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Abstract

Interactive Voronoi Treemaps have been proposed to support arrangement and grouping tasks of data with snippet image
representations. They rely on time-consuming manual actions to group data and cannot display more than a hundred images
without occlusion. We propose visualizations designed to manage images visibility, evaluate group homogeneity, and shorten
grouping task completion time while keeping control. It is supported by an automatic classifier forming an augmented
intelligence system to tackle arrangement and grouping tasks at scale. We propose the usage scenario of a clinician using
Interactive Voronoi Treemaps to group wearable data based on sleep visual patterns.

1. Introduction

We aim to develop an Augmented Intelligence system [BCF*19]
based on interactive visualization [BABB*21] where humans and
machines work in symbiosis to solve challenging problems. Ar-
rangement and grouping (A&G) actions are essential to human in-
telligence [Kir95]. They can help domain experts explore new data
and generate hypotheses about groupings [WN20], or assign data
to groups for training automatic classifiers [BZSA18].

Voronoi treemaps [BDOS5] are static idioms that represent hi-
erarchical quantitative data graphically. Recently, an interactive
Voronoi treemap (IVT) was proposed to support A&G tasks of im-
age data for visual analytics, see [AA20, AA21]. However, this ap-
proach suffers some limitations regarding scalability. Spatial and
visual scalability challenge (DO1): A large number of images
within a limited screen space, degrades their visual perception due
to occlusion or small size, and the capacity to interact by drag-
ging or clicking them (Figure 1). Time and effort scalability chal-
lenge (DO2, DO3): Moreover, too many images at once makes
the A&G task overwhelming, tedious and time consuming, more
likely to hinder task completion. Unfortunately, full automation
is not desirable in sensitive application domains like health and
medicine [RCBT22], and is hardly possible anyway at least for a
start. Indeed, grouping images new to the expert users, is an unsu-
pervised task which relies mainly on their subjective expert judg-
ments hence must remain under their control to reflect their mental
model; moreover, user-defined labels do not exist yet at the initial
stage to train such classifiers, nor well understood features are yet
engineered for natural groups to be discovered by clustering and
multidimensional projection techniques [WCR*18,NA18]. At last,
the high uncertainty of these models when trained on too few data,

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

DOI: 10.2312/evs.20221091

is likely to undermine user’s confidence in the generated arrange-
ments and groups if they are used too early [BABB*21].

We propose to tackle the spatial and visual (DO1) scalability
with a Focus+Context [BHR99] approach, and to scale down the
time and effort (DO2, DO3) of interactive A&G intending to pre-
serve trust and control at best, by supporting these tasks with vi-
sual interactive learning concepts [BZSA18] and an enriched lay-
out. The resulting interactive treemap visualization made scalable
with machine learning forms an augmented intelligence system to
support A&G tasks. We present a realistic usage scenario of a clin-
ician analyzing data from wearable sensors [FLAP* 19, KSS*22].

2. Related works

Different approaches exist to support A&G of data following
principles of direct, fluid and semantic interactions [EMJ*11,
End16, DP20]. Users can relocate images or points in multi-
dimensional projection layouts under data similarity constraints
[JCC*11,HAF13,JAL"22]. Users can also freely spatialize image-
based data to realize A&G that match with their mental model us-
ing enriched interactive interfaces [WWI07,LZC*20], or with the
Interactive Voronoi Treemap [AA21, AA20] studied in this work.
Spatial and visual scalability issues have been tackled by using
magic lenses [TGK*17], by stacking piles [LZC*20], or by op-
timizing location to minimize screen space usage [DTSO20]. We
follow a Focus+Context approach [BHR99, MMC* 19]. We propose
a summary representation of the whole dataset with an automatic
load balancing of the group areas in the IVT (Focus), and control
widgets and bar charts (Context) on a side panel. Time and effort
scalability problems of A&G tasks have been addressed with au-
tomation. A framework for Visual Interactive Labeling [BZSA18]
relies on active learning techniques to progressively automatize the
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Figure 1: Spatial & visual scalability challenge (DOI): (a) Big
images are readable but many are not shown; (b) All small size
images can fit but none is readable; (c) All images with big size are
unreadable due to occlusion and clutter. We opt for showing few
big images (a) but adding a contextual view (Figure 2 CDE).

