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Abstract

Current compression methods compress depth images by incorporating 2D features, which leads to a loss of the
detail of the original 3D object in the recovered depth image. The main idea of this paper is to augment 2D
features with 3D geometric information to preserve important regions of the depth image. Mesh saliency is used to
represent the important regions of the 3D objects, and discontinuity edges are extracted to indicate the important
regions of the depth image. We use mesh saliency to guide the adaptive random sampling to generate a random
pixel sample of the depth image and then, combine this sample with the depth discontinuity edge to build the
sparse depth representation. During the depth reconstruction, the depth image is recovered by using an up- and
down-sampling schema with Gaussian bilateral filtering. The effectiveness of the proposed method is validated
through 3D image warping applications. The visual and quantitative results show a significant improvement of the

synthetic image quality compared with state-of-the-art depth compression methods.

Categories and Subject Descriptors (according to ACM CCS): [.3.m [Computer Graphics]: Miscellaneous—

performance

1. Introduction

Depth-Image-Based Rendering (DIBR) techniques have
been applied to many applications, including image-based
remote rendering systems [KCTS01] [KTL*04] [PHE*11],
image-based interactive 3D navigation [KKS*05], 3D video
games [Smoll], 3DTV [PJO*09] and FTV [MFY*09],
which use a depth image to warp the original camera posi-
tion to nearby virtual camera positions to provide immersive
3D visual enjoyment. For all of these applications, the depth
image and color image must be compressed, transmitted and
stored. The compression of the color image follows several
standards (e.g., JPEG-2000 and H.264), but there is no stan-
dard for the compression of the depth image. The depth im-
age from the z-buffer is intrinsically different from the color
image; it contains a depth value for each sample, which rep-
resents the current closest depth of all previously rendered
triangles that overlap the sample [AMAM13].

Recently proposed depth compression methods can
be classified into five types: transform-based encoding
(TE) [Mar02], intra/inter-frame predictive encoding (IE)
[SMWO07] [FMY*13] [NMD13] [PHM*14], piecewise-
linear function fitting (PT) [MF*06], mesh-based depth rep-
resentation (MR) [CSS02] and sampling-based depth recon-
struction (SR) [WYT*10] [PHE*11] [PHM™14] [NMD13].
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These methods generally incorporate the depth image’s 2D
features to perform the compression. TE-based methods
consider the depth image as a color image and use DC-
T transforms to perform the compression but do not use
the depth image’s inherent characteristics. IE-based meth-
ods consider the depth image sequence as a stream and ex-
ploit the intra-frame’s macro block matching and the inter-
frame’s residual to reduce the data prior to transmission.
In contrast, PT-based methods exploit the smooth charac-
teristic of depth signals and use piecewise-constant and
piecewise-linear functions to fit the depth signals using com-
plex algorithms. MR-based methods regard the depth field
as the height field and use the method of Lindstrom et al.
[LKR*96] to simplify the triangular meshes in real time. SR-
based methods sample the original depth image to perform
the compression and use interpolation to fill holes to com-
plete the depth reconstruction.

Although these methods exploit the depth image’s 2D fea-
tures to perform the compression, none incorporate the 3D
geometric information to compress the depth image. To uti-
lize the 3D information, this paper proposes a new method of
geometry-dependent depth image compression using hybrid
saliency sampling. We consider information from both the
3D space and the 2D depth image to acquire the importan-
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t regions of the depth image. The main idea of our method
is to combine the 3D object’s mesh saliency and the depth
discontinuity edge to build the sparse depth representation.

The contributions of this paper are as follows:

e We present a saliency-driven depth image compression
method that incorporates the mesh saliency and the depth
discontinuity edge to build the sparse depth representa-
tion.

e The proposed method is applied to 3D image warping.
The visual and quantitative results show a significant im-
provement of the synthetic image quality compared with
state-of-the-art depth compression methods.

After reviewing related work in Section 2, we describe our
method in detail in Section 3. The visual evaluation, quanti-
tative evaluation and computational complexity are then dis-
cussed in Section 4. Finally, we draw conclusions and dis-
cuss limitations of the method and future work in Section
5.

2. Related Work

Depth compression. Previous work on depth image cod-
ing has used a transform-based algorithm that was derived
from JPEG-2000 [Mar(2]. Perceptually, such a code gen-
erates ringing artifacts along edges that lead to fuzzy object
borders in the synthesized image. To overcome this problem,
the method presented by Morvan et al. [MF*06] exploits s-
traight lines to separate boundaries to model depth signals
using piecewise-constant and piecewise-linear functions.

