EG UK Computer Graphics & Visual Computing (2017)
Tao Ruan Wan and Franck Vidal (Editors)

Sketching for Real-time Control of Crowd Simulations

Luis Rene Montana and Steve Maddock

Department of Computer Science, University of Sheffield, Sheffield, UK

Figure 1: Simulation with 50,000 pedestrians running at 15 frames per second.

Abstract

Crowd simulations are used in various fields such as entertainment, training systems and city planning. However, controlling
the behaviour of the pedestrians typically involves tuning of the system parameters through trial and error, a time-consuming
process relying on knowledge of a potentially complex parameter set. This paper presents an interactive graphical approach to
control the simulation by sketching in the simulation environment. The user is able to sketch obstacles to block pedestrians
and lines to force pedestrians to follow a specific path, as well as define spawn and exit locations for pedestrians. The
obstacles and lines modify the underlying navigation representation and pedestrian trajectories are recalculated in real time.
The FLAMEGPU framework is used for the simulation and the game engine Unreal is used for visualisation. We demonstrate
the effectiveness of the approach using a range of scenarios, producing interactive editing and frame rates for tens of thousands
of pedestrians. A comparison with the commercial software MassMotion is also given.

Categories and Subject Descriptors (according to ACM CCS): 1.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction Techniques, 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Animation,
[.6.8 [Simulation and Modeling]: Types of Simulation—Visual, H.5.2 [Information interfaces and presentation]: User
interfaces—Graphical user interface(GUI)

1. Introduction process and potential outcomes of changing parameters. This
challenge is then compounded with advances in computer
technology, which supports the modelling of bigger crowds and
more complex pedestrian behaviour, with more complex parameter
sets.

Pedestrian simulations have numerous applications, including
films, video games, training, urban planning, and emergency
evacuation simulations. Such simulations are often controlled by
an agent-based model, which may produce unexpected global

behaviour. Numerous system parameters must then be tuned to
control a simulation, which is time-consuming and requires a
certain level of knowledge of the parameter set, the simulation

(© 2017 The Author(s)
Eurographics Proceedings (©) 2017 The Eurographics Association.

DOI: 10.2312/cgvc.20171282

Several approaches involving graphical interaction, such as
sketching, have been proposed to facilitate crowd control and to
enable non-expert users to modify the behaviour of the pedestrians.

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/cgvc.20171282

82 Luis Rene Montana & Steve Maddock / Sketching for Real-time Control of Crowd Simulations

This movement can be controlled directly by interacting with the
agents or indirectly by modifying the environment - Section 2
gives details. We present an interactive graphical control approach
where non-technical users can change the flow of the pedestrians
by sketching in the simulation environment with a mouse.

The system consists of an agent-based pedestrian simulation,
developed using the FLAMEGPU framework [fla], linked with
the game engine Unreal for rendering. The user is able to sketch
lines in the simulation environment to represent guiding paths or
obstacles. The underlying grid-based navigation method [KRR10]
is updated based on the user sketches. Pedestrians react to these
environment changes in real time and modify their trajectory
accordingly. The simulation runs at interactive frame rates for tens
of thousands of pedestrians.

The approach we use is related to Patil et al’s work
[PVDBC*11], in that flow lines can be sketched to direct
pedestrians in our system. However, we offer three additional
features. First, the novel aspect of our work is that obstacles can
be created, cut and deleted by sketching in real-time during the
simulation in order to direct the crowd. Second, the user can
specify the pedestrian spawn locations and goals by sketching in the
scene before the simulation starts (similar to Oshita and Ogiwara’s
work [OO09]). Third, we use multiple navigational layers to guide
agents, one for each exit, following Karmakharm et al’s work
[KRR10].

The rest of the paper is organised as follows. Section 2 covers
related work in the field. Section 3 describes the implementation of
the system. Section 4 shows and discusses the results. We present a
range of scenarios to demonstrate paths through sets of barriers,
multiple flow directions in corridors, and turnstile behaviour. A
comparison with the commercial software MassMotion is also
given. Section 5 concludes the paper.

2. Related Work

The most common approach used to model crowd simulations is
based on agents. The movement of every pedestrian is individually
computed following a set of rules. This agent method offers some
advantages over macroscopic models [KRR10], such as behaviour
diversity and emergent global behaviours. Reynolds’s pioneering
work [Rey87] simulated a flock of birds by controlling the agents
with a set of rules. Additional rules or steering behaviours,
such as seek, flee and pursuit, were defined in subsequent
work [Rey99, Rey00]. These individual motions produce complex
global behaviours which are complicated to predict and control.
Anderson er al [AMCO03] addressed this issue by adding spatial
and shape constraints to the animated flock. Helbing proposed a
different approach to model agents’ dynamic using ‘social forces’
[Hel91, HM95], which are the result of pedestrians’ interaction
with the environment and with each other, an approach that
has been extended and applied to simulate emergency situations
[HFV00, BMdOBO3]. Further sociological aspects have also been
considered [MT97,PHDLO07, YTO07].

