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Abstract
Laser galvanometric scanning systems are commonly used in various fields such as three dimensional scanning,
medical imaging, material processing, measurement devices and laser display systems. The systems of such kind
suffer from distortions. On top of that they do not have a center of projection, which makes it impossible to use
common projector calibration procedures. The paper presents a novel mathematical model to predict the image
distortions caused by galvanometric mirror scanning systems. In addition, we describe a calibration procedure
for recovering its intrinsic and extrinsic parameters.

1. Introduction

Laser galvanometric scanning systems are used in many
different applications. The most widely used application
of such kind of system is the barcode reader [BKG∗96].
Other applications are laser projection systems [CPP06,
KKR03, Wa76] , imaging applications [PDJ98, YBP∗04,
Sta76, Gel03], including medical imaging, material pro-
cessing [SRGS01, JLRI91, CLTL83] and measurement de-
vices [Ger75, WW03]. A laser galvanometric scanning sys-
tem consists of two mirrors driven by limited-rotation mo-
tors. Two mirrors are needed in a two-dimensional scanning
system, as shown in Fig. 1. The laser beam enters the system
and hits the mirror on the X scanner (first mirror). After re-
flection, the ray hits the second, Y mirror. By rotating the X
mirror, one can control the reflection angle and thus the hori-
zontal coordinate of the outcoming ray. The coordinate along
the vertical axis is controlled by the Y scanner. Thus, coor-
dinates of the outgoing ray beam are determined by the rota-
tion angles of the mirrors. In some applications, e.g. in active
light 3D-scanning, the positions of the illumination and the
camera device are required for triangulation. The calibration
of a camera is a well known procedure [Bou05]. If the illu-
mination device is a standard projector, the same calibration
procedure can be used as long as the projector has a center of
projection. However, a laser galvanometric scanning system
does not have a single center of projection and the common
calibration procedure can not be used. Applications such as
material processing require compensation for distortions in

X-scanner

Y-scanner
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Figure 1: A galvanometric scanning system consists of two
mirrors driven by limited-rotation motors. Even in the ideal
case, when the incoming ray hits the rotation axes of the
mirrors, the system causes distortions.

the whole field of view. Until now this problem was solved
by avoiding galvanometric systems where possible e.g. by
using two mechanical linear stages for laser ray position-
ing [Hak90] or by using narrow opening angles [HG07] for
which the distortion is negligible.

Unfortunately, the use of linear stages is often impossible
and some applications require a large field of view. In other
cases compensating for the distortions is performed using
polynomial fitting techniques [HFI∗08, CCH09]. The poly-
nomial fitting techniques are applicable only if the distance
from the system to the object is fixed and the object is planar.
This makes polynomial fitting methods not applicable when
the calibration needs to be valid for different depths.
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Figure 2: Simple model

In this paper we present a mathematical model to describe
laser galvanometric scanning systems. The model describes
the distortions introduced by properties of the system and
predicts how the distortions will change depending on the
parameters of the system. We only consider geometric dis-
tortions. Distortions caused by the nonlinear dependence of
the mirror rotation angle from a voltage applied to a motor
can be calibrated using known procedures [DPN09]. Based
on our model, we describe a calibration procedure for esti-
mating the position of the system (rotation and translation
matrices) and its internal parameters determining its distor-
tions.

2. Galvanometric scanning system theory

In optics, galvanometric laser control systems are well
known and widely used. The distortions they introduce have
been described, but mostly for simplified cases [CCH09]. In
this paper we present a mathematical model to describe such
systems. We start the derivation with a simplified model, ex-
posing the main features of a double mirror scanning system.
Though the model can not describe all possible distortions
of a galvanometric system it still can be used for calibration,
but the result is less accurate. We then extend the model to
capture more system distortions and improve the calibration
accuracy.

