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Abstract
Vertex programs and pixel shaders found in modern graphics hardware are commonly used to enhance the real-
ism of rendered scenes. Recently these hardware facilities were exploited to obtain interactive non-photorealistic
effects and to perform low-level image processing tasks like texture filtering for volume visualization. We exploit
modern graphics hardware to accomplish the higher level vision task of dense stereo reconstruction. In our system
almost every stage of the matching procedure is executed on 3D graphics hardware, therefore utilizing the par-
allel vertex and pixel pipelines. Our implementation performs accurate calculations and does not suffer from the
limited precision of color channels. On state of the art PC hardware our algorithm requires less than one second
to reconstruct a dense mesh with subpixel accuracy for input images with one megapixel resolution.

Categories and Subject Descriptors(according to ACM CCS): I.4.8 [Image Processing and Computer Vision]: Scene
Analysis I.3.1 [Computer Graphics]: Hardware Architecture I.2.10 [Artificial Intelligence]: Vision and Scene Un-
derstanding

1. Introduction

The automatic generation of 3D models from digital images
is a very active research area. The obtained models can be
used for planning tasks, measurement problems and in par-
ticular for visualization of virtual environments. Typically
the first step to acquire a reconstructed 3D model is the gen-
eration of a dense point cloud or detailed mesh suitable for
higher-level processing. In this work we describe a dense re-
construction procedure that can be effectively accelerated by
graphics hardware. Our approach generates a 3D mesh for
objects visible in a pair of stereo images by finding a dense
set of corresponding points between the images.

The basic element of our reconstruction software is im-
age warping, i.e. deforming an image in accordance to a
(piecewise linear) 2D mapping. The texturing capability of
3D graphics hardware is perfectly suited to execute this step
very fast, therefore it is reasonable to utilize this feature of
graphics hardware to obtain faster stereo matching methods.
Before versatile vertex and fragment programs were avail-
able, every other step of dense stereo matching had still to be
performed on the main CPU. Such an approach is typically
not much faster than a pure software based implementation,
since the warped image has to be read back from video mem-

ory into main memory. This operation proves to be rather
slow for most graphic boards, since this is an unoptimized
and infrequently used feature. There are additional motiva-
tions for moving as many steps as feasible to graphics hard-
ware:

• Most stages of dense stereo matching can be effectively
executed in parallel. Performing these steps with a general
purpose CPU does not exploit the parallelism.

• For some elementary operations required during the
stereo matching procedure (like bilinear pixel access)
modern 3D graphics hardware has very fast special pur-
pose circuits.

For these reasons we moved as much of the stereo matching
procedure as possible to modern graphics hardware. With
the general availability of programmable vertex and pixel
shaders we are able to execute almost all stages of our stereo
matching method on 3D hardware without the need of trans-
fering a large amount of data between main and video mem-
ory.
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2. Related Work

2.1. Reconstruction from Stereo Images

Stereo matching is the process of finding corresponding or
homologous points in two or more images and is an essential
task in computer vision.

We distinguish between feature and area based methods.
Feature based methods incline to sparse but accurate results,
whereas area based methods permit very dense homologous
points. The former methods use local features that are ex-
tracted from intensity or color distribution. These extracted
feature vectors are utilized to solve the correspondence prob-
lem. Area based methods employ a similarity constraint,
where corresponding points are assumed to have similar in-
tensity or color within a local window. Frequently a conti-
nuity constraint is used as well that results in rather smooth
reconstruction. This additional constraint is unavoidable in
homogeneous textured regions. If the orientation of the im-
ages is known it is also advisable to use the so called epipo-
lar constraint20. Each corresponding point in one image has
to lie on the projected line of sight of the other images.
Therefore only one degree of freedom remains for each cor-
responding point. This leads to a significant improvement
in accuracy as well in performance. A good collection and
comparison of different matching methods can be found in2.
In order to obtain faster convergence and to avoid local min-
ima we employ a hierarchical approach for matching9, 11,
which is in particular inspired by the work of Redert et al.17

The Triclops vision system7 consists of a hardware setup
with three cameras and appropriate software for realtime
stereo matching. The system is able to generate depth im-
ages at a rate of about 20Hz for images up to 320x240 pixels
on current PC hardware. The software exploits the partic-
ular orientation of the cameras and MMX/SSE instructions
available on current CPUs. In contrast to the Triclops system
our approach can handle images from cameras with arbitrary
relative orientation.

Yang et al.22, 21 developed a fast stereo reconstruction
method performed in 3D hardware by utilizing a plane
sweep approach to find correct depth values. The number
of iterations is linear in the requested resolution of depth
values. Therefore their method is very effective for coarse
depth estimation in real-time, but only partially suitable for
high quality reconstructions.

