenda

• Game Development Process
• Asset Creation
• Program Development
• MIDlet Structure
• A MIDlet Example
• Challenges in Mobile Game Development
• Publishing Your Content

Publishing Your ContentPublishing Your Content

• Can try setting up own site but
– it will be difficult for customers to find you

– impossible to get paid

– may be impossible to install MIDlets from own site

• Must use a carrier approved publisher
• Publishers often run own download sites but

always with link from carrier’s game menu.
• As with books, publishers help with distribution

and marketing

Publishing Your ContentPublishing Your Content

• Typical end-user cost is $2 - $5.
• Sometimes a subscription model is used.
• Carrier provides billing services

– Carriers in Japan take around 6%
– Carriers in Europe have been known to demand as much as

40%! They drive away content providers.

• In some cases, only carrier approved games can be
downloaded to phones
– Enforced by handsets that only download applets OTA
– Developers must have their handsets modified by the carrier

PublishersPublishers

• Find a publisher and build a good relationship with
them

• Japan: Square Enix, Bandai Networks, Sega WOW,
Namco, Infocom, etc.

• America: Bandai America, Digital Chocolate, EA
Mobile, MForma, Sorrent

• Europe: Digital Chocolate, Superscape,
Macrospace, Upstart Games

Other 3D Java Mobile APIsOther 3D Java Mobile APIs

Mascot Capsule Micro3D Family APIs

• Motorola iDEN, Sony Ericsson, Sprint, etc.)

– com.mascotcapsule.micro3d.v3 (V3)

• Vodafone KK JSCL

– com.j_phone.amuse.j3d (V2), com.jblend.graphics.j3d (V3)

• Vodafone Global

– com.vodafone.amuse.j3d (V2)

• NTT Docomo (DoJa)

– com.nttdocomo.opt.ui.j3d (DoJa2, DoJa 3) (V2, V3)

– com.nttdocomo.ui.graphics3D (DoJa 4) (V4)

Mascot Capsule Micro3D Version Number

Mascot Capsule V3 Game
Demo
Mascot Capsule V3 Game
Demo

Copyright 2005, by Interactive Brains, Co., Ltd.

SummarySummary

• Use standard tools to create assets

• Basic M3G MIDlet is relatively easy

• Programming 3D Games for mobile is hard

• Need good relations with carriers and publishers to
get your content distributed

ExportersExporters

3ds max
– Simple built-in exporter since 7.0

– www.digi-element.com/Export184/

– www.mascotcapsule.com/M3G/

– www.m3gexporter.com

Maya
– www.mascotcapsule.com/M3G/

– www.m3gexport.com

Softimage|XSI
– www.mascotcapsule.com/M3G/

Cinema 4D
– www.c4d2m3g.com

• Site appears to be defunct

Lightwave
– www.mascotcapsule.com/M3G/

Blender
– http://www.nelson-games.de/bl2m3g/

SDKsSDKs

• Motorola iDEN J2ME SDK
– idenphones.motorola.com/iden/developer/developer_tools.jsp

• Nokia Series 40, Series 60 & J2ME
– www.forum.nokia.com/java

• Sony Ericsson
– developer.sonyericsson.com/java

• Sprint Wireless Toolkit for Java
– developer.sprintpcs.com

• Sun Wireless Toolkit
– java.sun.com/products/j2mewtoolkit/download-2_2.html

SDKsSDKs

• VFX SDK (Vodafone Global)
– via.vodafone.com/vodafone/via/Home.do

• VFX & WTKforJSCL (Vodafone KK)
– developers.vodafone.jp/dp/tool_dl/java/emu.php

