
EG UK Theory and Practice of Computer Graphics (2005)
M. McDerby, L. Lever (Editors)

Perlin Noise and 2D Second-Order Tensor Field Visualization

Abstract
There has been much research in the use of texture for visulization the vector field data, whereas there has only
been a few papers concerned specifically with tensor field data. This set is more complex and embeds more
information than vector fields. In this paper, firstly texture is modeled by Perlin Noise. We show that by controlling
the parameters of Perlin Noise, the user can control the output texture effectively, which is similar to Spot Noise.
Then the modeled texture is used to visualize eigenvector fields of tensor fields by simple convolution. Several
examples are shown. Compared to Line Integration Convolution, this method does not need to integrate the
streamline along the vector field.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Picture/Image generation]: I.3.7 [Computer
Graphics]: Color, shading, shadowing, and texture

1. Introduction

Texture methods have recently been explored in many litera-
tures, especially in the fluid flow field, LIC(Line Integration
Convolution) [CL93] and Spot Noise [Van91] are the two
most widely used texture methods. A good survey can be
found in [LHD∗04]. In the use of Perlin Noise [PH89], most
of the past discussion has focused on how to produce real-
istic images rather than its application to data visualization.
We have found Perlin Noise is an efficient way to visualize
tensor fields. Furthermore, much research effort in texture
visualization has been devoted to the vector field, whereas
there are only a few research papers in the field of texture
visualization of tensor fields. However, second-order tensor
fields play a central role in many areas of physics and me-
chanical field, such as velocity gradient, stress and strain.

In this paper, we first discuss the modeling of Perlin Noise
from the perspecitive of data visualization. Special emphasis
is put on the control of the parameters of the Perlin Noise
generation, which will have significant effect on the data
visualization. Then we show that Perlin Noise has similar
properties to the Spot Noise in the local control. After the
modeling has been described, the tensor visualization is sim-
ply discussed and we applied Perlin Noise to the tensor field
visualization in section 3 for a real application. Finally, in
section 5 conclusions are drawn.

2. Perlin Noise

Perlin [PH89] [Per85] makes use of a single controllable
stochastic noise function together with a toolkit of shaping
functions to generate convincing representation of clouds,
fire, water, stars etc.

Perlin defines the function Noise(x) to generate solid tex-
tures through the composition of non-linear functions for
stochastic textures, which is implemented as a summation
of pseudo-random spline knots, one for each point on the in-
teger lattice of R2. The knot at a regular grid (i, j) consists
of a pseudo-random linear gradient Gi, j weighted in each di-
mension by a smooth drop off function ω(t)(see equation 1
and Figure 1) [PH89].

ω(t) =

{

2|t|3 −3|t|2 +1 |t| < 1
0 |t| ≥ 0

(1)

It can be regarded as a random number generator, while if
you pass the same parameter twice, the same random num-
ber is produced.

We will discuss the resulting texture image from a de-
signer’s point of view. There are two issues of special
interest—the size and direction properties. If scaling the
modeling primitive Noise(x) to Noise(scalex), the user can
control the output texture effectively. In Figure 2, from left
to right, the first image’s scale parameter is 10 times larger

c© The Eurographics Association 2005.

http://www.eg.org
http://diglib.eg.org

30-WIP-Liu / Perlin Noise and Tensor Field Visualization

-1 -0.5 0.5 1

0.2

0.4

0.6

0.8

1

Figure 1: The drop off function ω(t)

than the second one and 100 times larger than the third one,
the output texture changes from a white noise like texture
to a fractal like texture. This can be explained from a signal
processing point of view. The scale parameter in fact cor-
responds to the frequency of the 2D signal. The bigger the
scale is, the higher the frequency is. High frequency shows
the detail within an image, and low frequency represents the
bluring of an image. In Figure 3, if the scale parameter in
the y direction is 10 times bigger than the x direction, i.e.,
the frequency of a 1D signal in the y direction is 10 times
higher than the frequency of the signal in the x direction, the
texture is stretched in the x direction.

Figure 2: Different scale of Perlin Noise

Figure 3: Texture Pattern in different direction

2.1. Comparison of Perlin Noise and Spot Noise

The issue of local variation of texture is discussed by van
Wijk [Van91]. We found the above properties of Perlin Noise
are shared with the Spot Noise. Spot Noise is defined as

f (x) = ∑
i

aih(x−xi) (2)

where xi are random positions on the plane, ai is a random
scaling factor with a zero mean. The pulse h(x) is considered
as a spot that is dropped on the plane. The size of the spot is
limited, and usually small compared to the size of the texture
segment to be synthesized. This method can be compared to
the filtering of a very noisy image with the spot as the filter
kernel. One of properties of the Spot Noise is that designer
can control the generated texture by scaling the size of the
spots(see Figures 4 and 5). In the Spot Noise, if small spots
are used, samples at different locations are uncorrelated, and
hence the result is white noise. Large spots degenerate to
random faults, so the result will be fractal. These images are
similar to those generated by Perlin Noise(see Figure 2 and
Figure 3). But the bigger of size of spots is, the lower fre-
quency of the resulting image is, which is contrary to the
scale parameter in the Perlin Noise.

