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Outline

• Tensor classes in MATLAB and vmmlib

‣ Downloads: 
– http://www.sandia.gov/~tgkolda/TensorToolbox

– https://github.com/VMML/vmmlib

‣ Typical tensor operations

‣ Toy examples (see folder: vmmlib_ta_demo)

‣ Test dataset (see folder: vmmlib_ta_demo)

• GPU-based tensor reconstruction
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Typical TA Operations

• Create a tensor (memory mapping)

• Unfolding

• TTM

‣ core generation vs. reconstruction 

• Create tensor models (Tucker, CP)

• Algorithms (HOSVD, HOOI, HOPM)
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Tensor: A Multidimensional Array

• MATLAB: N-way tensor

‣ M = ones(4,3,2); (A 4 x 3 x 2 array)

‣ A = tensor(M,[2 3 4]); (M has 24 elements)

‣ A = tenones([3 4 2]);

‣ A = tenrand([4 3 2]); 

• For details on the MATLAB tensor toolbox
see toolbox documentation
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X is a tensor of size 
2 x 3 x 4

 X(:,:,1) = 

      1     1     1

      1     1     1

 X(:,:,2) = 

      1     1     1

      1     1     1

 X(:,:,3) = 

      1     1     1

      1     1     1

 X(:,:,4) = 

      1     1     1

      1     1     1

I1 a

i1 = 1, . . . , I1

I1 A

i2 = 1, . . . , I2

I2 I2

I1 A

i3 = 1, . . . , I3

I3

a ...

a scalar 1st order tensor or vector 2nd order tensor or matrix 3rd order tensor or volume



Test Dataset: Hazelnut
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• A microCT scan of a dried hazelnut (acquired at the UZH)

• I1 = I2 = I3 = 512

• Values: unsigned char (8bit)

I2

I1 A

I3



A Matrix in vmmlib
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• I1 (M) rows

• I2 (N) columns

• The matrices are per default column-major ordered

• A matrix is an array of I2 (N) columns, where each column is of size I1 (M)

matrix< I1, I2, Type >

matrix< 4, 3, unsigned char > m;

Example:
(0, 1, 2)
(3, 4, 5)
(6, 7, 8)
(9, 10, 11)

[vmmlib]

I1 A

i2 = 1, . . . , I2

I2



A Tensor3 in vmmlib

7

A

I1

I2

I3

• A tensor3 A in vmmlib is an array of I3 matrices each of size I1 times I2

• The matrices are per default column-major ordered

• For each tensor3, the explicit size and the type of the values is requested

• A tensor3 is internally allocated and deallocated as pointer while the 
matrices are not

tensor3< I1, I2, I3, Type >

tensor3< 4, 3, 2, unsigned char > t3;

Example:
(0, 1, 2)
(3, 4, 5)
(6, 7, 8)
(9, 10, 11)
 *** 
(12, 13, 14)
(15, 16, 17)
(18, 19, 20)
(21, 22, 23)
 *** 

[vmmlib]



A Tensor4 in vmmlib
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A

I1

I2

I3

• A tensor4 in vmmlib is an array of I4 tensor3s

• For each tensor4, the explicit size and the type of the values is requested

tensor4< I1, I2, I3, I4, Type >

tensor4< 4, 3, 2, 2, unsigned char > t4;

Example:
(0, 1, 2)
(3, 4, 5)
(6, 7, 8)
(9, 10, 11)
 *** 
(12, 13, 14)
(15, 16, 17)
(18, 19, 20)
(21, 22, 23)
 *** 
---- 

(24, 25, 26)
...