IDE’s for Java MobileIDE’s for Java Mobile

• Eclipse Open Source IDE
– www.eclipse.org

• JBuilder 2005 Developer
– www.borland.com/jbuilder/developer/index.html

• Sun Java Studio Mobility
– www.sun.com/software/products/jsmobility

• Comparison of IDE’s for J2ME
– www.microjava.com/articles/J2ME_IDE_Comparison.pdf

http://www.digi-element.com/Export184/
http://www.mascotcapsule.com/M3G/
http://www.m3gexporter.com
http://www.mascotcapsule.com/M3G/
http://www.m3gexport.com
http://www.mascotcapsule.com/M3G/
http://www.c4d2m3g.com
http://www.mascotcapsule.com/M3G/
http://www.nelson-games.de/bl2m3g/
http://www.forum.nokia.com/java
http://www.eclipse.org
http://www.borland.com/jbuilder/developer/index.html
http://www.sun.com/software/products/jsmobility
http://www.microjava.com/articles/J2ME_IDE_Comparison.pdf

Other ToolsOther Tools

• Macromedia Fireworks
– www.adobe.com/products/fireworks/

• Adobe Photoshop
– www.adobe.com/products/photoshop/main.html

• Sony SoundForge
– www.sonymediasoftware.com/products/showproduct.asp?PID=961

• Steinberg Cubase
– www.steinberg.de/33_1.html

• Yamaha SMAF Tools
– smaf-yamaha.com/

(Dear Dog) Demo(Dear Dog) Demo

Thanks: HI Mascot Capsule Version 4
Development Team, Koichi Hatakeyama,

Sean Ellis, JSR-184 Expert Group

Closing & SummaryClosing & Summary

• We have covered
– OpenGL ES

– M3G

API paletteAPI palette

3D
Small footprint 3D for
embedded systems

Vector 2D
Low-level vector
acceleration API

Media Engines – CPUs, DSP, Hardware Accelerators etc.

Platform Media
Frameworks

IL

SOUND
Low-level

gaming audio
acceleration

API Image Libraries, Video Codecs,
Sound Libraries

Accelerated media
primitives for codec

development
DL

Component interfaces
for codec integration

AL

Playback and
recording
interfaces

Khronos defines low-level, FOUNDATION-level APIs.
“Close to the hardware” abstraction provides portability AND flexibility

The Khronos API family provides a complete ROYALTY-FREE,
cross-platform media acceleration platform

Applications or middleware libraries (JSR 184 engines, Flash players, media players etc.)

EGL
Abstracted Access to

OS Resources
Fast mixed mode 2D/3D

rendering

http://www.adobe.com/products/fireworks/
http://www.adobe.com/products/photoshop/main.html
http://www.sonymediasoftware.com/products/showproduct.asp?PID=961
http://www.steinberg.de/33_1.html

• An open interchange format
– to exchange data between

content tools

– allows mixing and
matching tools for
the same project

– allows using desktop
tools for mobile content

Physics

Scene Graph

Materials

Animation

Textures

Meshes

Shader FX

Shaders? Yes!Shaders? Yes!

• OpenGL ES 2.0
– subset of OpenGL 2.0, with very similar shading

language

– spec draft at SIGGRAPH 05, conformance tests
summer 06, devices 08 (?)

• M3G 2.0
– adds shaders and more to M3G 1.1

– first Expert Group meeting June 06

2D Vector Graphics2D Vector Graphics

• OpenVG
– low-level API, HW acceleration

– spec draft at SIGGRAPH 05, conformance tests summer 06

• JSR 226: 2D vector graphics for Java
– SVG-Tiny compatible features

– completed Mar 05

• JSR 287: 2D vector graphics for Java 2.0
– rich media (audio, video) support, streaming

– work just starting

EGL evolutionEGL evolution

• It’s not trivial to efficiently combine use of
various multimedia APIs in a single
application

• EGL is evolving towards simultaneous
support of several APIs
– OpenGL ES and OpenVG now

– all Khronos APIs later

SummarySummary

• Fixed functionality mobile 3D is reality NOW
– these APIs and devices are out there

– go get them, start developing!

• Better content with Collada

• Solid roadmap to programmable 3D

• Standards for 2D vector graphics

	mobile_3D_APIs.pdf
	mobile3D_handout.pdf