Figure 4: Different sizes of spot [Van91]

Figure 5: Non-proportional scaling [Van91]

3. Rail Residual Stress Tensor Data Visualization Using
Perlin Noise

The tensor data, represented by equation 3, that we are in-
terested in is namely residual stress in a Rail Head which is

c© The Eurographics Association 2005.

30-WIP-Liu / Perlin Noise and Tensor Field Visualization

computed from measured strain (see Figure 6, model and
data courtesy of J. Kelleher, Manchester Materials Science
Center).

[

σ11 σ12
σ12 σ22

]

(3)

Traditionally, this stress tensor can be represented by visual-

Figure 6: The Rail Model, a slice of rail is extracted and the
head of it is of interest

izing the three different components of the stress. Therefore
three images are necessary. In the 3D case, nine images are
needed. Furthermore, every component of tensor data criti-
cally depends on the coordinates. With the transformation of
coordinates, the tensor components are varied. However, the
stress tensor is a physical quantity, so it should keep invariant
in different coordinates.

Therefore, instead of visualizing stress tensor components
directly, a stress tensor field can be decomposed to two
eigen-vector fields: v̂(1) and v̂(2),i.e. two principal stresses
vector fields. Principal stress fields are invariant in different
coordinate and are equal to the original tensor field. There
are already some glyphs to visualize two principal stress
fields, such as ellipse or Haber glyph [Hab90]. One prob-
lem of those glyph visualizations is that they exist in a dis-
crete manner, and can easily result in visual clutter for a large
field. Therefore, the visualization techniques should be de-
signed to reflect this continuity property and avoid the visual
clutter.

The approach we use here was first discussed by Delmar-
celle [Del94], who proposed Hyperstreamline icons to vi-
sualize 3D symmetric tensor data. In the 2D case, a hyper-
streamline is a stress trajectory which is a line whose tan-
gent at every point is in the direction of a principal stress.
Then the state of the residual stress that varies through the
rail head can be represented by a network of those stress tra-
jectories.

4. Implementation

We develop Perlin Noise and its application in the rail ten-
sor field as several modules in AVS/EXPRESS [UTFK∗89],

which provides easy manipulation of parameters of Perlin
Noise to generate diffrent images. In this rail head appli-
cation, the original tensor field is 19 × 20, which are lin-
ear interpolated to 1024× 1024 so that the generated image
size will be 1024× 1024. Then a Jacobi method [PTVF02]
is used to compute the eigenvector and eigenvalue of this
tensor field. Therefore at every node of a 1024× 1024 grid,
there is defined two vectors—principal stress1 and principal
stress2. Unlike line integral convolution, a streamline must
be computed at every node to act as a filter kernel and con-
volve this filter kernel with white noise. We also compute
Perlin Noise at every node and convolve it with a simple
triangle filter to obtain the opacity value for each pixel of
the image. Then color is used to encode the eigenvalue of
each principal stress. Finally, the color and opacity are com-
posed together to get the final images (see Figures 7 and 8).
A scale from saturated blue(negative) via grey to saturated
red(positive) is used (see Figure 17).

The above process can be described using equation 4 and
equation 5:

O(x,y) =
Z

∞

−∞

kernel(u)PerlinNoise(x−u,y−u)du (4)

O(x,y) =
Z

∞

−∞

kernel(u)

PerlinNoise(x−usinα(x,y),y−ucosα(x,y))du (5)

Where equation 4 is a simple convolution, and equation 5
rotates the parameter of Perlin Noise along the vector direc-
tion, α(x,y) is the angle between the x axis and the first or
second principal stress vector.

4.1. Evaluation

All the texture images’ resolution here are 1024×1024. Fig-
ures 7 and 8 show two minimum and maximum principal
stress trajectories respectively. In Figures 9 and 10 , the Per-
lin Noise used to visualize the two stress vector fields has
10 times lower frequency than those in Figures 7 and 8. Re-
call the section 2, in Figure 2, lower frequency correspond to
fractal like texture. If users increase the scale, the generated
image is Figure 11, which is the visualization of the same
stress fields, but except for color, there shows no pattern at
all. Its frequency is 10 times higher than those in Figures 7
and 8 so that generated image is similar to white noise. Fig-
ures 12 and 13 compare to Figures 9 and 10 show obvious
artifacts due to high frequency resulting from bigger para-
meters. Figures 14 and 15 compare to Figures 7 and 8 show
obvious artifact due to high frequency resulting from bigger
parameters as well.

From these images, we can see clearly that the two prin-
cipal stresses are almost normal to each other. And two ob-
vious advantanges of using texture lines are that it depicts

c© The Eurographics Association 2005.