labeling task. Guiding users is essential for taking group assign-
ment decisions [CGM19]. The layout can be enriched based on
multidimensional similarities [NA18] or classifier output probabil-
ities [REHT19,RAL*17] to help users understand automatic deci-
sions. We propose to enrich the IVT layout with color-coded infor-
mation and spatialization of the classification probabilities.

3. Interactive Voronoi Treemaps

The Interactive Voronoi Treemap (IVT) [AA21, AA20] extends
power-diagram-based Voronoi Treemaps [BD05,NB12] with inter-
action techniques to support A&G tasks. The IVT layout (Figure 2)
is made of three nested layers: the main rectangular view is the root
cell (A); it is partitioned by weighted voronoi cells (power-diagram
polygons) representing groups (J,K,L,M); at last, each group con-
tains images centered on the leaf cells of its unweighted Voronoi
partition. The area of the group cells are dynamically maintained
proportional to the number of images they contain. Group cells
are first computed using weighted Voronoi mapping [NB12], then
Centroidal Voronoi Tesselation (CVT) [DFG99] is applied to get
uniform space between images which avoids overlap. Users can
interact with IVT. For instance: users can drag an image nearby
another one for visual side-by-side comparison (Arrangement ac-
tion); images can be assigned to a group by dragging them within
that group cell (Grouping action), or can generate a new group by
dragging them out of the root cell. Space between images is main-
tained at all time using CVT. A typical A&G task starts with all
images put in a single group with undetermined meaning (Fig-
ure 2a A), from which they are progressively pulled out by the
user (Figure 2b J,K,L,M) to form as many meaningful groups as
needed to eventually represent all the discovered concepts (Fig-
ure 4). Those and other interactions have been designed and imple-
mented in Javascript with D3, to support A&G tasks [AA21].

4. Design objectives to tackle scalability challenges

DO1: Maintain readable images. Although CVT maximizes dis-
tances between images to avoid overlap and clutter, we need to
maintain a minimal size for each image to make them readable,
which entails the impossibility to display too many of them at once
in a finite screen space without occlusion (Figure 1). Hence, not
all images can be made visible at a time. Therefore, users need to
DO1,4: know the proportion of visible and invisible images in
each group to get a sense of the groups importance and the group-
ing task completion. Users also need to DO15: select which im-
ages will be made visible to interact with.

DO2: Save arrangement time. Grouping relies on arranging im-
ages for side-by-side comparison to decide whether an image is
an outlier to be removed, or an inlier that contributes to give the
group its meaning. However, the invisibility of most of the images
in a group (DO1) prevents users to get a faithful overview of its
content. Therefore, users need to DO24: visualize and easily ac-
cess the most representative images of each group and to DO25:
evaluate their amount of representativity.

DO3: Save grouping time. Grouping task completion requires that
every single image get assigned to a group. However, time and
focus are scarce user resources while taking each assignment de-
cision must be under control and responsibility, as it can entail
accountability in sensitive application domains [RCBT22]. There-
fore, users need to DO3,: visualize and easily access the most
likely images to assign to a group to operate that assignment faster
and focus remaining time on harder decisions. And they need to
DO33: keep control of the assignment decisions to feel empow-
ered and take responsibility.