Chai et al. [CSS02] propose a regular triangular mesh-
based depth representation that is inspired by Lindstrom et
al. [LKR*96], who proposed an algorithm for real-time, con-
tinuous level of detail rendering of digital terrain and other
height fields. The method achieves moderate compression
by encoding vertices in the mesh rendering order, but it has
a low depth image DPCM coding efficiency.

Wildeboer et al. [WYT*10] present a depth compression
method that contains a depth upsampling filter that uses the
color image as prior information. The method is able to
maintain clear object boundaries in the reconstructed depth
images and uses a regular grid with a constant step size to
sample the depth image.

Inspired by the push-pull mechanism described by Gortler
et al. [GGSC96], Pajak et al. [PHE*11] use the depth edge
to sample the original depth image. To avoid missing low-
frequency changes, their technique also uniformly adds one
sample every 32*32 pixels. This method results in rapid
depth compression, but the precision of the recovered depth
is insufficient for 3D image warping.

Saliency detection for meshes. Mesh saliency represents
a measure of the regional importance for graphics meshes.
Lee et al. [LVJOS] introduce the concept of mesh saliency

in a scale-dependent manner using a center-surround op-
erator on Gaussian-weighted mean curvatures. Inspired by
low-level human visual system cues, Lee et al. [LVJ05] in-
dicate that this definition of mesh saliency is able to cap-
ture what most would classify as visually interesting regions
on a mesh. This definition is also applied to salient-guided
mesh simplification and salient viewpoint selection. To u-
tilize perception-based metrics to process 3D meshes, we
combine the mesh saliency and the depth image’s discon-
tinuity edge to compress the depth. The method proposed in
this paper uses the strategy of Lee et al. [LVJ05] to efficient-
ly compute the model’s mesh saliency in the preprocessing
stage.

Random sampling. Quinn et al. [QLLM13] note that pat-
terns and regularities are quickly detected by humans and
should be avoided. Poisson disk sampling [Wei08] can avoid
aregular grid structure [LDO8] and can generate a blue noise
property. Based on a spectrum analysis, the power is con-
centrated at high frequencies, which is similar to the ground
truth produced by dart throwing [Co086].

Cook [Co086] uses dart throwing to produce a Poisson
disk sampling. However, this process is too slow for appli-
cations that require a large number of samples. Wei [Wei08]
demonstrates a parallel Poisson disk sampling algorithm that
runs on a GPU to generate samples with a blue noise spec-
trum. The basic idea of this method is to uniformly draw
samples from square grid cells and to perform this operation
concurrently and independently for all grid cells that are suf-
ficiently far apart.

3D image warping. McMillan [MJ97] proposes 3D im-
age warping as a classical DIBR technology. This method
can be applied to image-based remote rendering systems,
image-based interactive 3D navigation, 3DTV, FTV and vir-
tual reality. It uses a referenced viewpoint’s depth to gener-
ate the desired viewpoint’s content to provide an immersive
3D visual impact. Koller et al. [KTL*04] note that DIBR
is suitable for sharing archives of 3D models while protect-
ing the 3D geometry from unauthorized extraction. Mark et
al. [MMBO97] demonstrate a method of post-rendering 3D
warping and indicate that the method can be applied to real-
time remote display systems. Shade et al. [SGHS98] demon-
strate layered depth images, which are views of a scene from
a single input camera with multiple pixels along each line of
sight. The method uses the McMillan warping algorithm to
generate the desired viewpoint’s content. In this paper, we
use 3D image warping to evaluate our method, including the
precision of the recovered depth and the visual impact.

3. Approach

Our approach includes three stages: mesh saliency pre-
computation (described in [LVJ05]), sparse depth represen-
tation construction (described in subsection 3.1) and depth
reconstruction (described in subsection 3.2). In the prepro-
cessing stage, the model’s mesh saliency is precomputed
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Figure 1: Overview of the approach. The steps are shown from left to right and follow the arrows.

using a center-surround operator on the Gaussian-weighted
mean curvatures. Figure 1 (a) shows the output of the mesh
saliency precomputation. The intensity of the model’s sur-
face represents the value of the mesh saliency. Figure 1 (d)
shows the input of the mesh saliency precomputation.