The behaviour of the pedestrians may be determined by two
forms of control: local and global. A combination of both controls
is used in most crowd simulation systems. Local motion refers to

agent movement that considers immediate surroundings. Obstacle
avoidance and agent interaction are typical behaviours produced
by this control, as described above. Global navigation is used
to navigate through complex environments. The most common
approaches for global path planning are graphs and flow fields. A
navigation graph is based on the idea of dividing the walkable areas
of the environment into cells. After the decomposition, adjacent
nodes are linked with edges to create the graph [LD04]. For flow
fields, first proposed by Reynolds [Rey99], the environment is
mapped to a two-dimensional grid. Each cell contains a force
vector to guide agents to their goal. Several simulation systems
have used this global navigation technique [JXW*08,PVDBC* 11,
MMHRI16]. Chenney [Che04] proposed a tool to create flow
fields by connecting small areas of forces called ‘Flow tiles’.
Karmakharm ef al [KRR10] employed multiple layers of flow fields
to guide pedestrians to different destinations. The force vectors and
pedestrians were designed as agents to allow parallel computation
using GPU hardware.

Virtual crowd simulations usually involve many parameters to
configure in order to control the behaviour of the pedestrians.
The process of tuning these parameters requires prior knowledge
and can be a trial-and-error task since it is difficult to predict the
resulting animation. Numerous approaches have been suggested to
address these issues by creating virtual crowd simulation systems
that include a graphical user interface to facilitate crowd control.
Figure 2 shows a classification of these graphical control methods.

Navigation Graph Patch
S
i
P
Sketching Direct Interaction

p——

e 5’3'5'

4

Figure 2: Graphical control approaches of crowd simulations.

The Navigation Graph category enables the creation or
modification of graphs to control the movement of the agents.
Yersin et al [YMC™*05] developed a system in which a predefined
environment is divided into navigable areas to form a graph. The
user is able to select and label the nodes. Pedestrian goals can be
reassigned to one of the marked nodes.

The Map approach consists of drawing maps or layers on top
of the environment to add information and indirectly modify the
behaviour of the agents. Sung et al [SGCO04] created a crowd
simulation where the behaviour of the pedestrians is influenced
by ‘situations’ attached to the environment. These situations are
specified by the user by drawing regions on the environment
using a painting interface. Millan and Rudomin [MROS5] used

(© 2017 The Author(s)
Eurographics Proceedings (©) 2017 The Eurographics Association.

Luis Rene Montana & Steve Maddock / Sketching for Real-time Control of Crowd Simulations 83

several maps to define attributes such as the height and texture of
the environment. Similarly, Mcllveen et al [MMHRI16] created a
painting tool to draw multiple layers on top of the environment to
specify entrances, exits, obstacles and areas of interest. Jordao et
al [JCC*15] proposed a system where the user is able to determine
the direction and density of the crowd by painting grayscale maps
on top of the environment model.

The Patches method allows the user to create large environments
by combining multiple small predefined patches or blocks.
Chenney [Che04] used small areas of force fields called Flow
Tiles, which could be connected together to form bigger flow
fields to guide pedestrians across an environment. Yersin et al
[YMPTO09] developed a system called Crowd Patches, which are
blocks with pre-computed animations and trajectories. The user
can create an environment in two ways: from an empty scene,
connecting patches; or from a predefined environment, dividing it
into polygonal shapes to create the patches. Jordao et al [JPCC14]
extended this work to create a new system called Crowd Sculpting.
In this approach, crowd patches can be stretched, shrunk, bent,
combined or deleted to form the environment.

The Sketching approach allows the user to sketch in the
environment to alter pedestrian behaviour. Jin et al [JXW*08]
developed a system to control pedestrians by drawing arrows in the
environment. The global movement of the agents is determined by
vector fields. The graphical interface allows the user to draw anchor
points with a direction to determine the path of the pedestrians.
Another sketching approach was proposed by Oshita and Ogiwara
[OO09]. In this approach, the user is able to define the area where
pedestrians will appear and the main moving trajectory of the
entire crowd. Additional lines or paths can be drawn to set other
parameter values such as the distance between virtual characters.
Patil et al [PVDBC*11] suggested a graphical user interface with
brush tools to draw arrows to guide the pedestrians throughout
the environment. A navigation field is constructed using the drawn
motion trajectories as a reference. The velocity of each virtual agent
is obtained by mapping their positions into the vector field.