2.2. Accelerated Computations in Graphics Hardware

Even before programmable graphics hardware was avail-
able, the fixed function pipeline of 3D graphics proces-
sors was utilized to accelerate numerical calculations5, 6 and
even to emulate programmable shading15. The introduction
of a quite general programming model for vertex and pixel
processing10, 16 opened a very active research area. The pri-
mary application for programmable vertex and fragment

processing is the enhancement of photorealism in interac-
tive visualization systems (e.g.1, 3) and entertainment appli-
cations (12, 13).

Recently several authors identified current graphics hard-
ware as a kind of auxiliary processing unit to perform SIMD
(single instruction, multiple data) operations efficiently.
Thompson et al.19 implemented several non-graphical algo-
rithms to run on programmable graphics hardware and pro-
filed the execution times against CPU based implementa-
tions. They concluded that an efficient memory interface (es-
pecially when transfering data from graphics memory into
main memory) is still an unsolved issue. For the same reason
our implementation is designed to minimize memory traffic
between graphics hardware and main memory. Strzodka18

discusses the emulation of higher precision numbers with
several 8 bit color channels. We faced a similar problem of
manipulating large integer values and storing them in the
frame buffer and texture maps for later use.

3. Overview of Our Method

The input for our procedure are two relatively oriented gray-
scale images suitable for stereo reconstruction and a coarse
initial mesh to start with. This mesh can be a sparse recon-
struction obtained by the relative orientation procedure (e.g.
a mesh generated from a sparse set of corresponding points).
In our experiments we use a planar mesh as the starting point
for dense reconstruction. One image of the stereo pair is re-
ferred as thekey image, whereas the other one is denoted
as thesecondary image. Consequently the cameras (resp.
their positions) are designated as thekey cameraand thesec-
ondary camera.

The overall idea of the stereo matcher is that if the current
mesh hypothesis corresponds to the true model, the appro-
priately warped secondary image resembles the key image.
This similarity is quantified by some suitable error metric on
images, which is the sum of absolute difference values in our
current implementation. Modifying the current mesh results
in different warped secondary images with potentially higher
similarity to the key image (see Figure1). The current mesh
hypothesis is iteratively refined to generate and evaluate im-
proved hypotheses. The huge space of possible mesh hy-
potheses can be explored efficiently, since local mesh refine-
ments have only local impacts on the warped image, there-
fore many local modifications can be applied and evaluated
in parallel.

The matching procedure consists of three nested loops:

1. The outermost loop determines the mesh and image reso-
lutions. In every iteration the mesh and image resolutions
are doubled. The refined mesh is obtained by linear (and
optionally median) filtering of the coarser one. This loop
adds the hierarchical approach to our method.

2. The inner loop chooses the set of vertices to be modified
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Figure 1: Mesh reconstruction from a pair of stereo images.
Vertices of the current mesh hypothesis are translated along
the eye ray of the key camera. The image obtained from the
secondary camera is warped onto the mesh and the effect in
the local neighborhood of the modified vertex is evaluated.

and updates the depth values of these vertices after per-
forming the innermost loop.

3. The innermost loop evaluates depth variations for can-
didate vertices selected in the enclosing loop. The best
depth value is determined by repeated image warping and
error calculation wrt. the tested depth hypothesis. The
body of this loop runs entirely on 3D graphics hardware.

To perform image warping the current mesh hypothesis
is rendered like a regular heightfield as illustrated in Fig-
ure 2. As it can be seen in Figure3, a change of the depth
value of one vertex has only influence on few adjacent tri-
angles. Therefore one fourth of the vertices can be modified
simultaneously without affecting each other. The optimiza-
tion procedure to minimize the error between key image and
warped image is a sequence of determining the best depth
values for alternating fractions of the mesh vertices. Since
vertices of the grid are numbered such that vertices, which
are modified and evaluated in the same pass, comprise a con-
nected block (Figure4), we denote the fraction of vertices to
change as a block.

In every step the depth values of one forth of the vertices
is modified and the local error between the key image and
the warped image in the affected neighbourhood of the ver-
tex is evaluated. For every modified vertex the best depth
value is determined and the mesh is updated accordingly.
The procedure to calculate and update error values for mod-
ified vertices is outlined in Figure5.

Figure 2: The regular grid as seen from the key camera. This
grid structure allows fast rendering of the mesh using trian-
gle strips with only one call. The marked vertices comprise
one block. These vertices are shifted on the camera ray and
evaluated simulateously in every iteration.

Modified vertex

Affected triangles

Accumulated neighborhood

Figure 3: The neighborhood of a currently evaluated vertex.
Moving this vertex on the camera ray will only effect the 6
shaded triangles. The actual error for this vertex is calcu-
lated for the enclosing rectangle, that is still disjoint with
the neighborhoods of all other tested vertices.

3.1. Image Warping and Difference Image Computation

Since the vertices of the mesh are moved along the eye rays
of the key camera, the mesh as seen from the first camera is
always a regular grid and mesh modifications do not distort
the key image. The appearance of the secondary image as
seen from the key camera depends on the mesh geometry.