A

I1

I2

I3

[vmmlib]



Large Data Tensors (in vmmlib)
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A

I1

I2

I3

! const size_t d = 512;
! typedef tensor3< d,d,d, unsigned char > t3_512u_t;
! typedef t3_converter< d,d,d, unsigned char > t3_conv_t;
! typedef tensor_mmapper< t3_512u_t, t3_conv_t > t3map_t;
!
! std::string in_dir = "./dataset";
! std::string file_name = "hnut512_uint.raw";
! t3_512u_t t3_hazelnut;
! t3_conv_t t3_conv;

! t3map_t t3_mmap( in_dir, file_name, true, t3_conv ); //true -> read-only
! t3_mmap.get_tensor( t3_hazelnut );

[vmmlib]



Get Slices of a Tensor3

matrix< 512, 512, values_t > slice;
t3.get_frontal_slice_fwd( 256, slice );
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frontal slices horizontal slices lateral slices

matrix< 512, 512, values_t > slice; 
t3.get_horizontal_slice_fwd( 256, slice );

matrix< 512, 512, values_t > slice; 
t3.get_lateral_slice_fwd( 256, slice );

[vmmlib]



Forward Tensor Unfolding (Matricization)

11

I2

I3

A

A

I1

I1

I2

I3 I2

I3

I1

I2

I1

A

I1

I2

I3

I3

I3 I3

I2 I2

I1 I1

A(3)

A(1)

A(2)

I2 · I1

I1 · I3

I3 · I2

Forward Cyclic Unfolding

tensor3< I1, I2, I3, values_t > t3
matrix< I1, I3*I2, values_t > unf_front_fwd;
t3.frontal_unfolding_fwd( unf_front_fwd ); 

matrix< I2, I1*I2, values_t > unf_horiz_fwd;
t3.horizontal_unfolding_fwd( unf_horiz_fwd );

matrix< I3, I2*I1, values_t > unf_lat_fwd;
t3.lateral_unfolding_fwd( unf_lat_fwd );

forward unfolded tensor (frontal)
(0, 1, 2, 12, 13, 14)
(3, 4, 5, 15, 16, 17)
(6, 7, 8, 18, 19, 20)
(9, 10, 11, 21, 22, 23)

forward unfolded tensor (horizontal)
(0, 12, 3, 15, 6, 18, 9, 21)
(1, 13, 4, 16, 7, 19, 10, 22)
(2, 14, 5, 17, 8, 20, 11, 23)

forward unfolded tensor (lateral)
(0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 11)
(12, 15, 18, 21, 13, 16, 19, 22, 14, 17, 20, 23)

after [Kiers, 2000]

[vmmlib]



Backward Tensor Unfolding (Matricization)
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I1

I2

I3

A

A

A

I1

I1

I1

I2

I2

I3

I3

I2

I3

I3 I3 I3

I1 I1 I1

I2 I2 I2

A(2)

A(1)

A(3)

I2 · I3

I3 · I1

I1 · I2

Backward Cyclic Unfolding

tensor3< I1, I2, I3, values_t > t3
matrix< I1, I2*I3, values_t > unf_lat_bwd;
t3.lateral_unfolding_bwd( unf_lat_bwd );     

matrix< I2, I3*I1, values_t > unf_front_bwd;
t3.frontal_unfolding_bwd( unf_front_bwd );    

matrix< I3, I1*I2, values_t > unf_horiz_bwd;
t3.horizontal_unfolding_bwd( unf_horiz_bwd ); 

backward unfolded tensor (lateral)
(0, 12, 1, 13, 2, 14)
(3, 15, 4, 16, 5, 17)
(6, 18, 7, 19, 8, 20)
(9, 21, 10, 22, 11, 23)

backward unfolded tensor (frontal)
(0, 3, 6, 9, 12, 15, 18, 21)
(1, 4, 7, 10, 13, 16, 19, 22)
(2, 5, 8, 11, 14, 17, 20, 23)

backward unfolded tensor (horizontal)
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
(12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23)

after [De Lathauer et al., 2000a]

[vmmlib]



Example Unfoldings along the Modes 1, 2, and 3
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...

...

...

...

...

...

mode-1 
unfolding

mode-1 
unfolding

mode-3 
unfolding



Tensor Times Matrix Multiplication

14

A

B

C

In

In

I1

I1

Jn
Jn

I2

C

B(n) In

In

A(n) JnJn

I1 · I2

I1 · I2

n-mode product (B×n C)i1...ın−1 jnin+1...iN =
In

∑
in=1

bi1i2...iN · c jnin

A = B×n C A(n) = CB(n)⇔

[De Lathauer et al., 2000a]



Tensor Times Matrix Multiplications
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A

B

C

In

In

I1

I1

Jn
Jn

I2

t3_ttm::multiply_frontal_fwd(    tensor3_b, matrix_c1, tensor3_a1 ); 
t3_ttm::multiply_horizontal_fwd( tensor3_b, matrix_c2, tensor3_a2 ); 
t3_ttm::multiply_lateral_fwd(    tensor3_b, matrix_c3, tensor3_a3 ); 

t3_ttm::full_tensor3_matrix_multiplication( 
tensor3_b, 
matrix_c1, 
matrix_c2, 
matrix_c3, 
tensor3_a 
);

• The T3_TTM is implemented using openMP and BLAS for the parallel matrix-tensor_slice multiplications.