In the Direct Interaction techniques, the user directly controls the
pedestrians by selecting them to modify their behaviour, to create
formations or to move them to another location. In Ulicny et al’s
work [UCTO04], the user is able to directly modify the behaviour
of the virtual characters by using artistic tools, such as brushes, in
a 2D canvas that represents the 3D scene. The designer is allowed
to create and delete pedestrians, start animations, create paths and
modify the appearance of the agents. Kwon ez al [KLLT08] devised
a technique to edit an existing animation of a group of virtual
characters. A graph is constructed from the existing motion clips
and its vertices are sampled from each trajectory. The user can
merge two graphs or deform them by pinning and dragging their
vertices in order to modify the animation.

Similar work was done by Kim er al [KSKL14]. Here, the user
is able to edit an existing animation by enclosing characters in
a cage that supports space and time manipulation. An interface
assists the user to construct a cage using a freehand selection tool
for selecting a group of characters. The user can drag and pin
down boundary vertices or interior points to manipulate the cage.
Kim et al [KHKLO09] also presented work where the user is able

(© 2017 The Author(s)
Eurographics Proceedings (© 2017 The Eurographics Association.

to interactively modify the movement data of several characters.
The user can manipulate the position, direction and synchronisation
with spatial and temporal constraints.

Takahashi et al [TYK*09] presented an approach to control
group formations while keeping the adjacency relationships
between agents. The system requires a set of user-defined keyframe
formations to interpolate through using spectral analysis. A
formation is formed by directly specifying the position of every
agent. Henry er al [HSK12] proposed a method to control crowds
using a multi-touch device. The crowd is represented by a
deformable mesh; the user can modify this mesh by selecting
control points and dragging them to define the final mesh.

Research for creating and controlling group formations was
carried out by Gu and Deng [GD11]. The user can draw or sketch
lines and curves to define the boundaries of a formation. Gu and
Deng extended this work by adding new features and tools to
facilitate control of group formations [GD13]. The user has three
options to input the formation. Additionally, the user is able to
sketch global trajectories to guide the group to a final location.
Allen et al [APKM15] developed a similar system to control
characters at individual or group level by creating formations
specified by the user. An additional feature of this work is the
possibility of defining subgroups and specifying a specific path for
the subgroup. Table 1 summarises the research involving graphical
control.

Work Category Agent | Environment | Navigation
[APKM15] Direct Interaction v ?
[Che04] Patches v Flow field
[GD13] Direct Interaction v v ?
[GDI11] Direct Interaction v ?
[HSK12] Direct Interaction v Flow field*
[IXW*08] Sketching v Flow field
[JPCC14] Patches v Flow field
[JCC*15] Maps v Graph
[KSKL14] Direct Interaction v ?
[KHKLO09] Direct Interaction v ?
[KLLTO8] Direct Interaction v ?
[MMHRI16] Maps v Flow field
[MRO3] Maps v ?
[0009] Sketching v ?
[PVDBC*11] Sketching v Flow field
[SGC04] Maps / Direct v v ?
[TYK*09] Direct Interaction v ?
[UCTO04] Direct Interaction v ?
[YMC*05] | Navigation Graph v Graph
[YMPT09] Patches v Flow field

Table 1: A summary of the graphical control approaches. The
Agent and Environment columns indicate whether the agent
behaviour is directly controlled by changing agent parameters
and/or indirectly by modifying the environment, respectively. The
Navigation column shows the underlying navigation method used.
Papers not stating which navigation approach is used are marked
with ’?’. (* used for obstacle avoidance not general movement
direction.)

84 Luis Rene Montana & Steve Maddock / Sketching for Real-time Control of Crowd Simulations

3. The System

The objective of the system is to allow real-time user control of
the movement of the agents in an easy and intuitive manner. The
user can specify the pedestrian spawn and exit locations, create
barriers to pedestrian movement and force pedestrians to follow
a path by sketching lines in the environment. An overview of
the system is given in Figure 3. The simulation part is based
on Karmakharm er al’s work [KRR10] which uses the FLAME
GPU framework to create an agent-based simulation. The game
engine, Unreal Engine, is employed to improve graphics quality.
These simulation and visualisation parts share information through
a shared memory segment. The environments are initialised based
on data from OpenStreetMap [ope].