2.1. Simple model

We refer to the mirror that an incoming laser ray hits first
as first mirror or X-mirror: This mirror is usually used for
scanning along the horizontal axis. Accordingly, the second
mirror or Y-mirror is the mirror in the system which is used
to scan along the vertical axis. To derive a simplified model,
we make the following assumptions:

1. The rotation axes of the mirrors are perpendicular,
2. The incoming ray hits the first mirror in the rotation axis,
3. The ray reflected from the first mirror hits the second mir-

ror in the rotation axis, and,

4. The ray is thin in comparison to the mirror dimensions.

The assumptions are still reasonable for real systems be-
cause the position of nearly any system can be adjusted so
that the incoming ray hits the first mirror in the rotation
axis. If the system is designed and assembled well enough,
then after reflection by the first mirror, the ray should hit
the second mirror in the rotation axis. The assumption con-
cerning the relative dimensions of the mirrors and the beam
dimensions is reasonable because the mirrors can be pro-
duced large enough to fit the ray. Note, that larger mirror di-
mensions decrease the scanning speed of the system though.
This issue is caused by the inertia of the mirrors: larger mir-
rors have a larger weight and consequently a larger inertia.
A thorough discussion can be found in [TWBv95]. The po-
sition of the X-mirror is defined by an angle α. Equally, the
position of Y-mirror is described by an angle β. The origin
of the laser coordinate system O is located on the rotation
axis in the middle of the X-mirror (see Fig. 2). The rotation
axis of the Y-mirror is parallel to the X-axis of the coordi-
nate system. The Y-axis coincides with the rotation axis of
the X-mirror. The distance between the axes of the mirrors
is denoted by r.

Suppose an incoming ray hits the X-mirror in O, intersect-
ing the rotation axis according to the assumptions. Then the
coordinates of this point are O(0;0;0). If we rotate the X-
mirror, the reflected ray scans a segment along the rotation
axis of the Y-mirror. Additionally, O is a projection center for
this segment since it does not move while the X-mirror is ro-
tating. Thus, every possible ray in the system passes through
O and a point A on the segment parallel to the X-axis. Then
the coordinates of A depending on α are A = (r·tan α;0;r).

Consider the ray coincident with the Z-axis of the coordi-
nate system before intersection with the Y-mirror. A rotation
of the Y-mirror changes the direction of the ray so, that if
we imagine a moving laser source O instead of the rotating
mirror, it appears to move along an arc with radius r. Let us
denote the point moving along the arc as C. The position of
C depends on the rotation angle β. The coordinates of C are
(0;r·sin β;r− r·cos β;). Imagine an outgoing ray from the
system. It reflects from the Y-mirror at the point A, but it is
simpler to imagine the ray passing through the mirror. This
assumption does not change the degrees of freedom of the
outgoing ray, but simplifies the equations. Pay attention to
the fact that in this case the range of change for β is twice
larger. The outgoing ray then passes through A and C, and
the ray equation is given by

~CA =

 0
r · sinβ

r− r · cosβ

+ t ·

 r · tanα

−r · sinβ

r · cosβ

 . (1)

Imagine we have a screen parallel to the XOY plane at a
distance z0 from the origin. The equation of the plane is z−
z0 = 0. Then the intersection point ~P of the ray and the plane
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Figure 3: The distortion described by the simple model.
Horizontal lines are straight, the grid has vertical and hori-
zontal symmetry.

is

~P =

 0
r · sinβ

r− r · cosβ

+
(

z0− r
r · cosβ

+1
)
·

 r · tanα

−r · sinβ

r · cosβ

 . (2)

Rewriting Eq.(2) explicitly we obtain:

x = −r · tanα ·
(

z0− r
r · cosβ

+1
)

