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Abstract

Motivated by identifying subpopulations that share common characteristics (e.g. alcohol consumption) to explain risk factors
of diseases in cohort study data, we used subspace clustering to discover such subpopulations. In this paper, we describe our
interactive coordinated multiple view system Visual Analytics framework S-ADVISED for SubpopulAtion Discovery and Vali-
dation In Epidemiological Data. S-ADVISED enables epidemiologists to explore and validate findings derived from subspace
clustering. We investigated the replication of a selected subpopulation in an independent population.
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1. Introduction

Epidemiologists investigate the factors which contribute to the out-
break of diseases. Thus, they identify risk factors related to life
style, genetic predisposition, socio-demographic factors, and envi-
ronmental factors as well as protective factors that reduce the like-
lihood of getting a disease [Woo13]. With the increasing amount of
cohort study data, the traditional hypothesis-driven and statistics-
focused approaches usually fail to identify subpopulations that have
arisk for a specific disease which strongly deviates from the global
mean [Obe04].

Subspace clustering and subgroup discovery are methods for
the identification of subpopulations which share determinant fac-
tors. Identified patterns are expressed in the form of interpretable
rules. For instance, a significant subpopulation could be phrased
as “While in the study population only 18 % exhibit goiter, in the
subpopulation described by BMI > 30.5kg/m* ATSH < 1.5mU /I
it is 52 %.” Each condition in the rule antecedent corresponds to
an axis-parallel hyperplane in the attribute space. Thus, subgroup
discovery algorithms return descriptions of subspaces that are lim-
ited to an axis-parallel, hyper-rectangular shape. Subspace cluster-
ing seeks for clusters in any subset of dimensions. Due to the com-
plexity of the clusters’ shapes, subspace clusters need to be trans-
formed to hyper-rectangles such that they can be described as rules.
Visual representations are essential to enable the user to explore
subspace clustering results and to steer the process of transforma-
tion of subpopulations in detail and develop trust in the results. The
latter is essential, since epidemiologists in general are skeptical to
data mining results that may produce a very large amount of unreli-
able findings. In our collaboration with epidemiologists we noticed
their need for replication and validation of data mining findings.
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Our proposed S-ADVISED framework combines visualization
techniques and data mining concepts for discovery and validation
of subspace clusters. S-ADVISED allows to interactively explore
subpopulations based on the user preferences. Our contributions in
this paper include:

e Visual support for the identification of subpopulations in cohort
study data

e Validating the findings in a second, independent cohort

e Exploration and comparison of subpopulations

2. Epidemiological Background

In this section, we describe cohort study data and terms used in
this paper to address epidemiologists’ requirements. Epidemiology
research focused on the determinant and distributions in a specific
population [Woo13].

Epidemiology data contain information acquired by interview (e.g.
sociodemographic, medication use), physical examination (e.g.
measuring blood pressure and BMI), laboratory tests (e.g. diabetes
and TSH) and medical images (e.g. MR images) [PKH* 16]. Com-
bining these features leads to a heterogeneous, high-dimensional
and large data set. Our analyses are based on the Study of Health in
Pomerania (SHIP) [V6112]. The study was performed in different
waves, SHIP-0 (from 1997 to 2001), SHIP-1 (from 2002 to 2006)
and SHIP-2 (from 2008 to 2012). Since this cohort gets older and
smaller (e.g. due to persons moving to other regions), a new co-
hort the SHIP-TREND, was established in parallel with the SHIP-2
study. In this work, we focus on the fatty liver as a widespread dis-
order. Participants with a liver fat concentration of more than 10 %
are considered as positive for fatty liver.

Due to the continuously increasing number of dimensions and
heterogeneity of cohort study data, important associations might be
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overlooked. Furthermore, the goal of epidemiologists is not only to
assess the global effect of a determinant, but also to find groups of
study participants which are similar w.r.t. common protective and
risk factors.