The behaviour of the agents is driven by three forces: navigation,
collision and pedestrian avoidance. The first two forces are based
on the collision and navigation maps (Section 3.1) and the
location of the agents. The pedestrian positions are mapped to
corresponding elements of the two maps to get the collision and
navigation forces. The pedestrian avoidance force is computed
using the position and velocity of each agent within a certain radius.
The resulting force that determines the movement of the agents
is calculated as a weighted sum of the navigation, collision and
avoidance forces. This approach could be improved by using more
sophisticated social force models, but serves the purposes required
for the sketching work.

Parameters <
File

agent_position

flow_map

Shared

Simulation » Mooy p wall_map Visualisation

options

Figure 3: System overview.

3.1. Navigation

The approach selected to guide agents across the environment is
force fields. The environment is divided into a two-dimensional
grid in which every cell contains a force. Two types of map
are generated: a single collision map, defining obstacles in the
environment; and multiple navigation maps, guiding agents to their
destination, where the number of navigation maps depends on the
number of exits in the environment. The collision map is generated
by ray casting each cell to obtain the height of the environment
at the collision point. A predefined value determines if the cell is
considered as an obstacle or walkable space. The navigation maps
are represented by a 2D array, each cell containing a force pointing
towards the specified exit following the shortest path. To generate
these maps, cells representing walkable areas are initialised with 0.
The exits and obstacles cells are marked from the collision map.
A wavefront propagation algorithm calculates the distance from
each cell to the corresponding exit. The force direction of each
cell is towards the neighbouring cell with the shortest distance. A

smoothing algorithm is applied to the navigation maps to create
more natural pedestrian flows.

Figure 4 shows an example set of maps for an environment of
size 16x16 cells (a size chosen purely for illustrative purposes.) A
more typical environment size is 256x256 cells. In Figure 4, the top
map is the collision map, which has nine obstacles and boundaries
around the edge of the environment to keep the pedestrians from
exiting it. There are four navigation maps, one for each exit.
Pedestrians are initialised into the environment from a spawn point
and use the navigation map associated with their specific exit point.
Spawn and exit points can coincide.

0000
OOV
0
04
2

o
0’0’
g

Collision
Map

.2*.
L
e
O
" 0
00
M)
)

0. {
0

SO0
i
A

Navigation
Maps

Figure 4: Grids generated for a simple, illustrative environment
with four exits. There is one common collision map and one
navigation map per exit. Spawn and exit points are marked in
green.

3.2. Sketching

The user has the ability to create, cut and delete barriers by drawing
lines with the mouse. The space between sampled points in a
stroke depends on the drawing speed of the user in relation to
the rendering frame rate [OSSJ09]. Thus, the line is resampled
to ensure a minimum number of equidistant points when creating
barriers. A barrier is spawned in the scene when the user releases
the mouse (Figure 5). The sketched line is mapped to the collision
map marking the new cells as obstacles. The width of the barriers
is fixed to three cells; a smaller width of influence could result in
agents being pushed through obstacles for high-density crowds,
because of the workings of the grid-based approach. A barrier
can subsequently be cut to create a gap where pedestrians are
able to walk (Figure 5d). After editing, the navigation grids are
automatically updated with the shortest path recalculated using the
new collision map.

The flow of the pedestrians can also be controlled by drawing
flow lines (see Figure 3). The sketching and sampling process
is identical to the barrier creation. An arrow is drawn in the
environment pointing towards the direction of the user sketch.

(© 2017 The Author(s)
Eurographics Proceedings (©) 2017 The Eurographics Association.

Luis Rene Montana & Steve Maddock / Sketching for Real-time Control of Crowd Simulations 85

(@

W

i

Figure 5: (a) Line sketched by the user, (b) barrier created
afterwards and (c) collision map updated with the new obstacle.
(d) Pedestrians walking through a cut wall. (e) Collision map after
creating the cut wall.

This flow line is mapped to all the navigation maps, replacing the
previous force values of the involved cells. An alternative would
be to blend the new values with the existing values. However,
replacement avoids the problem where overlapping opposing
arrows could cancel out their respective forces, resulting in a null
zone of no movement. The width of influence of the arrows is set
to three cells, and is not currently user-configurable.

A potential problem may occur when a flow line force and a
neighbouring cell force of the navigation map are completely or
nearly opposite. A pedestrian walking in that area could become
’trapped’ by those two forces, circulating in a small area. The issue
is addressed by considering the opposite flow line cells as obstacles.
The navigation map is recalculated avoiding the opposing arrow
(see Figure 6d). As a result, pedestrians avoid walking into the cells
with opposite direction. In densely crowded environments, agents
might be pushed into these undesired flow lines. In this case, agents
will follow the arrow and then retake their original path, walking
around the flow line, to their destination. Patil et al [PVDBC*11]
solved this problem by assigning a cost to each cell. This cost
depends on the direction in which the cell is traversed respecting
the sketched flow line.