,

y =
(z0− r)

cosβ
+ r · (1+ sinβ), (3)

z = z0,

with (x; y; z) being the coordinates of ~P in the laser sys-
tem. The model of Eq.(3) describes distortions as shown in
Fig. 3. Note that these distortions appear even in the ideal
case where the ray hits the mirrors in the rotation axes. This
mathematical model does not describe the situation when an
incoming ray hits one or both mirrors out of the rotation axis
or when the rotation axes of the mirrors are not perpendicu-
lar. These situations are taken into account by the more pro-
found model we propose next.
2.2. Complex model

In the complex model we remove most of the assumptions
that we made for the simple model, except that the ray still
has to be thin enough to fit onto the mirrors. For the complex
model the X-axis is considered to be tilted by γ (see Fig. 4),
which is common for modern galvanometric systems. The
coordinate system origin is located on the rotation axis of the
X-mirror (see Fig. 4). The coordinate system is positioned so
that the X-axis is parallel to the rotation axis of the Y-mirror
and that the Y-axis is perpendicular to it. As in the simple
model, the position of the Y-mirror is defined by the rotation
angle β. The current position of the X-mirror is defined by
two angles: γ, the incline of the rotation axis is fixed, and the
rotation angle α which is describing the motion of the mirror.
In addition, the incoming ray can have arbitrary incidence.
It is defined by its origin ~S(sx;sy;sz) and by a direction ~l =
(lx; ly; lz).

H

P
X

Y

Z

r

Incoming ray

Outgoing ray

X-mirror

Y-mirror

Figure 4: Complex model

To describe the position of the X-mirror, we need the nor-
mal and one point on the mirror. The origin of the coordi-
nate system could be taken as a point on the mirror plane
O = (0;0;0). The normal depends on both γ and α since the
rotation is now performed around an inclined axis. Imagine
a dashed coordinate system X ′Y ′Z′ which is derived from
XY Z by rotating the latter around the X-axis by γ. In the
dashed coordinate system, vector ~n′ = (0; 1; 0) is a normal
for the plane when α = 0. In the XY Z coordinate system the
same vector is given by~n = (0; cosγ; sinγ). When changing
α, the normal rotates around the Z′-axis. The rotation matrix
for this case is

Rz =

 cosα −sinα 0
sinα cosα 0

0 0 1

 . (4)

Thus, the normal in the XY Z system is given by

~n =

 −sinα

cosα · cosγ

cosα · sinγ

 . (5)

The intersection point of the incoming ray with the X-mirror
is

~P = ~S + tx ·~l, tx =− (~n, ~O−~S)
(~n,~l)

, (6)

where (·, ·) denotes the vector scalar product. The ray re-
flected from the X-mirror has ~P as an origin and the direction
~d of the reflected ray is

~d = 2 · (~n,−~l) ·~n+~l. (7)

The normal of the second mirror is

~k =

 0
cosβ

sinβ

 (8)

As point on the plane it is most convenient to use a point on
the rotation axis ~Q = (0;r;0). Then the intersection of the
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Figure 5: Distortions: top-photographs,bottom-simulations with the complex model. From left to right:(a) Displacement, the
ray hits the mirror out of the rotation axis. (b) The ray comes into the system under 15 degrees angle. (c) Combination of the two
distortions. Note that the photographs show perspective distortion due to the projection plane being at an angle to the camera’s
optical axis.

reflected ray with the Y-mirror is given by

~H = ~P+ ty · ~d, ty =− (~k, ~Q−~P)
(~k, ~d)

(9)

The direction of the outgoing ray becomes

~m = 2 · (~k,~r) ·~k− ~d. (10)

Finally, we obtain the equation of the outgoing ray

~R(t) = ~H + t ·~m. (11)

Intersecting the ray with a planar screen parallel to the XOY
plane at the distance z0 from the origin and rewriting the
result explicitly we get

x = Hx +
z0−Hz

mz
·mx,

y = Hy +
z0−Hz

mz
·my, (12)

z = z0.

This model describes the behavior of a general two-mirror
galvanometric system. Note that the complex model reduces
to the simple one, Eq.(3), in the following case:

~l = (−1;0;0), ~S = (x;0;0), γ = 0

where x can be any positive number.