3. Subspace Clustering

The efficiency of traditional clustering methods is hampered in
high-dimensional feature space caused by an effect that is referred
to as curse of dimensionality [PHLO4]. Subspace clustering algo-
rithms can overcome this issue by automatically discovering rele-
vant subspaces and performing a clustering within these subspaces.
Constraint-based clustering. For the discovery of subspace clus-
ters we use the constraint-based subspace clustering algorithm
DRESS (Discovery of Relevant Example-constrained SubSpaces
[HS*16]). The method incorporates expert knowledge on the sim-
ilarity of study participants (must-link and not-link constraints) to
find clusters in subspaces that satisfy these constraints. Constraints
should reflect the similarity of participants w.r.t. a medical out-
come. To find clusters, DRESS starts with a quality scoring of each
subspace of cardinality one. Initially, these subspaces constitute the
candidate set of subspaces. Subspace quality is scored by consider-
ing the distance between must-link and not-link constrained partici-
pants as well as the portion of satisfied constraints to all constraints
in the respective subspace. To satisfy a must-link / not-link con-
straint, both constrained participants have to lie within the same /
different cluster. From here, DRESS iteratively picks the best scored
subspace Scqan and merges it with all remaining subspaces in the
candidate set. To reduce complexity only the resulting subspaces
that satisfy a filter criterion are considered. For subspaces that sat-
isfy this criterion, the full quality is calculated, which involves a
density-based clustering with DBSCAN [EKSX96] where param-
eters are estimated [NHS*15]. When the quality of a subspace ex-
ceeds the highest yet observed quality gp.s;, DRESS retains it as a
candidate subspace for further extension, updates gp,, and stores
all contained clusters. At the end of an iteration, Scqn and all merge
candidates that led to a new g, are removed from the candidate
set. DRESS terminates when the candidate set is empty and returns
a ranking of subspaces and their associated clusters.

4. Related Work

We describe related works for both the analysis of cohort study data
and the visualization of subspace clusters.

Visual Analytics on Cohort Study Data. Zhang et al. proposed
an interactive visual analytics tool to analyze cohort populations
[ZGP14]. Cohort Analysis via Visual Analytics (CAVA) comprises
three main parts: The Cohort, views and analytics for analyzing
cohorts via interaction with user. Krause et al. [KPS16] provided
an interactive framework for Supporting Iterative Cohort Construc-
tion With Visual Temporal Queries (COQUITO). COQUITO en-
ables medical researchers to explore the dataset by iterative queries
via constraints. Klemm et al. [KOJL*14] presented a visual ana-
lytics system to identify subpopulations on the basis of data inter-
actions using three global clustering on shape parameters charac-
terizing the spinal canal to better understand backpain using SHIP
data. Klemm et al. [KLG™16] enabled epidemiologists to enter re-
gression formula and search for dimension combinations related to
an outcome, e.g. increased breast density. With heat maps indicat-
ing strong correlations users are guided towards potentially relevant

factors.

Visual Analysis of Subspace Clusters. Assent et al. [AKMS07],
Tatu et al. [TZB*12] and Hund et al. in [HBS*16] presented visual-
ization techniques to show the similarity between subspace clusters
and to illustrate their distribution.

5. Visual Analytics Support for Epidemiological Analysis

Epidemiologists mostly rely on statistical methods and simple visu-
alizations. Data mining methods are useful to them when they can
trust their findings. A visual analytics system where data mining is
not just a black box combined with explicit support for validation
is essential to support epidemiologists.

Here, we propose S-ADVISED as a web-based visual analytics
framework using d3.js library [BOH11] that combines several visu-
alization methods for discovery, validation and comparison of sub-
populations. The screenshot of S-ADVISED is shown in Fig. 1.

5.1. Requirements

Epidemiologists need to assess the quality of subspace clusters
based on their intended measurements. To evaluate discovered sub-
populations, we have to consider the following requirements for the
visualization of subspace clusters [HFB*16]:

Dimensionality: Epidemiologists are more interested in low-
dimensional subspace clusters to avoid overfitting. Knowledge de-
rived from subspace clustering should be transferred to clinical
practice, i.e. contribute to prevention, diagnosis and treatment of
diseases.

Cluster Size: The number of participants in each subpopulation
should be sufficiently large to support evidence of statistical sig-
nificance.

In-depth Information: A clear and compact visualization showing
the distributions of both involved and non-involved dimensions is
essential.

Cluster Compactness: Participants who belong to one subspace
cluster should be similar to each other with respect to their involved
dimensions.

Object and Dimension Redundancy: It is necessary to indicate the
overlap proportion of participants and dimensions in different sub-
populations.

Comparison with Global Mean: It is crucial to compare different
subpopulations with the whole population. As an example, epi-
demiologists are interested in investigating subpopulations that dif-
fer strongly from other subpopulations w.r.t. a specified attribute.
Dimension Variability: Subspace clustering algorithms minimize
the sparsity of data by ignoring dimensions with higher variance.
It might be interesting for epidemiologists to pursue the reason for
incorporating a high variance dimension in a cluster.

