EUROGRAPHICS 2022/ N. Pelechano and D. Vanderhaeghe

Short Paper

Quick cone map generation on the GPU

Gaébor Valasek

and Rébert Ban

Eotvos Lordand University, Hungary
{valasek, rob.ban} @inf.elte.hu

Abstract

We propose an efficient conservative cone map generation algorithm that has ®(N 2 log N) complexity for textures of dimension
N X N in contrast to the @(N4) complexity of brute-force approaches. This is achieved by using a maximum mip texture of a
heightmap to process all texels during the search for cone apertures, resulting in real-time generation times. Furthermore, we
show that discarding already visited regions of neighboring mip texels widens the obtained cones considerably while still being
conservative. Finally, we present a method to increase cone aperture tangents further at the expense of conservativeness. We
compare our methods to brute-force and relaxed cone maps in generation and rendering performance.

CCS Concepts

* Computing methodologies — Ray tracing; Shape modeling;

1. Introduction and Related Work

Variation in lighting due to fine geometric details is ubiquitous in
realistic rendering. Its realization, however, is a difficult challenge.
A brute-force display of such details, i.e. rendering dense triangle
meshes, is impractical due to limited triangle throughput and the
inefficiencies that result from rasterizing small triangles.

Blinn proposed to use perturbed surface normals [Bli78] to
achieve the appearance of geometrically rich shapes without in-
creasing the actual geometric complexity of the rendered model.
These perturbations were computed from a heightmap imposed
over the coarse geometry, essentially prescribing a displacement
or offset along the surface normal.

Algorithms to render the actual offset surface per pixel were later
developed, see [SKUOS] for a detailed survey on these methods. In
general, these aim to compute the intersection between the view ray
and the heightfield and considerably increase realism as they also
account for the parallax effect due to the variations in height.

Approximate algorithms may yield unstable images, where the
visibility of various details may change depending on the current
view. Cone step mapping [Dum06] is a conservative technique in
the sense that it guarantees to find the first intersection and it is also
efficient due to its ability to skip over empty spaces.

As such, cone maps are robust and efficient means to render
mesostructural details over macrostructure geometries. However,
generating cone maps is oftentimes delegated to brute-force algo-
rithms, resulting in @(N*) complexity for N x N images. As dis-
placement map sizes increase even in real-time applications, this
becomes a limiting factor.

Halli et al. [HSSTO08] propose a ®(N?) algorithm for cone map

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

DOI: 10.2312/egs.20221021

construction, however, the theta-notation hides a constant multi-
plier that is at least as large as the number of distinct height values
in a heightmap, i.e. 256 for an 8§ bit worst-case, and it relies on a
series of linear time distance transforms.

We give a brief overview of the relevant notation and displace-
ment mapping algorithms in Section 2. In Section 3, we propose a
GPU-friendly conservative cone map generator algorithm that has a
complexity of @ (NzlogN> for N x N textures. It relies on a max-
imum mipmap pyramid of the heightfield texture. Instead of com-
paring every texel to every other texel directly to find the narrowest
cone, the mip pyramid is used to compute a conservative cone from
a given texel to all texels of a region, similarly to how [DTO07] ap-
proximated horizon visibility.

This generates narrower cones than the naive algorithm, which
can be either addressed by a relaxed cone step mapping render al-
gorithm or by heuristically altering the cone aperture computation
in our algorithm. These are validated in Section 4.

2. Per-pixel heightfield rendering

At every fragment, the heightfield represents a displacement in the
(p;t,b,n) tangent space, where p € E3 is the world space position
of the current fragment, t, b € R are the unit tangent and bitangent
vectors, and n € R? is the unit surface normal. The displacement
is applied along n. The XY coordinates of any point can be used
as texture coordinates to sample the heightfield texture and the Z
coordinate is the current ray height.

For every rasterized fragment of the primitive, we transform the
view ray into tangent space and compute its intersection with the

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org

https://orcid.org/0000-0002-0007-8647
https://orcid.org/0000-0002-8266-7444
https://doi.org/10.2312/egs.20221021

14 G. Valasek, R. Bdn / Quick cone map generation on the GPU

fragment

Figure 1: [llustration of downward displacement. The view ray is
intersected with the virtual extruded primitive (gray dashed box) to
establish entry- (x;,) and exit points (Xout) of the ray into the volume
that contains the heightfield. A cone (in green) is represented by the
h height of its apex and a function of its o aperture, usually tan %.

primitive and its translate along the surface normal by some pre-
scribed maximum displacement height H > 0. This yields an entry
point x;, and an exit position X,us between which we are looking
for the first intersection, x;, between the r(t) = Xi, +1 - (Xour — Xin),
t € 0, 1] ray and the heightfield, see Figure 1. It depends on con-
vention whether positive heightfield values correspond to displace-
ments in the direction of the normal ("upward displacement’) or in
the opposite direction to the normal ("downward displacement’).