2.3. Expressiveness of the Complex Model

To show that the complex model is more expressive than
the simple one we conduct a number of experiments. We
change the parameters of the galvanometric system, rotating
and shifting it with respect to the incoming ray. In this case
the system causes distortions that the simple model can not
express. We project a grid onto a plane and take photographs.
Modeling the situation with the complex model, we compare
the modeled images and the photographs.

As can be seen from Fig. 5 the complex model is more
expressive then the simple one, which supports only the dis-
tortions shown in Fig 3. Qualitatively, the real distortions are
well captured by our model. Before we show how our model
fits real data, Sec. 4, we discuss how its parameters can be
estimated from image measurements.

3. Calibration

The parameters describing the system can be divided into
two sets: internal parameters for properties of the system
and external parameters to define the position of the sys-
tem with respect to the camera coordinate system. Consider
a galvanometric system more closely for better understand-
ing of the internal parameters. A typical galvanometric sys-
tem consists of mirrors mounted on galvanometers, motor
drivers, a controller and a power supply. The system works
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Figure 6: A grid pattern projected onto a planar screen. We
project points instead of lines because they are easier and
more accurately detectable.

as follows: the controller issues a command for the motor
driver to rotate the mirror to a certain angle. The motor driver
applies a voltage to rotate the mirror according to the com-
mand. Normally, motor drivers are adjusted for a particular
motor so that the relation between applied voltage and rota-
tion angle is linear

α = sx ·Vx +α0

β = sy ·Vy +β0 (13)

where α is the rotation angle of the X mirror, Vx is the ap-
plied voltage, α0 is an offset of the rotation angle, and sx is
the slope of the line describing the correspondence between
Vx and α. The same holds for the other mirror.

In other cases, when the correspondence is not linear it
causes additional distortions. In this work we only consider
the linear case. However, the linear model can easily be re-
placed by any other voltage-to-angle mapping model.

One internal parameter of the mirror system is the dis-
tance r between the mirrors in the galvanometric system,
Fig 4. Some modern galvanometric systems also have a cer-
tain angle γ (different from zero degrees) between the rota-
tion axes of the mirrors, Fig 4, which also has an influence
on the distortions produced by the system. Usually the last
two parameters, unlike the slopes and offsets, are given in
the manual of the galvo-system. In case they are not men-
tioned in the manual or have been changed after production,
our procedure allows to estimate them. The other two inter-
nal parameters which are valid only for the complex model
are the origin of the incoming ray ~S and its direction~l. The
external parameters are the rotation and translation matrices
of the system with respect to the camera coordinate system.

As raw calibration data we use a point based grid pattern
(Fig. 6) projected onto a planar screen, in the following sim-
ply called plane. We take N photographs with different plane
orientations for the calibration. The points of the pattern are
equally spaced in terms of applied voltages. Note that the
voltages applied to project the grid must also be recorded

for voltage-to-angle conversion parameter estimation (α,sx)
and (β,sy). In practice we employ a linear DAC and directly
use the DAC values in place of Vx and Vy.

Before we start to estimate the parameters of the projec-
tion system we need to compute the three-dimensional co-
ordinates of the projected grid points. We extract the image
coordinates of the points and triangulate them. For the trian-
gulation we need to know the position of the plane with re-
spect to the camera. For that purpose it is convenient to have
a camera calibration pattern printed on the plane. We denote
coordinates of the triangulated points (x j

i ,y
j
i ,z

j
i ), where i is

the number of the image and j the number of the grid point
in an image. i = 1...N, j = 1...M, where N is the number of
photographs and M is the number of laser grid points on the
photo. For a simplified exposition we assume that on every
photo all the points of the grid are visible and the grid size
is LxL points. The case where not all points are visible is a
straight-forward extension. Here and below the coordinates
are expressed in camera coordinates if not mentioned other-
wise.