5. Design solutions
DS1: Visibility bar chart and navigation controls

We set a visibility management panel (Figure 2a (C,D,E)). We
use a stacked bar chart (C) to display the quantity of visible (bot-
tom segment) and invisible (top segment) images in each group
(DO1,4). The bottom bar is filled with the solid color of its group
cell (A). The top bar gets a lighter tone to express invisibility. A
slider (E) controls the amount of visible images. The mouse-wheel
sets the size of all images [AA21]. We use pagination to deal with
image visibility selection (DO1p). The full set of images in each
group is divided into chunks of size the amount of visible images
allowed for that group, except for the last chunk, possibly smaller.
Each group gets an additional pair of back and forth paging buttons
(D) to swap from one chunk to the next. New visible images replace
old ones, each being assigned to a specific Voronoi cell, without re-
computing the treemap layout. We use a watershed approach to de-
termine the amount of visible images for each group, as if the bars
of the barchart were forming a cave to flood with a fixed amount of
water trying to reach the same level in each bar (Figure 4 (C"")).
The total visibility budget (E) is split in unit tokens to be distributed
among the groups. We loop through all groups and assign visibility
tokens one at a time until group capacity (number of images they
contain) is reached or the budget depleted.

"

DS2: Own group centrality arrangement and coloring

We compute a centrality measure of each image based on a sum-
mary statistic of the data in their group, rank the images, and make
visible the most central ones (DO24 )(Figure 3a (J',K',L",M")). Sev-
eral statistics could be used like the Euclidean distance to the group
medoid (mean or median). We use the probability that an image
data gets assigned to its group given by a classifier set to predict the
probability for each image data to belong to any of the groups. This
approach tends to increase the contrast between images most cen-
tral to each group. We use a multinomial logistic regression model
taking as inputs the features of the data associated to each image,
and as output a categorical variable representing the group of that
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(a) Initial IVT interface (b) DS1: Visibility bar chart and paging controls

Figure 2: Design solution for spatial and visual scalability (DO1): (a) The interface is made of four panels: the Interactive Voronoi Treemap
panel (A); the group editing panel (B); the visibility panel (DS1) containing the visibility barchart (C), paging controls (D), and the visibility
budget slider (E); and the machine learning panel (DS2, DS3) with the training group selector (F), the color mapping selector (G), the
probability threshold slider (H), and the target probability selector (1). (a) The slider E is set to show 100 images. Other 164 invisible images
(light grey segment of the visibility bar C) can be accessed by paging D. (b) Three groups have been created by drag-and-drop. The visibility
bar chart C shows the amount of visible and invisible images in each group. The user assigned names (j,k,[,m) to groups (J,K,L,M).

(a) DS2: Own group centrality arrangement and coloring (b) DS3: Target group predictive arrangement and coloring

Figure 3: Design solutions for time and effort scalability (DO2 and DO3): (a) DS2 The concentric color pattern (J',K',L',M") highlights the
images most central (dark tone) to each group (I') computed with a multinomial logistic regression classifier (not shown) in the feature space
based on all groups (/). (b) DS3 A single concentric color pattern centered on the target class (orange) (L', I"") shows the images most
likely (dark tone) to be assigned to that group by the classifier trained on all groups except the undetermined one (grey)(F”’). The images
remain in their respective groups but move closer to the target group (J' K" ,M"). The slider H'" is used to automatically transfer images
with probability above 0.9, into the target group to save time and effort (bar chart before C' and after C" the move).
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Figure 4: The Clinician categorized all images in meaningful
groups. The amount of visible images is identical for all groups
(C///).

image. It is trained on all groups (). We use spatialization and
opacity to visualize the most central images with more saliency
(DO2p). We rank images by decreasing centrality, then we locate
the most central image on the cell closest to the center of grav-
ity of its group cell (J',K',[.",M"). We map the remaining images
in sequence, along concentric layers around the first one, over the
Voronoi adjacency network. All free (visible) cells are allotted in
each group independently. The opacity of the cells only depends
on the concentric layers and aims to reinforce the perception of the
spatial encoding. Using exact centrality values for opacity encoding
would bring more confusion with an unnecessary level of details,
blurring the concentric arrangement of the images.