5.2. Exploration and Pattern Discovery

The S-ADVISED framework provides different well-known charts
and an overall view of subspace clusters to fulfill the epidemiolo-
gists’ requirements.

Global Overview. In the global view we have an overview of
all subspace clusters and the main characteristics of subspace clus-
ters: We illustrate subspace clusters by donut charts, since they
have a simple representation and we are able to encode enough
information in them to show different specifications of subpop-
ulations (Fig. 2). In the encoding of subspace clusters, sectors
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Figure 1: User interface of S-ADVISED: (a) tree view of input files, (b) charts panel juxtaposes pairwise dimension distributions of the
selected subspace cluster by scatterplots (both numeric), mosaic charts (both categorical), and stacked errorbars (mixed numerical / cate-
gorical) (c) replication settings, (d) global view of subspace clusters, (e) in-depth analysis, (f) statistical information.

stand for dimensions and their size depicts their variability based
on the variance. The donut chart’s radius size depicts the cluster
size. A bigger radius means that it contains more objects. The col-
ored sectors represent involved dimensions in subspace clustering
results and the grays are non-involved ones. Linking and brush-
ing techniques were implemented to show dimension overlaps. By
clicking on each dimension the corresponding dimension in other
subspace clusters will be highlighted. We provide a categoriza-
tion of dimensions based on the suggestions of epidemiologists.
Here, we propose four categories of dimensions: (1) Habits (e.g.
smoking status), (2) Physical condition (e.g. BMI), (3) Labora-
tory tests (e.g. serum GGT concentration) and (4) Medicaments
(e.g. amlidipine intake). We define the distance between the sub-
space clusters based on the shared dimensions and participants, as
in [AKMSO07]. To illustrate the distance (similarity) of subspace
clusters a multi-dimensional scaling (MDS) is employed to project
the clusters in 2D space. MDS is frequently used for evaluating
clustering [AKMSO07, HBS*16].

Charts and Validation. As illustrated in Fig. 1 (e), this part is
used for analysis of subspace clusters and it is accessible via the
chart panel. After finding any interesting pattern in one subspace
cluster these findings should be validated through replication by
expert users.

Charts. To show a compact overview of each subspace cluster, we
provide a donut heat map (Fig. 1 (e)(2)). In the donut heat map,
sectors stand for dimensions and rings represent individuals. Di-
mensions that do not contribute to one subspace cluster have a
gray scale coloring, and involved dimensions are mapped to col-
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Figure 2: Each subspace cluster is illustrated by a donut chart.
Coloring is based on the categorization of dimensions and the ra-
dius of the donut depicts the cluster size.

ors. Darker colors depict greater values; in contrast, brighter ones
stands for smaller values. An optional sorting based on the variabil-
ity is applied. Thus, participants with smaller values regarding the
dimension with highest variance have a smaller radius. Well-known
visualization techniques are used for the analysis of subspace clus-
ters. Mosaic charts (Fig. 1 (e)(4)) are used to show the relation-
ship of different nominal attributes. The user can dynamically se-
lect any two categorical dimensions (e.g. diabetes and fatty liver).
Heat maps (Fig. 1 (e)(1)) enable the epidemiologist to identify the
two clusters/ subpopulations that share the most dimensions or par-
ticipants. The distribution of numeric dimensions is shown via a
discretized scatterplot matrix (Fig. 1 (e)(3)) , equipped with his-
tograms of each dimension in the main diagonal. Stacked errorbars
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(Fig. 1 (e)(5)) compare different subspace clusters with the global
mean based on any selected numeric dimension in the whole data
set.

Validation. Subspace clustering algorithms usually produce lots of
subspace clusters. Additionally, subspace clusters may have arbi-
trary shape and subpopulations need to be defined as intervals in
the form of hyper-rectangles. One way to validate the subspace
clusters is replication. This means, if a specified subspace cluster
can be reproduced in an independent population, it is a relevant
subpopulation. Subpopulations are considered similar if they differ
similarly from the global mean regarding to a specific dimension.
Therefore, S-ADVISED lets epidemiologists adjust the shape of the
selected cluster using a scatterplot matrix.
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Figure 3: Each submitted rectangle is a candidate to form a new
subpopulation and transform the shape of the selected subspace
cluster.

6. Use Cases

In this section, we describe two uses cases. The first use case ex-
plains how analysts explore subspace clusters to select a subspace
cluster for validation. The second use case demonstrates how the
analyst checks reproducibility of selected subspace cluster. In all
steps, expert users have an overall view of all subspace clusters
(Fig. 1 (d)).