Linear search is a constant step ray march along r(¢), that is,
it looks for the first i € {0, 1,...,N} such that f(ﬁ').z < 0, where
f(t) =r(t).z— h(r(t).xy) and h is the heightfield. An optional root
refinement may be used, such as binary search, to find a more exact
location for the intersection between f (%) > 0 and f(ﬁ) < 0.
This method may fail to report the first intersection, or any inter-
section at all, depending on step size.

The main idea of cone step mapping [DumO06] is to use unbound-
ing cones over the heightfield to make intersection computations
both more efficient and robust. These cones do not intersect with
the interior of the heightfield, thus, the ray-heightfield intersection
is resolved by iterative ray-cone intersection computations. Figure
1 illustrates such a cone.

A cone map entry akin to [Dum06, PO07] represents a tangent
space cone by a (h,tan$) pair (or (h,,/tan$), for a better dis-
tribution of digits), where 4 is the height of the apex of the cone
and « is its aperture. It is argued in [HSSTO8] that this restricts the
maximum cone apertures with unsigned normalized textures, and
instead they propose to store htan %, i.e. the maximum radius of
the cone within the heightfield bounding volume, unnormalized.

Regardless of the choice of exact representation, a cone map tex-
ture can be used to obtain an interpolated cone over arbitrary points
along the ray and the intersection between the ray and the interpo-
lated cone is the next guess for the ray-heightfield intersection at
each iteration.

For every texel of the heightmap, the cone can be computed by
finding the smallest aperture between the current texel and any of
all other texels, resulting in a ®(N4) algorithm for N X N textures.

Fl T F2 F} Fl o FZ F3
P P Pi| P2
P ps P Ps
Py Q,L Ps Ps iY Ps
F, Fs || F, Fs
Ps| Py Ps Ps| Py Ps
Fy F, F || Fe F, Fy

Figure 2: Cone calculation on mip level k in a 3 x 3 neighborhood.
The level 0 location of the current texel is denoted by u. The texel
at mip level k — 1 that contains u has its center at i and we have
already resolved its neighborhood, shown in yellow. Thus, we only
have to consider the univisited parts of the 3 X 3 F; neighborhood
at level k, shown in green. The distance calculation itself is decom-
posed into two steps. First, we compute the level k closest points
on the unvisited region boundaries to i, that is, between the green
regions and i (left). Second, we translate the results to mip level 0
by re-evaluation the distance between the footpoints and u (right).

3. Region growing cone map generation

We propose a method that traverses a maximum mip pyramid of
the heightfield to conservatively process all texels. In general, this
results in tighter cones than the naive brute-force algorithm but at a
much reduced generation time. Algorithm 1 summarizes this.

Algorithm 1 Naive quick cone map generation

1: Input: M max mip map generated from an N X N heightfield
2: Output: R result N X N cone map
3: for Yu € M[0] texel do

4: h< M[O)[u], minTan < 1 // height of u, narrowest tangent
5. for Vklevel in M do
6: i< 5| /lcoordinates of the level k texel containing u
7: for Yn € M[k] : ||n —i||oc = I level k neighbour do
8: m < M[k][n] // maximum height within n
9: if m > h then // update current minimal cone
10: Fe{t€N2|3i,j€{0,...,2k71}:t:2kn+B}}
11: p < getClosest(u,F') //atlevel O
12: minTan < min {minTan,]‘\%;fus }
13: end if
14: end for
15: end for
16: R[u] + (h,minTan)
17: end for

Note, however, that this algorithm is overly conservative about
texels close to mip level boundaries. The more levels a texel is
neighboring at their border, the narrower the estimated cone be-
comes, as the maximum heights from the higher mips will keep
accumulating next to the initial texel due to Step 11.

We propose to improve on this by also considering what portions

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

G. Valasek, R. Bdn / Quick cone map generation on the GPU 15

of a given texel at the current mip level have been already covered
previously and adjust the closest point accordingly. In particular,
Figure 2 shows that certain regions of the coarser mip level can
be discarded from being candidates to closest points. Algorithm 2
summarizes this approach.