• The full TTM multiplication includes three TTMs: first a TTM along frontal slices, then a TTM along 
horizontal slices, and finally a TTM along lateral slices.

• Since the tensor3 is an array consisting of frontal slices (matrices), we start first with the frontal slice 
multiplication. This is optimized for tensors with In > Jn (For example, Tucker core generation). If you 
have a situation, where Jn > In (for example Tucker reconstruction), you could rearrange the order of the 
modes of the TTM multiplications such that the most expensive TTM (the one of the largest tensor) is 
performed along frontal slices. 

[vmmlib]



Example TTMs: Core Computation
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I1

I2

I1

R1

A

U(1)T B
�

I2

R1

I3 I2

R2 B
��

U(2)T

B
�

I2

I3

I3

R2

R1 I3

R3 BU(3)T

B
��I3

R1

R1

R3

R2

B = A ×1 U(1)T ×2 U(2)T ×3 · · ·×N U(N)T

B = A ×1 U(1)(−1)×2 U(2)(−1)×3 · · ·×N U(N)(−1)

• Three consecutive TTM multiplication (along modes 1,2,3)

• For orthogonal matrices, use the transposes of the three factor matrices 
(otherwise the (pseudo)-inverses)

• t3_ttm::full_tensor3_matrix_multiplication( A, U1_t, U2_t, U3_t, B );

orthogonal
factor matrices

[vmmlib]



Tucker3 Tensor
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I3

I1

I2

I3

I1

U(3)

R3

R1

R2U(1)

I2

U(2)

B≈�A

[vmmlib]

typedef tucker3_tensor< R1, R2, R3, I1, I2, I3, T_value, T_coeff > tucker3_t;

• Define input tensor size (I1,I2,I2)

• Define multilinear rank (R1,R2,R3)

• Define value type and coefficient value type

• Internally always computes with floating point values

• Stores the three factor matrices (In x Rn) and the core tensor (R1,R2,R3)

• ALS: 

‣ if not converged (fit does not improve anymore, tolerance 1e-04)

‣ the ALS stops latest after 10 iteration

• Reconstruction



Example Code Tucker3 Tensor
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 !typedef tensor3< I1, I2, I3, values_t > t3_t;
! t3_t t3; //after initializing a tensor3, the tensor is still empty
! t3.fill_increasing_values(); //fills the empty tensor with the values 0,1,2,3...

  typedef tucker3_tensor< R1, R2, R3, I1, I2, I3, values_t, float > tucker3_t;
! tucker3_t tuck3_dec; //empty tucker3 tensor
!
! //choose initialization of Tucker ALS (init_hosvd, init_random, init_dct)
! typedef t3_hooi< R1, R2, R3, I1, I2, I3, float > hooi_t;
!
! //Example for initialization with init_rand
! tuck3_dec.tucker_als( t3, hooi_t::init_random());

! //Example for initialization with init_hosvd
! tuck3_dec.tucker_als( t3, hooi_t::init_hosvd());
!
! //Reconstruction
! t3_t t3_reco;
! tuck3_dec.reconstruct( t3_reco );

  //Reconstruction error (RMSE)
  double rms_err = = t3.rmse( t3_reco );

[vmmlib]

I3

I1

I2

I3

I1

U(3)

R3

R1

R2U(1)

I2

U(2)

B≈�A



U(1)I1

R1

U(2)I2

R2

U(3)I3

R3

Example Tucker3 Factor Matrices
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CP3 Tensor
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I3

I1

I2

I3

I1

U(3)

U(1)

I2

U(2)

�A ≈

R

R

R

λ1

λR

. . .