Exploration and Replication. To start, the expert user may be in-
terested to see the similarity between subspace clusters separately
with respect to the shared dimensions or participants. So, she can
select the heat map from the charts panel (Fig. 1 (b)(1)). As next
step, by zoom-in and tooltips (to see involved dimensions) she se-
lects a subspace cluster. For example, we selected S2-1 with three
numeric dimensions related to blood examinations (thromboplas-
tin time Quick, serum GGT, creatinine in urine) and two nominal
dimensions related to life style and medication use (smoking sta-
tus, enalapril), whereas all participants are ex-smokers. Next, by
selecting the donut heat map from the chart panel the user can get
an overview of the selected subspace cluster in a compact view via
in-depth analysis panel. The user can interactively click on a par-
ticipant (ring) and see the table of values in the footer. Moreover,
all subspace clusters that share this participant will be highlighted
in the global view panel. For the next step, based on the type of
information, the user can select a chart and determine its parameter
flexibly, i.e. in (Fig. 1 (e)) part 3, the user selected a scatterplot ma-
trix with selecting fatty liver from the sub-menu as discretization
parameter. By activating the replication (Fig. 1 (c)), the validation
phase based on the specified parameter for the number of selected

ranges (rectangles) by the expert user will be started. The user can
see combined participants of the selected subspace cluster with the
SHIP-TREND population. A scatterplot matrix is provided, defined
by the involved numeric dimensions. As shown in Fig. 3 (a), or-
ange points are positive and blue ones are negative fatty liver par-
ticipants from SHIP-2 data. The green points are participants from
SHIP-TREND. For the next step, the user can define the desired
ranges for dimensions by drawing a rectangle in one pair of di-
mensions. While the user is drawing and expanding a rectangle,
she can see highlighted corresponding individuals who are located
inside the rectangle w.r.t. other pairs of involved dimensions, see
(Fig. 3 (a)). Next, the labels of SHIP-TREND participants are pre-
dicted based on the drawn rectangle. To predict labels, 1-nearest
neighbor classification is applied. The user is enabled to draw mul-
tiple rectangles in different pairs of dimensions with distinct posi-
tions and diameter. Each drawn rectangle is a candidate to trans-
form the selected subspace cluster and to form a new subpopula-
tion with SHIP-TREND objects within specified intervals. As next
step, the epidemiologist should define ranges in terms of bound-
aries and a distribution regarding the outcome of fatty liver. To
do this, the tool displays Receiver Operating Characteristic (ROC)
curves (Fig. 3 (b)(6)). A ROC curve shows the relationship between
true positive rate (TPR or sensitivity) and false positive rate (FPR
or 1-specificity). The TPR measures the fraction of correctly classi-
fied diseased (positive) study participants. At the final step, the new
subpopulation is generated and integrated to the ovarall view. The
selected subspace cluster will be transformed to the defined rectan-
gular range.

Check reproducibility. In the following, the reproducibility of
the selected subpopulation is investigated. Different measures are
specified by epidemiologists to check the reproducibility of the
intended subpopulation [Cib16]. One measure is distribution. By
selecting the scatterplot matrix and mosaic chart, the analyst can
check the distributions of both subpopulations regarding to the tar-
get dimension. Involved dimensions in both subpopulations must
be the same. As we just consider involved dimensions, we have the
same number of dimensions in both subpopulations. The analyst
can see involved dimensions by the linking and brushing technique
in the global view. The size of both subpopulations should be in
the same range. It is achievable by comparing the radius size of
subpopulations and for more detail by the bar charts in the footer.
In our case, after the transformation phase S2-1 and T-1 have 95
and 104 participants, respectively. Subpopulations are considered
as replicated if they deviate similarly from the global mean. Thus,
the sorted stackbar chart shows the mean value of the whole popu-
lation and subpopulation based on involved dimensions.

7. Conclusion & Future Work

We presented S-ADVISED as a web-based visualization framework
for the discovery of subpopulations in cohort study data. The de-
sign of the system was based on site visits at the epidemiology
department and is largely based on ideas of epidemiologists, e.g.
for transforming clustering results in subpopulations and validat-
ing such subpopulations. We intend to develop a method that max-
imizes the product of sensitivity and specificity delivering recom-
mended hyper-rectangular approximation of a subpopulation which
subsequently can be adjusted based on the epidemiologists’ sugges-
tions.
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