Algorithm 2 Improved quick cone map generation

1: Input: M max mip map generated from an N x N heightfield
2: Output: R result N X N cone map
3: for Vu € M|0] texel do

4: h< M[O][u], minTan <— 1,V < {u} // set of visited texels
5 for Vk level in M do
6: i< |5] //coordinates of the level k texel containing u
7 for Va € M[k] : ||n — i|| oo = 1 level k neighbour do
8: F<—{teN2|ai,je{o,...,zk—l}:tzz"n+M}
9: U« F\V /lnis 2k ok texels, U are unvisited so far

10: if U # () then

11: m <— M[k|[n] // maximum height within n

12: if m > h then // update current minimal cone

13: p < getClosest(u, U) // atlevel O

14: minTan < min {minTan, 1'1,1(’,;1% }

15: end if

16: end if

17: end for

18: end for

19: R[u] < (h,minTan)

20: end for

Our main observation is that Step 13 can be resolved by using
the indices of the texels and the current mip level and F need not
be represented explicitly. See Figure 2 for details.

For both algorithms, a common option to widen the cones is to
replace the getClosest function by using the center of the texel of
the current mip level. This may yield incorrect cones but since this
error is proportional to the mip level, and that in turn is proportional
to how far away we are from the currently processe texel, this can
generally be mitigated by using a root refinement between the last
two estimates after the initial cone step mapping. We refer to this
as the texel center heuristic.

Figure 5 illustrates the results of the texel center heuristic applied
to both the naive and improved algorithms.

4. Test results

The source code of our implementation is available at https://
github.com/Bundasl02/falcor—conemap.

4.1. Generation and render times

We compared the performance of the brute-force cone map
(BFCM) generation algorithm [Dum06] with the relaxed cone map
method [PO07] using M = 64 (RCM), our improved Algorithm
2 (QI) and its texel center heuristic modification from Section 3
(QC). The measurements are in milliseconds, taken on a notebook

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

NVIDIA GeForce 2060 RTX and a desktop AMD RX 5700. The
average overhead of using the improved algorithm Alg. 2 over Alg.
1 was about 6.52% on NVIDIA and 18.7% on AMD.

AMD RX 5700 | BFCM RCM QI QC | Mip

2562 27 71 0.028 0.022 | 0.026
5122 389 688 0.11 0.085 | 0.034
10242 N/A N/A 044 036 | 0.074
20482 N/A N/A 1.85 1.56 0.23
40962 N/A N/A 833 6.87 0.84
NV 2060 | BFCM RCM QI QC | Mip
256% 58.11 145.15 0.088 0.08 0.1
5122 863.4 156324 027 026 | 0.13
10242 N/A N/A 1.18 1.09 0.2
20482 N/A N/A 491 4.69 | 041
40962 N/A N/A 2133 2046 | 1.26

Our methods are running at real-time rates up to 2K resolution
and produce cone maps at interactive speeds at 4K. Neither GPU
could compute the brute-force [Dum06] and relaxed [PO07] cone
maps in a single dispatch 1K resolution and up. We did not optimize
the quick cone map generation code, neither the naive, multipass
maximum mip generation. We did let the brute-force generation to
early out should there be no chance to improve the cone aperture.

As Alg. 2 is conservative and the center heuristic is behaving
similarly empirically, both methods can use a secant step for root
refinement. Relaxed cone maps may guide rays into the interior of
the geometery, which we resolved by binary search. Measurements
were done on 1920 x 1080 resolution with 512 x 512 heightmaps
using 32 and 200 cone map steps followed by 5 binary (RCMb) or
1 secant (RCMs, BFCM, QI, QC) root refinement steps. Timings
are in milliseconds.

Steps | GPU | BFCM RCMs RCMb QI QC
32 | AMD 5700 018 017 0.19 020 0.19
200 | AMD 5700 0.23 02 021 026 025
32 NV 2060 045 041 045 048 046
200 | NV 2060 053 046 049 062 059

On 32 steps, relaxed cone maps are about 7% faster to ren-
der than our approximations with secant search root refinement.
When applying the same root refinement, relaxed cone maps be-
come 11%-17% faster to render. Allowing 200 steps pronounces
the efficiency of the wider cones found in relaxed cone maps, as
renders using our cone maps take about 17%-27% more time.

We experimented with relaxing the step sizes by a constant mul-
tiplier on the quick cone maps. Similarly to relaxed cones, this
necessitates binary search root refinement to achieve equal visual
quality and did not yield significant performance improvements.

4.2. Cone aperture comparison

A particularly difficult aspect of any screen-space displacement
technique is to overcome the presence of unstable shapes. These
may be the result of incorrect intersections, e.g. not reporting the
first one, or unconverged render iterations that reached the iteration
cap without finding an intersection. The former may be handled
by conservative empty space skipping, while the latter requires as
large steps as possible.

https://github.com/Bundas102/falcor-conemap
https://github.com/Bundas102/falcor-conemap

16 G. Valasek, R. Bdn / Quick cone map generation on the GPU

Figure 3: Comparison between naive (left) and improved (right)
quick cone map half aperture tangents with respect to a 512 x 512
naive ground truth. Brighter green denotes larger difference. The
improved quick cone map algorithm yields wider cones.