[vmmlib]

• Define input tensor size (I1,I2,I2)

• Define rank R

• Define value type and coefficient value type

• Internally always computes with floating point values

• Stores three factor matrices each of size (In x R) and the lambdas R

• ALS: 

‣ if not converged (fit does not improve anymore, tolerance 1e-04)

‣ set number of maximum CP ALS iterations

• Reconstruction



Code Example CP3 Tensor
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I3

I1

I2

I3

I1

U(3)

U(1)

I2

U(2)

�A ≈

R

R

R

λ1

λR

. . .

[vmmlib]

! typedef cp3_tensor< r, a, b, c, values_t, float > cp3_t;
! typedef t3_hopm< r, a, b, c, float > t3_hopm_t;
!
! cp3_t cp3_dec;
!
! //Decomposition or CP ALS
! //choose initialization of Tucker ALS (init_hosvd, init_random)

! int max_cp_iter = 20;
! cp3_dec.cp_als( t3, t3_hopm_t::init_random(), max_cp_iter );
!
  //Reconstruction
! t3_t t3_cp_reco;
! cp3_dec.reconstruct( t3_cp_reco );

  //Reconstruction error (RMSE)
! rms_err = t3.rmse( t3_cp_reco ) ;
!



Higher-order SVD (HOSVD)
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unfold A along 
mode n (A_n)

start HOSVD 
for mode n

compute the matrix 
SVD on A_n

mode n 
matrix U_n

tensor A

stop HOSVD 
for mode n

set R_n left 
singular vectors as 

U_n

[De Lathauwer et al., 2000a]
[vmmlib]



HOSVD vs. HOEIGS (HOEVD)
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unfold A along mode 
n (A_n)

start HOSVD 
for mode n

compute the matrix 
SVD on A_n

mode n 
matrix U_n

tensor A

stop HOSVD 
for mode n

set R_n left singular 
vectors as U_n

unfold A along mode 
n (A_n)

start HOEIGS 
for mode n

compute the matrix 
symmetric EIG on C_n

mode n 
matrix U_n

tensor A

stop HOEIGS 
for mode n

set eigenvectors (of 
R_n most significant 
eigenvalues) as U_n

compute covariance 
matrix C_n = A_n 

A_n^T

[De Lathauwer et al., 2000a] Higher-order symmetric eigenvalue decomposition 
- HOEIGS: [Suter et al.]
- HOEVD: [De Lathauwer et al., 2000a]

[vmmlib] typedef t3_hosvd< R1, R2, R3, I1, I2, I3 > t3_hosvd_t;
//HOSVD modes: eigs_e or svd_e



Higher-order Orthogonal Iteration (HOOI)
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invert all matrices, 
but mode n

start mode-n 
optimization

multiply tensor 
with all inverted 
matrices (TTMs)

optimized 
tensor A'

tensor A, 
matrices U

stop mode-n 
optimization

convergence?

init matrices U
(random, HOSVD)

compute max 
Frobenius norm A

set convergence 
criteria

input 
tensor A

optimize mode n

compute new 
mode-n matrix 
(HOSVD on A')

yes

no

compute core 
tensor B

compute fit

stop 
iterations

start ALS

matrices U, 
core tensor B

mode-n optimized 
tensor A'

[De Lathauwer et al., 2000b]

[vmmlib] typedef t3_hooi< R1, R2, R3, I1, I2, I3 > t3_hooi_t;



Higher-order Power Method (HOPM)
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convergence?

init matrices U
(random, HOSVD)

compute max 
Frobenius norm A

set convergence 
criteria

input 
tensor A

optimize mode n

yes

no

compute fit

stop 
iterations

start ALS

matrices U, 
lambdas

multiply each U's 
transpose with U

start mode-n 
optimization

normalize new U_n
norm -> new lambda

new matrix U_n, 
new lambda

tensor A, 
matrices U

stop mode-n 
optimization

unfold A along mode 
n to A_n

Khatri Rao product of 
all Us, but U_n -> 

U_krp

piecewise 
multiplication of all 

U^T U -> V

new U_n: multiply A_n 
with U_krp and V^+

pseudo inverse of V -> 
V^+

[De Lathauwer et al., 2000b]

[vmmlib] typedef t3_hopm< R, I1, I2, I3 > t3_hopm_t;



Tucker Tensor-specific Quantization
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To appear in an IEEE VGTC sponsored conference proceedings

data management system that divides the data into blocks is an impor-
tant basis both to process and to visualize large datasets. Our method
is based on the offline decomposition of the original volumetric dataset
into small cubical bricks (subvolumes), i.e., third-order tensors, which
are approximated, quantized and organized into an octree structure
maintained out-of-core. The octree contains data bricks at different
resolutions, where each resolution of the volume is represented as a
collection of bricks in the subsequent octree hierarchy level.