Subsequently, our method uses the mesh’s salient region-
s to guide the adaptive random sampling to generate the
random pixel sample and subsequently combines the sam-
ple with the depth discontinuity edge pixel to build the s-
parse depth representation. Figure 1 (b) shows the 2D map
of the mesh’s salient region, which is generated by rendering
the model’s mesh saliency. Figure 1 (¢) shows the random
pixel sample, which is generated from the adaptive random
sampling that is guided by the mesh’s salient region. Fig-
ure 1 (e) shows the original depth image obtained from the
depth buffer by rendering the original model, and Figure 1
(f) shows the depth discontinuity edge, which is detected by
the Laplace operator on the original depth image. Figure 1
(g) shows the sparse depth representation, which is the out-
put of the second stage.

Finally, the depth is reconstructed using an up- and down-
sampling schema with Gaussian bilateral filtering. Figure 1
(h) shows the recovered depth, which is the result of the
depth reconstruction.

3.1. Sparse Depth Representation Construction

Poisson disk sampling can generate an isotropic random
sample with a blue noise property. We extends the proce-
dure of Wei [Wei0O8] to generate the adaptive sampling. The
algorithm runs on a GPU with the GLSL fragment shader,
and we use the hash-based method to generate the random
number as detailed in [TWO08]. Alternatively, we can exploit
the grid cell’s coordinates and the time of each render pass
(Render to Texture, RTT) as the random seed.

(© The Eurographics Association 2014.

By controlling the sampling density, the proposed method
exploits the mesh saliency to adjust the sparseness of the
adaptive random sampling. Unlike the uniform sampling
case, in which each sample has to maintain the same min-
imum distance r from every other sample, in adaptive ran-
dom sampling, we use the function r(.) over the sampling
domain Q and specify the minimum distance r(s) for which
the sample s € Q has to be maintained from other samples.

In this case, the domain  is the original depth image,
and D is the mesh’s salient region. We use the formulation
presented below to describe the threshold function r(s):

N if s €D
r(s) = {r2 if s ¢D M

The proposed method uses | and r, to control the sam-
pling density. We set r; = 1 and r, = 6; the user can set
the other parameters as required, but » must be less than
2(scale=1) The parameter scale is the depth reconstruction’s
scale, which is described in subsection 3.2. Finally, the ran-
dom pixel sample is merged with the depth discontinuity
edge pixel to build the depth image’s sparse representation.
Here, the depth discontinuity edge is efficiently generated by
the Laplace operator on the original depth image.

3.2. Depth Reconstruction

To recover the depth image, our method uses the sparse
depth representation to reconstruct the depth image using
an up- and down-sampling schema with Gaussian bilateral
filtering. The up- and down-sampling procedure is based on
the push-pull operation, which is described in [PHE*11].

The up-sampling procedure interpolates the high resolu-
tion image with the low resolution image using the upper
scale’s output to fill the current scale’s holes, including the
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Figure 2: Multi-view 3D image warping. In this case, we use depth images and color images from three referenced viewpoints
to warp the current virtual viewpoint. The referenced viewpoint and virtual viewpoint are same for each group.

diagonal diffusion and vertical/horizontal diffusion, and it-
erates until the scale is 0. However, the push-pull schema
generates a jittery depth image in the smooth region of the
recovered depth image, which can lead to a crack in the 3D
image warping. Hence, before the coarse-scale depth images
are pulled back to their corresponding position at the finer s-
cale in the pull step, a bilateral filter smooths the upper scale
while maintaining the precision of the depth discontinuity
edge. The bilateral filter is formulated as

1
- di'fs(i>j7scale)'gr(i7j) (2)
ZwerEZM

D(u)

where N; represents the i-th neighbor pixel domain, Wy, is
the normalization factor, fs is the spatial filter, which is de-
fined as the Gaussian kernel and depends on the scale, and
gr is the domain filter

di—dj|* .,
%)) 3)

Gz

gr(i, j) = (max(e,1—

where 6; is a normalized factor. In this paper, we set the val-
ue of G as five percent of the view-frustum’s length between

the near and far planes. Our method defines five scales to re-
construct the depth image. In addition, the spatial filter fs is
dependent on the different scales. The method sets the Gaus-
sian weighting marks 6 = 1 and N = 3 when the scale is 3, 4
or 5 and 6 =2 and N = 5 when the scale is 0, 1 or 2, which
can yield a visually pleasing result.