After sketching, the information for newly created barriers and
flow lines is communicated to the simulation module through the
shared memory segment residing on the CPU (Figure 3). From
Unreal, sketched data is copied to the shared memory segment.
The simulation module reads this data and uses it to recompute
the maps, which are then copied to the GPU to process the
next iteration of the simulation. After the iteration the simulation
module copies the pedestrian positions back to the shared memory
for Unreal to use in visualisation.

3.3. Rendering
Unreal Engine is used to render the 3D environment and
the pedestrians. This game engine is linked with FLAMEGPU

(© 2017 The Author(s)
Eurographics Proceedings (©) 2017 The Eurographics Association.

(b)

l“ll‘.l ! ;gz: ’A“ ‘..

e %

Iy -

SS S S S
SS3 > TS SSST

AR RR R A o | AR RS
NIIIIIIIT NIIIIIST -
B e T T e e e T i T o B} A R R R e e e e e e e e e e e]
IAAARRARARRRR S b b b] AR RRRRRR R i i o o b o
AARRARARRARRRARRRI I] e e e B e e
ARARRRARRRRARAR R AR R AR AARARRARRARRRRR IR N AR
LAARARRRARRRAR R R A R R RN LR E A
IR AR R R R AR R R M DN [RJ v
RARRRRR R R R RN NA) N B e e e B B e - - - -) N
AR R AR AR R R R R R R R LD AR ~
AR R RARRARRAR R R R R RN AR R RAEARRERRRRRRRLA DD
R ARRRRRARARRR R R RN RARRARRRARRARRRAR R RRD]
RARRRRAR AR R R R RN RARRRRRARARRRALRRARRL]
R R R e O W e w e e e ENEENE NGNS S

(d)

Figure 6: (a) Line sketched by the user and (b) arrow created
when finishing the sketch. Navigation map (c) before and (c) after
the flow line.

through the use of shared memory segments (Figure 3). The
information shared between the two modules includes agent
positions, navigation maps, and sketched barriers and flow lines.

Environments can be created wusing OpenStreetMap.
Downloaded data can be converted to a 3D model using the
free tool OSM2World [osm]. Figure 1 shows a model of part of the
centre of Sheffield. The model was modified before being imported
to Unreal: the billboard model of a tree was replaced with a full
3D model; the ground data was cleaned up to remove overlapping
areas of grass and road; the grass and road materials were replaced
with better-looking materials. The automatic generation of the
collision map allows the use of any 3D model. The pedestrians are
rendered as instances of eight base character models. The use of
instances is to reduce the number of draw calls and considerably
increase the number of agents without impacting the performance
of the system. The position of each pedestrian is read from the
shared memory segment and updated every iteration.

The character models were created with the free online tool
Autodesk Character Generator. Unreal Engine does not allow the
instance creation of models with animated skeletons, therefore, this
approach could not be used to render the crowd. The solution to
this problem was to remove the skeleton of the models and create
a vertex animation using the software Autodesk 3ds Max. This
animation was converted to a texture using an Unreal script. The
texture is applied to the material used in the static meshes of the
characters to animate the pedestrians. A random character model is
assigned to each agent when they are generated. For 10000 agents,
the frame rate is 45-55fps, whereas for 50000 agents, the frame rate
reduces to 10-15 fps, depending on camera distance and the number
of agents in view.

4. Results

The system provides an intuitive graphical way to interact with
the simulation by modifying the environment and influencing the

86 Luis Rene Montana & Steve Maddock / Sketching for Real-time Control of Crowd Simulations

pedestrian movement. This is illustrated using a range of scenarios:
path control using barriers (Figure 7), controlled lane formation
(Figure 8) and the use of turnstiles to control movement (Figure
9). A video of the system is available at https://tinyurl.com/
yczspuT.

Figure 7 shows pedestrians adjusting their path to avoid the
barriers created by the user. A barrier is used to block off access
to one corridor and multiple barriers are used to produce a snake of
movement for a group of pedestrians.

Figure 7: Pedestrians following the path created by barriers.

Figure 8 shows lane formation control. Such motion can be
observed in real crowds, for example when groups of pedestrians
walk in opposite directions at road crossing points. This behaviour
can be simulated by sketching opposite arrows next to each other.
In Figure 8, multiple lanes are created in the same corridor, and
pedestrians avoid collisions with pedestrians walking in a different
direction. Whilst lane formation can emerge in agent-based
simulations, our system offers easy control over where it occurs.

