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Abstract
In this supplement, we report results that are less central to evaluating our proposed method for interactive classification of
multi-shell diffusion MRI data, but still relevant. In particular, we report results from domain-specific features as an additional
baseline, and we separately report precision and recall values corresponding to the F1 scores in the main manuscript.

1. Results from Domain-Specific Features

For different purposes, such as accelerating measurements or hu-
man interpretation, domain-specific representations have been es-
tablished for data from multi-shell diffusion MRI. It is natural to
consider these as feature representations for classification tasks,
since they have been carefully designed to considerably reduce the
dimensionality while preserving important information.

1.1. SHORE Features

For accelerating diffusion MRI measurements with compressive
sensing, several domain-specific basis functions have been devel-
oped that permit a more concise representation of the diffusion
MR signal. They include the Spherical Polar Fourier (SPF) basis
[ATB09], SPF dual (SPFdual) basis [MCGD11], Solid Harmonic
(SoH) basis [DDLB∗11], and SHORE (simple harmonic oscillator
based reconstruction and estimation) [OKS∗09].

For our experiments, we selected SHORE because Merlet et
al. [MD13] found it to be superior to others for compressed sens-
ing recovery. We fitted SHORE basis functions to our data using
the Python package DIPY [GBA∗14], and used the corresponding
coefficients as a feature representation.

The dimensionality of the resulting feature vector can be varied
by tuning the radial order parameter of the SHORE basis: Setting
it to 2, 4, and 6 gives 7, 22, and 50-dimensional feature vectors,
respectively. Table S1 shows that, on both sets, results with a radial
order of 4 led to the highest average F1 score. Comparing results to
Table 1 in the main manuscript indicates that SHORE-4 allows us
to maintain the same classification accuracy as when using the raw
data, while speeding up random forest training. However, it does
not match the quality of PCA- or CNN-based features.

1.2. Kurtosis Features

The diffusional kurtosis model [JHR∗05] is frequently fitted to
multi-shell diffusion MRI data in order to generate human inter-
pretable maps, such as axial, radial, or mean kurtosis. Its parame-
ters are the coefficients of a second-order diffusion tensor, as well
as a fourth-order kurtosis tensor that accounts for non-Gaussian dif-
fusion. Taken together, they contain 21 coefficients, which we used
as a feature vector for our classification task. Results in Table S1
suggest that the diffusional kurtosis imaging (DKI) model is not
superior to SHORE-4 for tract classification.

2. Comparison of Precision and Recall

Table 1 in the main manuscript uses the F1 score to compare results
from classification with our proposed dual-branch CNN-based fea-
tures to results obtained with the raw signal or PCA coefficients.

F1 combines the achieved precision and recall. To allow for a
more detailed comparison, Table S2 reports the corresponding pre-
cision values, Table S3 the corresponding recall. Our features dom-
inate alternatives in almost all cases, with respect to both precision
and recall, often by a substantial margin. The only exception are
the corticospinal tract and the corpus callosum in Set 1, for which
PCA-based features achieved a slightly higher recall, at the cost of
substantially decreased precision.
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Se
t1

Pre-Processing CG CST FX CC Avg. RF training RF testing

SHORE-2 162.0 s 0.2732 0.3867 0.1742 0.6141 0.3620 1.84 s 6.75 s
SHORE-4 338.0 s 0.2489 0.4587 0.3098 0.6348 0.4131 2.60 s 6.77 s
SHORE-6 537 s 0.1747 0.4295 0.2639 0.6078 0.3690 4.16 s 6.90 s
DKI 3131 s 0.2271 0.4189 0.2197 0.5856 0.3628 2.63 s 6.67 s

Se
t2

IFO-l IFO-r ILF-l ILF-r SLF-l SLF-r Avg. RF training RF testing

SHORE-2 0.1909 0.2287 0.1839 0.1324 0.1193 0.1964 0.1753 2.03 s 10.58 s
SHORE-4 0.1807 0.2137 0.2050 0.1801 0.1389 0.2130 0.1886 2.83 s 10.43 s
SHORE-6 0.1324 0.1628 0.1733 0.1453 0.0864 0.1477 0.1413 4.18 s 10.55 s
DKI 0.1814 0.2161 0.1953 0.1468 0.1260 0.2053 0.1785 2.75 s 10.63 s

Table S1: The classification accuracy with domain-specific features matches the one when using the raw data, at a reduced computational
cost for training (compare to Table 1 in the main manuscript). However, it does not match the quality of PCA- or CNN-based features.

Se
t1

CG CST FX CC Avg.

Raw Signal 0.3995 0.3959 0.5150 0.5962 0.4766
PCA (k=11) 0.4094 0.3774 0.5356 0.5832 0.4764
MultiScaleAE2d 0.6363 0.7025 0.5410 0.7096 0.6473

Se
t2

IFO-l IFO-r ILF-l ILF-r SLF-l SLF-r Avg.

Raw Signal 0.4368 0.4794 0.2802 0.4985 0.6061 0.3432 0.4407
PCA (k=11) 0.3422 0.4285 0.3125 0.2501 0.4654 0.3522 0.3585
MultiScaleAE2d 0.5485 0.6498 0.4636 0.6335 0.6069 0.5582 0.5768

Table S2: Precision of classifiers trained with different features. Values correspond to F1 scores in Table 1 of the main manuscript.

Se
t1

CG CST FX CC Avg.

Raw Signal 0.1392 0.6133 0.2029 0.8099 0.4413
PCA (k=11) 0.3431 0.6536 0.2477 0.8361 0.5201
MultiScaleAE2d 0.4963 0.6330 0.3178 0.8174 0.5661

Se
t2

IFO-l IFO-r ILF-l ILF-r SLF-l SLF-r Avg.

Raw Signal 0.1137 0.1514 0.2308 0.0907 0.1168 0.2173 0.1534
PCA (k=11) 0.1658 0.3029 0.2541 0.1351 0.2782 0.2953 0.2386
MultiScaleAE2d 0.4241 0.3929 0.5460 0.3200 0.5745 0.7187 0.4960

Table S3: Recall of classifiers trained with different features. Values correspond to F1 scores in Table 1 of the main manuscript.
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