4. Experiments and Comparisons

Our work is performed on a Dell Precision T7600 with a
16-core Intel Xeon CPU E5-2687 Core(TM) 3.1 GHz and a
NVIDIA Quadro 6000 in the OpenGL 4.0 environment. To
achieve the effect on the sampling and reconstruction of the
depth image, the method uses the RTT (render to texture)
technique to obtain the depth image and the mesh’s salient
region to build the sparse depth representation. The recov-
ered depth image is applied to the 3D image warping. Final-
ly, the result of the 3D image warping is evaluated through
visual perception and quantitative analysis.
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4.1. Visual Evaluation

To visually test the quality of the recovered depth, the re-
covered depth image is used for 3D image warping. In this
case, the final frame of the desired viewpoint is generated
from three frames at several referenced viewpoints by multi-
view 3D image warping. The visual impact of the desired
viewpoint is explicitly influenced by the precision of the re-
covered depth. Moreover, to show the reliability and stabil-
ity of the proposed method, we choose different models to
generate depth images for sampling and reconstruction. To
maintain the uniformity of the near and far plane of the frus-
tum culling, the models are scaled into a bounding box with
a length between 0 and 1. To facilitate a comparison to the
edge diffusion method [PHE*11], the results are shown in
Figure 2. The recovered depth image’s warping results from
our method are more similar to the original depth than the
results of the edge diffusion method. The armadillo mesh’s
salient regions (head, hands and nose), the statue of David’s
three features (nose, left face and hair) and the bunny’s im-
portant regions (mouth and leg) can be preserved better using
the proposed method. To obtain the results of shown in Fig-
ure 2, our method’s parameters are set to r; =0 and rp, =8,
and the threshold of the Laplace operator for detecting the
depth discontinuity edge is = 0.0025. In the edge diffusion
method, the threshold 7 is set to 0.001. Here, the compression
ratio is defined as

Dsparse

CR = @

Doriginal .
where D igingi 18 the number of valid pixels in the original
depth image, and Dsparse is the number of valid pixels in the
sparse depth representation.

4.2. Quantitative Evaluation

The result of the 3D image warping process can be evaluated
quantitatively using the peak-signal-to-noise ratio (PSNR).
The computation of PSNR uses the warping output from the
original depth as the original image ,/ginq and the warp-
ing output from the recovered depth as the reconstructed im-
age Locovereq- The results for the different models (armadillo,
David and bunny) are shown in Figure 3. When the compres-
sion ratio is same for each model, the average PSNR is 0.2
dB higher than the depth edge diffusion method [PHE*11].
Nevertheless, our method cannot easily control the compres-
sion ratio, but it can adjust the sampling density to adapt
to the approximate desired compression ratio. The proposed
method has a low compression ratio for a single depth im-
age; the average compression ratio of less than 15 percent for
these models can achieve a high quality of synthetic images
in 3D image warping.

4.3. Computation Complexity

To determine the efficiency of the proposed method, the run-
time is tested for different resolutions (480*640, 600*800
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Figure 3: PSNR and compression ratio. The PSNR repre-
sents the warping quality, and the compression ratio is de-
fined as a ratio between the sampled depth and the original
depth.

and 768%1024). The experiment obtains the average time for
10 runs. As shown in Table 1, the sampling runtime approx-
imates the efficiency of the sparse depth representation con-
struction. The reconstruction shown in this table represents
the depth reconstruction stage. The adaptive random sam-

Table 1: Runtimes of different periods

Resolution  Sampling Reconstruction  Total
480*640 141 ms 5 ms 146 ms
600%800 291 ms 5 ms 206 ms
768%1024 311 ms 5 ms 316 ms

pling procedure requires additional computational cost; it re-
lies on the efficiency of Poisson adaptive sampling, which re-
quires the multi-pass rendering to generate the random pixel
sample. Nevertheless, it reduces the number of pixel sam-
ples considerably while preserving the model’s feature for
3D image warping. The efficiency of edge diffusion is su-
perior to the proposed method. However, the purpose of the
proposed method is different from that of the edge diffusion
method. Our method mainly focuses on the quality of syn-
thetic images for interactive 3D image warping, while the
edge diffusion method focuses on rapidly compressing and
decompressing depth images in the rendered video stream.

5. Conclusion and Future Work

This paper presented a new method of saliency-driven depth
compression that combines mesh saliency and 2D features to
guide the adaptive compression. In the the depth reconstruc-
tion stage, the proposed method exploits an up- and down-
sampling schema with Gaussian bilateral filtering to recover
the depth. The results showed that the method could pre-
serve the precision in the mesh’s salient region of the depth
image and provide a beneficial visual impact for 3D image

warping.
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Limitations. The proposed method considered low-level
human visual system cues to compute the mesh salien-
cy to guide the depth compression. In addition, the pro-
posed method is dependent on the mesh saliency to augment
the 2D features to preserve the precision in the recovered
depth, which is suitable for image-based rendering of virtual
scenes.

Future work. In the future, it will be necessary to ex-
plore other information that can be used to detect important
regions to preserve the higher level semantic information.
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