3.1. Initial estimation of internal parameters

We start the estimation by computing the parameters of the
voltage-to-angle conversion, Eq.(13). To establish this cor-
respondence we need to know the rotation angles, which can
be computed from the angles between the outgoing rays. The
direction of the rays f j, j = 1...M can be estimated by fitting
a ray to the three-dimensional points of a common index j,
measured on different planes. The fitting is performed to the
subset of points W j = {w j

i : i = 1...N}, minimizing the error
measure

E(X j) =
N

∑
i=0

(di
j)

2, j = 1...M. (14)

where di
j is the distance from the point W j

i to the estimated
ray. We then measure the angles θ

k
l between the right-most

ray f 1
l and all other rays f k

l lying on the same horizontal
line. Here, l,k = 1...L. Similarly, we measure the angles ψ

l
k

for the vertical axis the angles between the bottom ray f k
1

and all other rays f k
l , lying on the same vertical line, where

l = 2...L and k = 1...L Having the angles we compute the
slopes and the offsets Eq.(15).

sx =
θ

1
l −θ

L
l

V θ1
l

x −V θL
l

x

, sy =
ψ

1
k −ψ

L
k

V ψ1
k

y −V ψL
k

y

;

α0 = θ
1
l − sx ·V

θ
1
l

x , β0 = ψ
1
k − sy ·V

ψ
1
k

y ; (15)

V θ
k
l

x and V ψ
l
k

y are the voltages corresponding to the angles θ
k
l

and ψ
l
k.

Estimation of the parameters of the incoming ray is re-
quired only for the complex model calibration. The parame-
ters of the incoming ray are estimated by analyzing the shape
of the horizontal lines, namely their curvature and stretching
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since those strongly depend on the direction of the incom-
ing ray. We generate (compute) a set of rays h j, j = 1...M
using the voltage-to-angle mapping parameters estimated in
the previous step using the complex model Eq.(12). Chang-
ing only the incoming ray parameters, we minimize the dis-
tance between corresponding fitted f j and generated h j.

E(X j) =
N

∑
i=0

(λ · (1− ( f j,h j))+d j)
2, j = 1...M (16)

The error to minimize is given by Eq.(16), where d j is the
distance between corresponding rays, computed as a length
of a segment perpendicular to both of them. λ is a constant
defined as a half of the checkerboard square size. We use
the simple model assumptions (Sec. 2.1) as an initial guess
for the optimization. To estimate the other internal parame-
ters (for instance, the rotation axis inclination angle and the
distance between the mirrors) and to make sure that the esti-
mated internal parameters fit together, we perform a refine-
ment.

We again generate a set of rays g j, j = 1...M using the
internal parameters estimated in the previous step and mini-
mize the error between them and the fitted rays f j by adjust-
ing the internal parameters of the model. This optimization
task can be solved by any suitable optimization method. We
use the MATLAB optimization toolbox in our experiments.

In principle, it is possible to perform the internal param-
eter estimation using only two photographs with full field
of view of the projected grid. However, we found that for a
stable estimation which converges to reasonable parameters,
at least 7 photos are required. It is necessary to include at
least one photo with the full field of view for every axis (not
necessarily both at once).

3.2. Initial estimation of external parameters

External parameter estimation can be performed with only
two photos. Furthermore, it is not necessary to cover the full
field of view. The only condition is that the points that lie
on the vertical and horizontal central sheets, Fig. 7, must be
visible. The vertical central sheet is a three-dimensional sur-
face swept in space by the outgoing ray when the X-mirror
is fixed in its median position and the Y-mirror scans the
whole angular range. Similarly, the horizontal central sheet
is a three-dimensional surface swept in space by the outgo-
ing ray when the Y-mirror is fixed in its median position
and the X-mirror scans the whole angular range. The YOZ
and XOZ planes expressed in laser coordinates are tangent
planes, Fig. 7, to the vertical and horizontal central sheets.