Figure 9 shows the use of barriers, cuts and arrows to create
turnstile-like behaviour, as might be seen at the entrance/exit of
a train station. A barrier is created to block the path and two holes
are cut to allow pedestrian flow. Pedestrians trying to walk through
a narrow space in opposing directions cause congestion for each
turnstile, as illustrated in Figure 9¢c. To address this issue opposite
arrows are drawn, one in each gap, to force pedestrians to move
in the specified direction. A similar scenario is shown in Patil
et al’s work [PVDBC*11], however, a predefined environment is
needed, whereas in our system the entire scenario can be recreated
by real-time sketching at any position in any environment.

Figure 8: Lane formation behaviour simulated with multiple flow
lines.

We can also compare our sketching work to other research work.
Jin et al’s work [JXW™*08] uses flow fields to control multiple
crowds, which can be updated in real time by the user adding
or deleting ‘anchor points’ with associated direction. However, as
the number of points increases, the generation of the vector fields
by radial basis functions based vector interpolation becomes more
expensive having an impact on the simulation performance. In our
work, the number of arrows does not affect the performance since
only the existing grid forces are altered. Oshita and Ogiwara’s work
[O009] uses ’guiding paths’ for pedestrians, but does not allow the
user to update these in real time, unlike our system. Also, neither
of these approaches has the feature of adding obstacles to modify
the environment.

Our sketching approach is a more intuitive and user-friendly
way to interact with a simulation than that offered in commercial
simulation software such as MassMotion. The creation of barriers
in MassMotion requires the user to terminate the simulation, enter
the scene editor mode and then create the obstacle. These steps
have to be done offline and then the simulation is rerun, whereas
in our system the barrier can be created in real time by sketching a
single line. As another example, turnstile behaviour simulation is a
more complicated process in the commercial software. The ground
plane must be split and then linked with special connection objects.
The direction of the flow can be set in the object properties. This
task requires the user to have more than basic knowledge of the
software interface. Using the sketching approach, this task can be
done by drawing barriers and sketching arrows in real-time whilst
the simulation is running. Of course, as commercial software,
MassMotion has extra features that can be specified such as gate
behaviour and delay between agents.

Our system has some limitations. The width of a stroke and its
area of influence is set to a specific value, which means that very
thin flow lines or barriers cannot be drawn and multiple arrows
must be sketched to produce a wide path. Also, the underlying
grid-based navigation approach means that drawing guiding paths
for individual agents or small groups of agents is not possible. A
sketch modifies areas of the underlying navigation grids and the
force fields stored in the grids control all the pedestrians.

(© 2017 The Author(s)
Eurographics Proceedings (© 2017 The Eurographics Association.

https://tinyurl.com/yczspu77
https://tinyurl.com/yczspu77

Luis Rene Montana & Steve Maddock / Sketching for Real-time Control of Crowd Simulations 87

(@]

Figure 9: Simulation of turnstile behaviour. (a) Pedestrians moving towards their assigned exit. (b) Agents changing direction after a barrier
was created. (c) Congestion created due to opposing agent flow in small gaps. (d) Free pedestrian flow following the direction specified by

the flow lines.

5. Conclusions

We have presented an intuitive, graphical approach to control
virtual crowd simulations by sketching lines directly in the
simulation environment. A user is able to define the pedestrian
spawn and exit locations, alter agent trajectories using barriers
and force pedestrians to follow a desired direction using arrows of
motion, giving control of global behaviours such as lane formation.
Our approach does not require prior knowledge of a complex
parameter set and saves on the time-consuming task of parameter
tuning. Additionally, the use of the FLAMEGPU framework for
simulation and the use of instance rendering in Unreal Engine
means that we can simulate tens of thousands of agents while
running at interactive frame rates.

The navigation grid-based approach does have some limitations.
For example, individual agents or small groups of agents cannot
be independently controlled. Also, the interaction between the
sketch-based approach and the underlying grid has potential
limitations. For example, when arrows are sketched in the current
system, the arrow direction replaces the existing navigation grid
force field. Further experimentation could be done on blending the
arrow direction into the force field grid. However, the complexity

(© 2017 The Author(s)
Eurographics Proceedings (© 2017 The Eurographics Association.

of transitions between grid force field directions to an exit
and prescribed sketched arrow directions would need careful
consideration so as not to produce null force fields, stranding
pedestrians in the doldrums’, or perpetual circular motions, with
no route to an exit.