30-WIP-Liu / Perlin Noise and Tensor Field Visualization

Figure 7: Texture visualization of minmum principal stress
fields

Figure 8: Texture visualization of maximum principal stress
fields

the tnesor field continuously, and it is space filling so that a
better understanding of the whole stress tensor fields struc-
ture can be achieved. Furthermore, the user can control the
output visualization simply by modifying the parameters of
a Perlin Noise.

5. Conclusions and Future Work

We have evaluated Perlin Noise application for a 2D rail
head stress data set. The resulting images provide a good
visual cue of the whole stress tensor field for a rail head.
Obviously, besides LIC and Spot Noise, Perlin Noise is
another effective texture visualization method. Compare to
LIC, Perlin Noise doesn’t need to do the integration to get
the streamline, which reduces the complicity of computa-
tion. Spot Noise is essentially the same as the Perlin Noise,
except that spot shape is based on data at a single point. If
the vector varies strongly over this region, the shape of spot
does not reflect the data properly [de 97]. Perlin Noise is as
good as LIC in capturing the high vector gradient in a re-
gion. This is at present a work-in-progress paper and further

Figure 9: The minumum principal stress trajectory visual-
ization correspond to texture in Figure 2

Figure 10: The maximum principal stress trajectory visual-
ization correspond to texture in Figure 2

comparison of noise is still required, as well as the use of the
different noise types.

The rail stress tensor field used is stationary, so that there
is no need to track the change of the tensor field. However, if
the tensor field is time dependent, how to animate the Perlin
Noise texture fast and track the changes of the eigenvector
field will be a main concern. And because measured data
are quite uniform, we use a unifrom grid to generate tex-
ture. How to deal with a non-uniform curvilinear grid will
be one of our concerns. Another important issue is that engi-
neers are particular interested in cracks in the residual stress
field. For a rail head, a lot of important stress feature are
found near the edge areas, therefore, the resulting texture
near edges will need to be explored in more detail.

6. Acknowledgments

This work is funded by the Computer Science School of The
University of Manchester.

The authors greatly appreciate J. Kelleher who provided

c© The Eurographics Association 2005.

30-WIP-Liu / Perlin Noise and Tensor Field Visualization

Figure 11: Cannot see any direction pattern, more white
noise like result

Figure 12: Texture visualization of minmum principal stress
fields with obvious artifact

the rail tensor data and a lot of insightful comments on stress
tensors. And thank for Tobias Schiebeck, Yien Kwok, Mary
McDerby, and all other Manchester Visualization Center stu-
dents and staffs for their help and support during this project.

References

[CL93] CABRAL, LEEDOM L.: Image vector fields using
line integral convolution. Computer Graphics 27 (1993),
263–272.

[de 97] DE LEEUW W.: Presentation and exploration of
flow data. PhD thesis, Technology University of Delft,
1997.

[Del94] DELMARCELLE T.: The visualization of second-
order tensor fields. PhD thesis, Stanford University,
1994.

[Hab90] HABER R.: Visualization techniques for engi-
neering mechanics. Computing Systems in Engineering
1 (1990), 37–50.

Figure 13: Texture visualization of maximum principal
stress fields with obvious artifact

Figure 14: Texture visualization of minmum principal stress
fields with obvious artifact

[LHD∗04] LARAMEE R., HAUSER H., DOLEISCH H.,
VROLIJK B., POST F., WEISKOPF D.: The state of the art
in flow visualization: dense and texture-based techniques.
Computer Graphics Forum 23, 2 (2004), 203–221.

[Per85] PERLIN K.: An image synthesizer. In Proceedings
of the 12th annual conference on Computer graphics and
interactive techniques (1985), vol. 19, pp. 287–296.

[PH89] PERLIN K., HOFFERT E. M.: Hypertexture. Com-
puter Graphics 23, 3 (July 1989), 253–261.

[PTVF02] PRESS W., TEUKOLSKY S., VETTERLING W.,
FLANNERY B.: Numerical Recipes in C++: The Art of
Scientific Computing, second ed. Cambridge University
Press, 2002.

[UTFK∗89] UPSON C., THOMAS FAULHABER J.,
KAMINS D., LAIDLAW D. H., SCHLEGEL D., VROOM

J., GURWITZ R., VAN DAM A.: The application
visualization system: A computational environment for
scientific visualization. IEEE Comput. Graph. Appl. 9, 4
(1989), 30–42.

c© The Eurographics Association 2005.

30-WIP-Liu / Perlin Noise and Tensor Field Visualization

Figure 15: Texture visualization of maximum principal
stress fields with obvious artifact

Figure 16: Better result of texture visualization of stress tra-
jectory

[Van91] VAN WIJK J.: Spot noise: Texture synthesis for
data visualization. Computer Graphics 25, 4 (July 1991),
309–318.

Figure 17: The colour scale

c© The Eurographics Association 2005.