The ray which results if both mirrors are in their median
positions is the intersection of the tangent planes to the cen-
tral sheets and is called the optical axis. Note that in the sim-
ple model case the tangent planes are equal to the central
sheets. Thus, the procedure is the same for both models. We
consider the solution for the complex model and it can be
reduced to the simple one.

YOZ

XOZ

Horizontal central sheet

Vertical central sheet

O
pt

ic
al

 a
xi

s

Tangent planes

Figure 7: Central sheets and planes

The goal is to estimate the orientation of the laser coor-
dinate system and the position of its origin. The main idea
is to estimate the optical axis first and then fit the YOZ and
XOZ tangent planes to the central sheets. The origin can be
computed using the model and the 3D-points given in cam-
era coordinates together with the fact that the projection of
a point onto the tangent planes are the X- and Y-coordinates
expressed in the laser coordinates.

To estimate the optical axis we select the points Dmed
i ,

i = 1...N corresponding to the intersection of the planar
screen and the ray which results if both mirrors are in their
median positions. The optical axis is fitted to the points min-
imizing the distance given by Eq.(14). For tangent plane
estimation, we select the points on the median grid lines
(lines corresponding to the median voltage values) Bv

i and
Bh

j , i = 1...L ·N, j = 1...L ·N. Then, we fit the tangent planes
to the central sheets in such a way that they pass through
the optical axis, remain perpendicular to each other and the
squared distance between the plane and the corresponding
points (Bv

i and Bh
j ) is minimal. The error is computed ac-

cording to Eq.(17), where di is the distance from the point
to the corresponding tangent plane. As a result we obtain
normals ~nv and ~nh and a point on every tangent plane.

E(X j) =
L·N
∑
i=0

(di)
2. (17)

We define the Z-axis of the galvanometric system as the op-
tical axis. Once we have computed the tangent planes, we
know the three vectors (the normals to the planes ~nv and ~nh
and the optical axis). Therefore, we can fix the rotational de-
grees of freedom of the system. Thus the rotation matrix R
is a matrix composed of those vectors in the following way:

R = (~nv|~nh|(~nv× ~nh)) , (18)

where (·× ·) denotes the cross product. To estimate the po-
sition of the origin of the system, we need to know the coor-
dinates of the points (x j

i ;y j
i ;z j

i ) given in the laser coordinate
system. Knowing the orientation of the galvanometric sys-
tem R, we can compute the projections (p j

i ;q j
i ) of the points

(x j
i ;y j

i ;z j
i ) onto both tangent planes. The projections are the
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coordinates of the points expressed in the laser coordinate
system. The missing Z-coordinate can be computed using
the model, the estimated internal parameters, and the mea-
sured voltages for every pair (p j

i ;q j
i ). Note that the distance

is from the jth point to the origin of the laser coordinate sys-
tem. We use the median Z-value of the points lying on the
optical axis as a guess for the origin of the laser coordinate
system.

3.3. Parameter refinement

As mentioned above, the refinement is performed simulta-
neously for the external and internal parameters. The refine-
ment is another minimization task. The goal is to know how
the system converts applied voltages into an equation of the
outgoing ray. We have a set of voltages (Vx,Vy), which we
used to project the pattern and the response of the system
(photographs with the pattern projected on the plane). Thus
we can adjust the parameters of the model of the system so,
that the response of the model coincides with the response of
the real system as well as possible. The sum of the distances
between the points predicted by the model and the experi-
mentally measured ones is used as the error measure. Note
that the distance can be computed in camera image space or
in three-dimensional space.

4. Experimental validation

To validate the developed model and calibration procedure
we performed two experiments. The first is calibration,
meaning estimation of all system parameters. In the second
experiment we use a calibrated system to perform rectified
projection onto a curved surface.