Each brick has a fixed width B with an overlap of two voxels at each
brick boundary for efficiently supporting runtime operations requiring
access to neighboring voxels (trilinear interpolation and gradient com-
putation). The width of the brick is flexible, but in this paper is set to
B = (28 + 2 + 2) = 32, i.e., one brick is 323, which has proved small
enough to guarantee LOD adaptivity, while coarse enough to permit
an effective brick encoding by the analysis of the local structure.

Each octree brick A ∈ R3 is tensor approximated using rank-
reduced Tucker decomposition. A Tucker decomposition (see Ap-
pendix A) is defined as �A = B×1 U(1) ×2 U(2) ×3 U(3), where B
is the so called core tensor and U(n) are the factor matrices. A rank-
reduced TA along every mode of the dataset is written with the no-
tation: rank-(R1,R2,R3) TA. As illustrated in Fig. 1, we compute for
each brick of size B3 a rank-(R,R,R) TA, with R∈ [1..B−1]. Typically,
we use a rank reduction, where R = B/2, i.e., R = 16 for B = 32, fol-
lowing the rank reduction scheme used in other tensor approximation
works [27, 23]. The resulting rank-reduced decomposition is quan-
tized to further reduce memory usage (see Sec. 4) and stored in a
out-of-core brick database. With each brick, we store a 64-bit binary
histogram, which is used for transfer-function-based culling.

...

......

lowest resolution

highest resolution

B3 bricks

core tensor    and
basis matrices U

B

A

Fig. 1. Multiresolution octree tensor decomposition hierarchy with B3

sized bricks.

The whole preprocessing is performed in a low-memory setting us-
ing a bottom-up process on a brick-by-brick basis, which is repeated
until we reach the octree root. Leafs are constructed by sampling
the original dataset, while non-leaf bricks are constructed from their
previously constructed eight children, which are dequantized, recon-
structed, and spatially averaged.

At run-time, an adaptive loader updates a view- and transfer
function-dependent working set of bricks. The working set is incre-
mentally maintained on the CPU and GPU memory by asynchronously
fetching data from the out-of-core brick multiresolution TA structure.
Following the MOVR approach [12, 14], the working set is maintained
by an adaptive refinement method guided by the visibility information
fed back from the renderer. The adaptive loader maintains on GPU a
cache of recently used volume bricks, stored in a 3D texture. At each
frame, the loader constructs a spatial index for the current working set
in the form of an octree with neighbor pointers.

For rendering and visibility computation, the octree is traversed us-
ing a CUDA stack-less octree ray-caster, which employs preintegrated
scalar transfer functions to associate optical properties to scalar values,
and supports a variety of shading modes [14]. The ray-caster works on
reconstructed bricks, and reconstruction steps occur only upon GPU
cache misses. The quantized tensor decomposition is dequantized and

reconstructed on demand by the adaptive loader during the visualiza-
tion on the GPU (see Sec. 5).

In order to permit structural exploration of the datasets, the recon-
struction can consider only the K most significant ranks of the tensor
decomposition, where K ∈ [1..R] is chosen by the user. The recon-
struction rank K can be changed during the visualization process with
a rank slider. Lower-rank reductions give a faster outline of the visu-
alized dataset and can highlight structures at specific scales [23], see
also Sec.6. Higher K values add more details onto the dataset.