DS3: Target group predictive arrangement and coloring

We compute a group assignment prediction measure for each im-
age data based on a classifier to determine which of them should be
visible (DO34) (Figure 3b). We use the same multinomial logistic
regression model as for group centrality-based arrangement (DS2)
except it is trained on all but the undetermined group (M'’), because
the images in that group need to be categorized by the classifier and
this group has no specific meaning. A menu allows selecting the tar-
get group of the prediction (I"’). Again, we use spatialization and
opacity to visualize the images with a graphical saliency reflecting
their assignment probability to the target group (DO3p). We fol-
low the same centrality-based approach for mapping the images.
But we rank them by their decreasing probability of being assigned
to the target group, and we pick the center of gravity of the target
group cell as the unique root of the concentric layout. Finally, we
propagate the concentric layers across the adjacency network of all
Voronoi cells disregarding the groups boundaries. We map images
in sequence, along these layers, but do so group by group, filling
all free slots in one group by the images of that group. We do the
same in all groups: images within the target groups are arranged
the same way as for centrality-based approach; in other groups, im-
ages with the highest probability gather closer to the target group’s
boundary making easier their drag-and-drop assignment into that
group. All free (visible) cells are allotted in each group indepen-
dently. The opacity of the cells only depends on the concentric lay-

ers centered on the target group, and aims to reinforce the spatial
encoding for the same reason as in DS2. A slider (H'") controls the
minimum probability level to reach before allowing automatic as-
signment of the images to the target group. The lower the level, the
larger the number of images automatically pushed into the target
group. Once the slider value is set, all images with high enough
probability are assigned to the target group, and the above steps are
conducted to reflect this assignment in the layout. This causes im-
ages close but outside the target group (J/,K”,M"), to move first,
letting free space on the opposite side of their provenance group
cell to let enter images of that group invisible so far.

6. Usage scenario with wearable data

Amna is a clinician analyzing images representing wearable data
from 264 patients recorded over a week. Each data is a tuple of fea-
ture values like the average duration of vigorous physical activity
across all week-end days, or the average sleep duration or num-
ber of naps. Each image depicts these data over a full week with
one horizontal line per day segmented in consecutive blocks. Block
lengths code for the duration and color codes for the intensity of the
physical activity (orange and red) or sleep and naps (blue). Amna
aims to explore sleep patterns appearing as blue vertical alignments
across days in the image data, and discover meaningful groups of
patients. We simulated realistic patterns by adding noise to real data
that we cannot disclose publicly. Letters refer to figures 2, 3, and 4.

Amna sets the visibility slider (E) to 100 to get readable images.
She sees that half of the total are visible (Dark grey C). She pages
through all images (D) to get an overview (DS1). She starts group-
ing images by similarity of sleep patterns. After 10 minutes, she
created three groups (J,K,L) that she named: Outliers (dark blue)(j),
Normal sleep (light blue)(k), and Irregular sleep (orange)(l). The
bar chart C shows her progression, with the light blue group con-
taining most of the images grouped so far. Then, she uses own-
group centrality to check groups’ homogeneity (DS2) (F',I'). It
makes outliers more visible in the center of the grey group (M"),
that she will assign to the Outlier group (J'). Once groups are big
enough, she switches to the rarget-group predictor option (DS3)
(F”,H"” 1"). She selects the Irregular sleep group (L") as a target,
and run the model training and prediction (F”'). The images gath-
ering at the boundary of the Irregular sleep group (J'/,K”/,M"") are
more likely to belong to it. She sets the probability threshold H”
to 0.9 to force the automatic assignment of the most likely ones.
Visibility bars are updated C" accordingly. She proceeds until the
Undetermined group M’ gets empty (Figure 4).

7. Conclusion and future work

We presented the design of an augmented intelligence systems to
support arrangement and grouping tasks at scale for exploratory
data analysis. Its trustworthiness relies on ensuring all data are as-
signed to groups as users desire. Beyond the possibility to manu-
ally assign images and to check group’s content at any time, we
need to indicate the confidence level of the automatic classifier. We
plan to run a quantitative user study as part of the QNRF Qatar
Diabetes Prevention Program NPRP11C-0115-180010, to evaluate
thoroughly the usefulness and usability of this tool for clinicians,
and its benefits in terms of time, effort, and trustworthiness.
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