4.1. Calibration experiment

The validation is conducted in a leave-one-out fashion. We
take 10 photographs, but use only 7 to perform the calibra-
tion. The accuracy is then measured for the remaining 3 pho-
tographs.

For the validation of the calibration procedure we chose
a combined distortion case. The incoming laser ray is dis-
placed from the rotation axes of the mirrors and enters the
system under a certain angle with the X-axis, Fig. 4. The
distortions for this case are shown in Sec. 2.3, see Fig. 5. In
this case, the grid is asymmetric, it has neither vertical nor
horizontal symmetry. Despite the fact that the applied volt-
ages are equidistant, the distances between the corners are
different. Furthermore, we can not see the whole grid be-
cause at a certain angle of rotation the ray leaves the mirror.
Following the calibration procedure described in Sec. 3, we
take photos of the projected grid, Fig. 6. The brighter points
correspond to median values of the applied voltages. We also
take photographs with the plane under good illumination to
determine its position with respect to the camera. The detec-
tion of the calibration pattern is implemented in MATLAB.
Assuming that the intensity inside of the beam is distributed
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Figure 8: Error distribution
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Figure 9: Top: The rectified pattern in laser coordinates.
Note: Marked points are provided the remained is interpo-
lated by physical motion the galvo system.

as a Gaussian, we detect the center of the spot. After calibra-
tion of the system we predict the points on the planes that
we did not use for calibration. The error measure is

E =
1
M

M

∑
i=0

(xi− pi)
2, (19)

where M is the number of points for which the error is com-
puted, xi are the measured points, and pi are the model pre-
dicted points. The error is computed in image coordinates
and expressed in pixels. The number of points we used for
validation is 277. The maximum error per point is 1.2 pixels
or 30% of the laser beam width. The average error among all
points on the plane is 0.96 pixel, or 27% of the laser beam
width. A plot of the error distribution is shown in Fig. 8.

4.2. Projection experiment

Using our model and the complete calibration information,
including internal parameters, we can rectify any pattern in
such a way, that, while projecting onto a curved surface, the
pattern appears straight from one particular view-point, (see
Fig. 10). For our experiment we used a sphere with a diam-
eter of 23.4 cm. The setup consists of a calibrated camera, a
laser-galvanometric system and the sphere (see Fig. 10). The
rectified pattern we project, represented in laser coordinates
is shown in the Fig. 9.
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Figure 10: Projection experiment. From left to right: The setup: the camera, the laser and the sphere; view from the camera,
the pattern is straight; view from a different camera perspective, the pattern is distorted.

The rectification is done as follows: Suppose we have a
pattern given by a set of points U = {ui : i = 1...N} in the
camera image coordinate system and a description of the ob-
ject geometry. We virtually project the desired pattern from
the camera view onto the object geometry. The intersection
is given by a set of three dimensional points {x′i : i = 1...N}.
These are then converted to the laser coordinate system
xi = R−1(x′i−T ), where R and T are rotation and translation
matrices to convert from the laser coordinate system to the
camera coordinate system. By inverting Eq.(12) and com-
puting the required voltages V = V i

x ,V
i
y , i = 1...N, we can

project a rectified pattern onto the surface. This experiment
shows one possible application of our laser model. Note that
for this experiment we also used the combined distortion
system. The results are shown in Fig. 10.

5. Conclusion

In this work, we present two mathematical models to de-
scribe the behavior of galvanometric laser scanners and an
associated calibration technique for computing their param-
eters in real setups. The distinctive feature of the proposed
calibration method is that it uses a mathematical model of
the galvanometric system. The use of a mathematical model
allows the computation of a calibration which is valid for a
whole range of depths. Although the simple model is not ex-
pressive enough since it is able to describe only one type of
distortions that can occur, it can be used for calibration of
systems for which the assumptions are valid. The complex
model is more expressive and can handle all the distortions
introduced by a galvanometric scanning system.
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