4 ENCODING OF COEFFICIENTS

As mentioned previously, the tensor and factor matrix coefficients take
up unnecessary space if maintained as floating point values, see also
storage cost analysis in Sec. 6.2. For compact representation of the ten-
sor decomposition and to reduce the disk to host to device bandwidth
during rendering, we apply a simple fixed bit length encoding based
on tensor-specific quantization. In particular, the factor matrices and
the core tensor of the Tucker model have a different distribution of co-
efficients and thus the quantization approach was selected accordingly,
as described below. A fixed bit length approach has been selected in
order to simplify parallel decoding on the GPU.

4.1 Factor Matrices and Core Tensor Coefficients

The coefficients of the basis factor matrices U(1...3) are normalized
and distributed between [−1,1], due to the orthonormality of factor
matrices in the Tucker model. Therefore, a uniform linear 8- or 16-bit
quantization as in Eq. 1 can effectively be applied. We use a single
min/max-pair to indicate the quantization range for all three factor
matrices to minimize the number of coefficients that need to be loaded
by the CUDA kernels.

x̃U = (2QU −1) · x− xmin
xmax− xmin

(1)

As per definition of the Tucker model, the core tensor B captures
the contribution of the linear bases combinations, i.e., the energy of
the data, in its coefficients. The distribution of the signed coefficients
is such that the first entry of the core tensor has an especially high
absolute value close to the volume’s norm, capturing most of the data
energy, while many other entries concentrate around zero. The prob-
ability distribution of the other values between the two extrema is de-
creasing with their absolute magnitude in a logarithmic fashion. Hence
we apply a logarithmic quantization scheme as in Eq. 2 for the core
tensor coefficients, using a separate sign-bit.

|x̃B | = (2QB −1) · log2(1+ |x|)
log2(1+ |xmax|) (2)

Special treatment is given to the one first high energy value men-
tioned before. It is known that this value, the hot-corner coefficient,
is always at position B(0,0,0). Since it is one value and in order to
give more space to the quantization range to the other coefficients, we
optionally do not quantize this value and store it separately.

Various quantization levels for the other coefficients, QU and QB ,
could be used and analyzed. In practice, we have chosen a byte-
aligned quantization of QU,B = 8- or 16-bit as a compromise between
the most effective quantization and efficient bit-processing. The ef-
fects of quantization as well as other tensor-specific optimizations are
reported in Sec. 6.2 where we analyze the quantization error.

4.2 Storage Requirements

The basic storage needed for a volume dataset A of size of I1× I2× I3,
is I1 · I2 · I3 · Q, where Q is the number of bits (bytes) per scalar
value. A rank-(R1,R2,R3) tensor approximation, however, only re-
quires R1 · R2 · R3 · QB +(I1 · R1 + I2 · R2 + I3 · R3) · QU, in addition to
three floating point numbers for the quantization ranges of the factor
matrices (min/max values) and core tensor (max quantization value),
and one floating point value for the hot-corner value. This first coef-
ficient of the core tensor is (optionally) encoded separately from the
remaining ones, leading to a reduced quantization range for Eq. 2.
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data management system that divides the data into blocks is an impor-
tant basis both to process and to visualize large datasets. Our method
is based on the offline decomposition of the original volumetric dataset
into small cubical bricks (subvolumes), i.e., third-order tensors, which
are approximated, quantized and organized into an octree structure
maintained out-of-core. The octree contains data bricks at different
resolutions, where each resolution of the volume is represented as a
collection of bricks in the subsequent octree hierarchy level.

Each brick has a fixed width B with an overlap of two voxels at each
brick boundary for efficiently supporting runtime operations requiring
access to neighboring voxels (trilinear interpolation and gradient com-
putation). The width of the brick is flexible, but in this paper is set to
B = (28 + 2 + 2) = 32, i.e., one brick is 323, which has proved small
enough to guarantee LOD adaptivity, while coarse enough to permit
an effective brick encoding by the analysis of the local structure.

Each octree brick A ∈ R3 is tensor approximated using rank-
reduced Tucker decomposition. A Tucker decomposition (see Ap-
pendix A) is defined as �A = B×1 U(1) ×2 U(2) ×3 U(3), where B
is the so called core tensor and U(n) are the factor matrices. A rank-
reduced TA along every mode of the dataset is written with the no-
tation: rank-(R1,R2,R3) TA. As illustrated in Fig. 1, we compute for
each brick of size B3 a rank-(R,R,R) TA, with R∈ [1..B−1]. Typically,
we use a rank reduction, where R = B/2, i.e., R = 16 for B = 32, fol-
lowing the rank reduction scheme used in other tensor approximation
works [27, 23]. The resulting rank-reduced decomposition is quan-
tized to further reduce memory usage (see Sec. 4) and stored in a
out-of-core brick database. With each brick, we store a 64-bit binary
histogram, which is used for transfer-function-based culling.