Figure 4: Comparison of renders using the results of naive (left)
and improved (right) quick cone map generation. Both cone maps
are conservative. Magenta is not converged.

Both Algorithm 1 and 2 may yield tighter cones than the brute-
force algorithm. This means that cone step mapping may not be
able to skip over the same span of empty spaces on these maps.

In general, Algorithm 2 generates at least as large apertures as
Algorithm 1, and our tests show that these are in general consider-
ably wider. See Figure 3 for the comparison of the computed tan-
gents with respect to a ground truth obtained from a brute-force
algorithm, and Figure 4 illustrates the two resulting cone maps in a
render scenario.

5. Conclusions

We presented two algorithms to compute cone maps on the GPU
using a maximum mip map. Their GPU implementation is straight-
forward and they can be executed at real-time rates, even for large
resolution textures. We showed that Algorithm 2 produces larger
cone apertures at the expense of a 10% increase in generation times.

The proposed algorithms generate cone maps that are conser-
vative approximations to the ones obtained by the brute-force ap-
proach [DumO6]. As this incurs a performance penalty upon ren-
dering, we proposed the texel center heuristic to increase the com-
puted cone apertures in exchange of the strictly conservative prop-
erty. Nevertheless, our tests on rendering textured terrain elements

Figure 5: Comparison of the naive (left) and improved (right) quick
cone map generation results that use the texel centers as maximum
candidates instead of the closest points of the mip texels. Magenta
is not converged.

showed that binary search is still not necessary for root refinement.
These cone maps were at most 7% slower to render than relaxed
cone maps with binary search in low iteration counts.

Both the proposed improved conservative and texel center
heuristic algorithms are well suited for interactive or even real-time
cone map generation scenarios. In more render performance ori-
ented applications we suggest using the texel center heuristic maps.

Acknowledgement

Supported by the UNKP-21-3 New National Excellence Program
of the Ministry for Innovation and Technology from the source
of the National Research, Development and Innovation Fund. We
would like to thank Visual Concepts for providing the AMD GPU
used in the tests.

References

[B1i78] BLINN J. F.: Simulation of wrinkled surfaces. In Proceedings of
the 5th Annual Conference on Computer Graphics and Interactive Tech-
niques (New York, NY, USA, 1978), SIGGRAPH ’78, Association for
Computing Machinery, p. 286-292. URL: https://doi.org/10.
1145/800248.507101,do1:10.1145/800248.507101. 1

[DT07] DACHSBACHER C., TATARCHUK N.: Prism parallax occlusion
mapping with accurate silhouette generation. In Symposium on Interac-
tive 3D Graphics and Games poster (2007). 1

[Dum06] DUMMER J.: Cone step mapping: An iterative ray-heightfield
intersection algorithm. 2006. URL: http://www.lonesock.net/
papers.html. 1,2, 3,4

[HSSTO08] HALLI A., SAAIDI A., SATORI K., TAIRI H.: Per-pixel dis-
placement mapping using cone tracing. International Review on Com-
puters and Software 3 (09 2008), 1-11. 1, 2

[PO07] POLICARPO F., OLIVEIRA M. M.: Relaxed cone stepping for re-
lief mapping. In GPU Gems 3 (2007). URL: https://developer.
nvidia.com/gpugems/gpugens3/part—-iii-rendering/
chapter—-18-relaxed-cone-stepping-relief-mapping.
2,3

[SKUO8] SzZIRMAY-KALOS L., UMENHOFFER T.: Displacement map-
ping on the gpu - state of the art. Comput. Graph. Forum 27, 6
(2008), 1567-1592. URL: http://dblp.uni-trier.de/db/
journals/cgf/cgf27.html#Szirmay-KalosU08. 1

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

https://doi.org/10.1145/800248.507101
https://doi.org/10.1145/800248.507101
https://doi.org/10.1145/800248.507101
http://www.lonesock.net/papers.html
http://www.lonesock.net/papers.html
https://developer.nvidia.com/gpugems/gpugems3/part-iii-rendering/chapter-18-relaxed-cone-stepping-relief-mapping
https://developer.nvidia.com/gpugems/gpugems3/part-iii-rendering/chapter-18-relaxed-cone-stepping-relief-mapping
https://developer.nvidia.com/gpugems/gpugems3/part-iii-rendering/chapter-18-relaxed-cone-stepping-relief-mapping
http://dblp.uni-trier.de/db/journals/cgf/cgf27.html##Szirmay-KalosU08
http://dblp.uni-trier.de/db/journals/cgf/cgf27.html##Szirmay-KalosU08