The system could be used for investigating crowd control at
mass demonstrations, during the design process of large venues, for
emergency evacuation situations or to improve the flow of people in
existing buildings. However, these applications may require a more
sophisticated agent model, a different navigation approach and the
ability to deal with multi-layer environments connected by complex
stairways.

References

[AMCO03] ANDERSON M., McDANIEL E., CHENNEY S.:
Constrained Animation of Flocks. In Proceedings of the 2003
ACM SIGGRAPH/Eurographics Symposium on Computer Animation
(Aire-la-Ville, Switzerland, Switzerland, 2003), SCA °03, Eurographics
Association, pp. 286-297. 2

[APKM15] ALLEN T., PARVANOV A., KNIGHT S., MADDOCK S.:
Using Sketching to Control Heterogeneous Groups. In Proceedings

88 Luis Rene Montana & Steve Maddock / Sketching for Real-time Control of Crowd Simulations

Computer Graphics & Visual Computing (CGVC) (2015), The
Eurographics Association. 3

[BMdOBO0O3] BRAUN A., MUSSE S. R., DE OLIVEIRA L. P. L.,
BODMANN B. E.: Modeling individual behaviors in crowd simulation.
In Computer Animation and Social Agents, 2003. 16th International
Conference on (2003), IEEE, pp. 143-148. 2

[Che04] CHENNEY S.: Flow Tiles. In Proceedings of the 2004
ACM SIGGRAPH/Eurographics Symposium on Computer Animation
(Aire-la-Ville, Switzerland, Switzerland, 2004), SCA’04, Eurographics
Association, pp. 233-242. 2,3

[fla] Flexible Large Scale Agent Modelling Environment for the GPU.
http://www.flamegpu.com. 2

[GD11] GuU Q., DENG Z.: Formation sketching: an approach to stylize
groups in crowd simulation. In Proceedings of Graphics Interface 2011
(2011), Canadian Human-Computer Communications Society, pp. 1-8.
3

[GD13] GuU Q., DENG Z.: Generating Freestyle Group Formations
in Agent-Based Crowd Simulations. [EEE Computer Graphics and
Applications 33, 1 (Jan. 2013), 20-31. 3

[Hel91] HELBING D.: A mathematical model for the behavior of
pedestrians. Behavioral Science 36, 4 (Oct. 1991), 298-310. 2

[HFVO00] HELBING D., FARKAS I., VICSEK T.: Simulating dynamical
features of escape panic. Nature 407, 6803 (Sept. 2000), 487—490. 2

[HM95] HELBING D., MOLNAR P.: Social force model for pedestrian
dynamics. Physical review E 51,5 (1995), 4282. 2

[HSK12] HENRY J., SHUM H. P. H., KOMURA T.: Environment-aware
Real-time Crowd Control. In Proceedings of the 11th ACM SIGGRAPH
/ Eurographics Conference on Computer Animation (Aire-la-Ville,
Switzerland, Switzerland, 2012), EUROSCA’12, Eurographics
Association, pp. 193-200. 3

[JCC*15] JORDAO K., CHARALAMBOUS P., CHRISTIE M., PETTRAL
J., CANI M..-P.: Crowd art: density and flow based crowd motion design.
In Proceedings of the 8th ACM SIGGRAPH Conference on Motion in
Games (2015), ACM, pp. 167-176. 3

[JPCC14] JorDAO K., PETTRAL J., CHRISTIE M., CANI M.-P.:
Crowd sculpting: A space-time sculpting method for populating virtual
environments. Computer Graphics Forum 33, 2 (May 2014), 351-360.
3

[IXW*08] JIN X., XU J., WANG C. C., HUANG S., ZHANG J.:
Interactive Control of Large-Crowd Navigation in Virtual Environments
Using Vector Fields. IEEE Computer Graphics and Applications 28, 6
(Nov. 2008), 37-46. 2,3, 6

[KHKL09] Kim M., HyuN K., Kim J., LEE J.: Synchronized
multi-character motion editing. In ACM Transactions on Graphics
(TOG) (2009), vol. 28, ACM, p. 79. 3

[KLLT08] KwoONT., LEE K. H., LEEJ., TAKAHASHI S.: Group Motion
Editing. In ACM SIGGRAPH 2008 Papers (New York, NY, USA, 2008),
SIGGRAPH ’08, ACM, pp. 80:1-80:8. 3

[KRR10] KARMAKHARM T., RICHMOND P., ROMANO D. M.:
Agent-based Large Scale Simulation of Pedestrians With Adaptive
Realistic Navigation Vector Fields. TPCG 10 (2010), 67-74. 2,4