...

......

lowest resolution

highest resolution

B3 bricks

core tensor    and
basis matrices U

B

A

Fig. 1. Multiresolution octree tensor decomposition hierarchy with B3

sized bricks.

The whole preprocessing is performed in a low-memory setting us-
ing a bottom-up process on a brick-by-brick basis, which is repeated
until we reach the octree root. Leafs are constructed by sampling
the original dataset, while non-leaf bricks are constructed from their
previously constructed eight children, which are dequantized, recon-
structed, and spatially averaged.

At run-time, an adaptive loader updates a view- and transfer
function-dependent working set of bricks. The working set is incre-
mentally maintained on the CPU and GPU memory by asynchronously
fetching data from the out-of-core brick multiresolution TA structure.
Following the MOVR approach [12, 14], the working set is maintained
by an adaptive refinement method guided by the visibility information
fed back from the renderer. The adaptive loader maintains on GPU a
cache of recently used volume bricks, stored in a 3D texture. At each
frame, the loader constructs a spatial index for the current working set
in the form of an octree with neighbor pointers.

For rendering and visibility computation, the octree is traversed us-
ing a CUDA stack-less octree ray-caster, which employs preintegrated
scalar transfer functions to associate optical properties to scalar values,
and supports a variety of shading modes [14]. The ray-caster works on
reconstructed bricks, and reconstruction steps occur only upon GPU
cache misses. The quantized tensor decomposition is dequantized and

reconstructed on demand by the adaptive loader during the visualiza-
tion on the GPU (see Sec. 5).

In order to permit structural exploration of the datasets, the recon-
struction can consider only the K most significant ranks of the tensor
decomposition, where K ∈ [1..R] is chosen by the user. The recon-
struction rank K can be changed during the visualization process with
a rank slider. Lower-rank reductions give a faster outline of the visu-
alized dataset and can highlight structures at specific scales [23], see
also Sec.6. Higher K values add more details onto the dataset.

4 ENCODING OF COEFFICIENTS

As mentioned previously, the tensor and factor matrix coefficients take
up unnecessary space if maintained as floating point values, see also
storage cost analysis in Sec. 6.2. For compact representation of the ten-
sor decomposition and to reduce the disk to host to device bandwidth
during rendering, we apply a simple fixed bit length encoding based
on tensor-specific quantization. In particular, the factor matrices and
the core tensor of the Tucker model have a different distribution of co-
efficients and thus the quantization approach was selected accordingly,
as described below. A fixed bit length approach has been selected in
order to simplify parallel decoding on the GPU.

4.1 Factor Matrices and Core Tensor Coefficients

The coefficients of the basis factor matrices U(1...3) are normalized
and distributed between [−1,1], due to the orthonormality of factor
matrices in the Tucker model. Therefore, a uniform linear 8- or 16-bit
quantization as in Eq. 1 can effectively be applied. We use a single
min/max-pair to indicate the quantization range for all three factor
matrices to minimize the number of coefficients that need to be loaded
by the CUDA kernels.

x̃U = (2QU −1) · x− xmin
xmax− xmin

(1)

As per definition of the Tucker model, the core tensor B captures
the contribution of the linear bases combinations, i.e., the energy of
the data, in its coefficients. The distribution of the signed coefficients
is such that the first entry of the core tensor has an especially high
absolute value close to the volume’s norm, capturing most of the data
energy, while many other entries concentrate around zero. The prob-
ability distribution of the other values between the two extrema is de-
creasing with their absolute magnitude in a logarithmic fashion. Hence
we apply a logarithmic quantization scheme as in Eq. 2 for the core
tensor coefficients, using a separate sign-bit.

|x̃B | = (2QB −1) · log2(1+ |x|)
log2(1+ |xmax|) (2)

Special treatment is given to the one first high energy value men-
tioned before. It is known that this value, the hot-corner coefficient,
is always at position B(0,0,0). Since it is one value and in order to
give more space to the quantization range to the other coefficients, we
optionally do not quantize this value and store it separately.

Various quantization levels for the other coefficients, QU and QB ,
could be used and analyzed. In practice, we have chosen a byte-
aligned quantization of QU,B = 8- or 16-bit as a compromise between
the most effective quantization and efficient bit-processing. The ef-
fects of quantization as well as other tensor-specific optimizations are
reported in Sec. 6.2 where we analyze the quantization error.

4.2 Storage Requirements

The basic storage needed for a volume dataset A of size of I1× I2× I3,
is I1 · I2 · I3 · Q, where Q is the number of bits (bytes) per scalar
value. A rank-(R1,R2,R3) tensor approximation, however, only re-
quires R1 · R2 · R3 · QB +(I1 · R1 + I2 · R2 + I3 · R3) · QU, in addition to
three floating point numbers for the quantization ranges of the factor
matrices (min/max values) and core tensor (max quantization value),
and one floating point value for the hot-corner value. This first coef-
ficient of the core tensor is (optionally) encoded separately from the
remaining ones, leading to a reduced quantization range for Eq. 2.

3

R1

R2
R3

B

U(3)U(1) U(2)I1 I2 I3

R1 R2 R3

• Factor matrices quantization

‣ values between [-1,1]

‣ linear quantization

• Core tensor quantization

‣ many small values; few large values

‣ logarithmic quantization

[Suter et al., 2011]

typedef qtucker3_tensor< R1, R2, R3, I1, I2, I3, T_value, T_coeff > qtucker3_t;[vmmlib]
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for the outer product between the corresponding column vectors in the
factor matrices

�A = ∑
r1

∑
r2

∑
r3

br1r2r3 · u(1)
r1 · u(2)

r2 · u(3)
r3 . (A.4)

The sum of all theses weighted “subtensors” forms the approxima-
tion �A of the original data A (see Fig. 13).

+ ...= ... +

I3I2

I1
br1r2r3

u(1)
r1

u(2)
r2

u(3)
r3

�A

Fig. 13. Tensor reconstruction from Eq. A.4 visualized.

Another approach, is to reconstruct each element of the approxi-
mated dataset individually, which we call voxel-wise reconstruction
approach. Each element �ai1i2i3 is reconstructed as shown in Eq. A.5,
i.e., sum up all core coefficients multiplied with the corresponding co-
efficients in the factor matrices (weighted product).

�ai1i2i3 = ∑
r1

∑
r2

∑
r3

br1r2r3 · u(1)
i1r1

· u(2)
i2r2

· u(3)
i3r3

(A.5)

A third reconstruction approach is to build the n-mode products
along every mode [15] (notation: B×n U(n)), which leads to a ten-
sor times matrix (TTM) multiplication for each mode, i.e., dimension.
This is analogous to the Tucker model given by Eq. A.3. The n-mode
product between a tensor and a matrix is equivalent to a matrix prod-
uct as it can be seen from Eq. A.6. In Fig. 14 we visualize the TTM
approach using n-mode products.

Y = X ×n U⇔ Y(n) = UX(n), (A.6)

where X(n) represents the mode-n unfolded tensor, i.e., a matrix.

I1 U(1)

R1

R3

R2×1

B

B�

R3

I1

R1

(a) TTM 1

I2

R2

U(2)

I1

R2

R3×2

B�

B��
I2

I1

(b) TTM 2

I3

R3

U(3)

I2

R3

I1×3

B��

�A

I2

I3

(c) TTM 3

Fig. 14. TTM: tensor times matrix along the 3 modes (n-mode products).
Backward cyclic reconstruction after Lathauwer et al. [6].

Given the fixed cost of generating an I1× I2× I3 grid, the computa-
tional overhead factor varies from cubic rank complexity R1 ·R2 ·R3 in
the case of the progressive reconstruction (Eq. A.4) to a linear rank
complexity R1 for the TTM or the n-mode product reconstruction
(Eq. A.5). (For R = 16, the improvement to R3 = 4�096 is 256-fold.)
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