[KSKL14] KiM]J., SEOL Y., KWON T., LEE J.: Interactive Manipulation
of Large-scale Crowd Animation. ACM Trans. Graph. 33, 4 (July 2014),
83:1-83:10. 3

[LD04] LAMARCHE F., DONIKIAN S.: Crowd of Virtual Humans: a
New Approach for Real Time Navigation in Complex and Structured
Environments. Computer Graphics Forum 23, 3 (Sept. 2004), 509-518.
2

[MMHR16] MCILVEEN J., MADDOCK S., HEYWOOD P., RICHMOND
P.: PED: Pedestrian Environment Designer. In Proceedings Computer
Graphics & Visual Computing (CGVC) (2016), The Eurographics
Association. 2, 3

[MRO5] MILLAN E., RUDOMIN I.: Agent paint: Intuitive specification
and control of multiagent animations. In Proceedings International
Conference in Computer Animation and Social Agents (CASA) (2005).
2,3

[MT97] MUSSE S. R., THALMANN D.: A model of human crowd
behavior: Group inter-relationship and collision detection analysis. In
Computer Animation and Simulation’97. Springer, 1997, pp. 39-51. 2

[O009] OSHITA M., OGIWARA Y.: Sketch-based interface for crowd
animation. In International Symposium on Smart Graphics (2009),
Springer, pp. 253-262. 2, 3, 6

[ope] OpenStreetMap. https://www.openstreetmap.org/. 4
[osm] OSM2world. http://osm2world.org/. 5

[OSSJ09] OLSEN L., SAMAVATI F. F., SOUSA M. C., JORGE J. A.:
Sketch-based modeling: A survey. Computers & Graphics 33, 1 (Feb.
2009), 85-103. 4

[PHDLO7] PAN X., HAN C. S., DAUBER K., LAW K. H.: A multi-agent
based framework for the simulation of human and social behaviors
during emergency evacuations. Al & SOCIETY 22, 2 (Oct. 2007),
113-132. 2

[PVDBC*11] PATIL S., VAN DEN BERG J., CURTIS S., LIN M. C.,
MANOCHA D.: Directing crowd simulations using navigation fields.
IEEE Transactions on Visualization and Computer Graphics 17, 2
(2011), 244-254. 2,3,5,6

[Rey87] REYNOLDS C. W.: Flocks, herds and schools: A distributed
behavioral model. ACM SIGGRAPH computer graphics 21, 4 (1987),
25-34.2

[Rey99] REYNOLDS C. W.: Steering behaviors for autonomous
characters. In Game developers conference (1999), vol. 1999,
pp. 763-782. 2

[Rey00] REYNOLDS C. W.: Interaction with groups of autonomous
characters. In Game Developers Conference (2000), vol. 2000,
pp. 449-460. 2

[SGC04] SUNG M., GLEICHER M., CHENNEY S.: Scalable behaviors
for crowd simulation. In Computer Graphics Forum (2004), vol. 23,
Wiley Online Library, pp. 519-528. 2, 3

[TYK*09] TAKAHASHI S., YOSHIDA K., KwoN T., LEE K. H., LEE
J., SHIN S. Y.: Spectral-Based Group Formation Control. In Computer
Graphics Forum (2009), vol. 28, Wiley Online Library, pp. 639-648. 3

[UCT04] ULICNY B., CIECHOMSKI P. D. H., THALMANN D.:
Crowdbrush: interactive authoring of real-time crowd scenes. In
Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on
Computer animation (2004), Eurographics Association, pp. 243-252. 3

[YMC*05] YERSIN B., MAARM J., CIECHOMSKI P., SCHERTENLEIB
S., THALMANN D.: Steering a virtual crowd based on a semantically
augmented navigation graph. In Proc. The First International Workshop
on Crowd Simulation (V-CROWDS’05), Lausanne, Switzerland (2005),
Citeseer, pp. 169-178. 2,3

[YMPT09] YERSIN B., MAARM J., PETTRAL J., THALMANN D.:
Crowd patches: populating large-scale virtual environments for real-time
applications. In Proceedings of the 2009 symposium on Interactive 3D
graphics and games (2009), ACM, pp. 207-214. 3

[YTO7] Yu Q., TERZOPOULOS D.: A decision network framework for
the behavioral animation of virtual humans. In Proceedings of the 2007
ACM SIGGRAPH/Eurographics symposium on Computer animation
(2007), Eurographics Association, pp. 119-128. 2

(© 2017 The Author(s)
Eurographics Proceedings (©) 2017 The Eurographics Association.

http://www.flamegpu.com
https://www.openstreetmap.org/
http://osm2world.org/