From the 3D positions of the current mesh vertices and the
known relative orientation between the cameras, it is easy to
use automatic texture coordinate generation with appropriate
coefficients to perform the image warping step. To minimize
updates of mesh geometry we use our own vertex program to
calculate texture coordinates for the secondary image. This
vertex shader is described in more detail in Section4.1.

3.2. Local Error Summation

After the difference between the key image and the warped
image is computed and stored in a pixel buffer, we need
to accumulate the error in the neighbourhoods of modified
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Figure 4: The correspondence between vertex indices and grid positions.
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Figure 5: The basic workflow for one iteration. For the cur-
rent mesh hypothesis a difference image between key image
and warped secondary image is calculated in hardware. The
error in the local neighborhood of the modified vertices are
accumulated and compared with the previous minimal error
value. The result of these calculations are minimal error val-
ues (stored in the red, green and blue channel) and the index
of the best modification so far (stored in the alpha channel).
All these steps are executed in graphics hardware and do
not require transfers of large datasets between main mem-
ory and video memory.

vertices. We perform a repeated downsampling procedure,
which sums up four adjacent pixels into one resulting pixel.
The target pixel buffer has half the resolution in every di-
mension of the source buffers. If one vertex is located every
four pixels, the downsampling is performed three times to
sum the error in an 8 by 8 pixel window.

The downsampling procedure is rather easy: the input tex-

ture is bound to four texture units and a quadrilateral cov-
ering the whole viewport is rendered. The texture coordi-
nates for the 4 texturing units are jittered slightly, such that
the correct adjacent pixels are accessed for each final frag-
ment. The filtering mode for the source textures is set to
GL_NEAREST.

We need to mention that only 2n−1× 2n−1 error values
are computed for a mesh with(2n + 1)× (2n + 1) vertices.
Vertices at the right and lower edge of the grid do not have
an associated error value. For these vertices we set the depth
value equal to depth of left resp. upper neighbour.

3.3. Determining the Best Local Modification

If δ denotes the largest allowed depth change, then the tested
depth variations are sampled regularly from the interval
[−δ,δ]. To minimize the amount of data that needs to be
copied from graphics memory to main memory, we do not
directly read back the local errors to determine the best local
modification in software. We store the currently best local
error and the corresponding index in a texture and update
these values within an additional pass. These values are read
back after all depth variations for one block of vertices are
evaluated.

3.4. Hierarchical Matching

In order to avoid local optima during dense matching we uti-
lize a hierarchical approach. The coarsest level consists of
a mesh with 9 by 9 vertices and an image resolution of 32
by 32 pixels. The initial model comprise a planar mesh with
the approximate correct depth values known from the points
of interest generated by our orientation procedure. After a
fixed number of iterations the mesh calculated in the coarser
level is upsampled (using a bilinear filter) and used as input
to the next level. A median filter is optionally applied to the
mesh to remove potential outliers especially found in homo-
geneous image regions.

The largest allowed displacement for mesh vertices is de-
creased for higher levels to enable higher precision. It is as-
sumed that the model generated at the previous level is al-
ready a sufficiently accurate approximation of the true model
and at the higher level only local refinements to the mesh are
required. In the current implementation we halve the largest
evaluated depth variation when entering the next hierarchy
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level. The corsest level starts with a maximum depth vari-
ation roughly equal to the distance of the object to the key
camera.

4. Implementation

In this section we describe in more detail some
aspects of our approach. Our implementation is
based on OpenGL extensions available for the ATI
Radeon 9700Pro, namely VERTEX_OBJECT_ATI,
ELEMENT_ARRAY_ATI, VERTEX_SHADER_EXTand
FRAGMENT_SHADER_ATI4. These extensions are avail-
able on the Radeon 8500 and 9000 as well, therefore our
method can be applied with these older (and cheaper) cards,
too. For better reading we sketch the vertex program inCg
notation14.

The major design criterion is to minimize the amount of
data transfered between the CPU memory and GPU mem-
ory. Especially reading back data from the graphics card is
very slow, therefore only absolutly necessary information is
copied from video memory.

4.1. Mesh Rendering and Image Warping

For maximum performance we employ the
VERTEX_OBJECT_ATI and ELEMENT_ARRAY_ATI
OpenGL extension to store mesh vertices and connectivity
information directly in graphics memory. In every iteration
one fourth of the vertices needs to be updated to test mesh
modifications. In order to reduce memory traffic we update
the mesh only after all modifications are evaluated and the
best modification is determined. The current tested offset is
a parameter to a vertex program, that moves vertices along
the camera ray as indicated by the given offset.

Additionally the mesh vertices are ordered such that ver-
tices that are modified in the same pass comprise a single
connected block, therefore only one fourth of the vertex ar-
ray object stored in video memory needs to be updated.

We sketch the vertex program that calculates the ap-
propriate texture coordinates for the secondary image in
Figure 6. The vertex attributes consists of the position
(I.position ) and the primary color (I.color ) encod-
ing the block the vertex belongs to. Program parameters
common for all vertices are

1. the currently tested depthdisplacement for the active
block,

2. a matrixM1transforming pixel positions into eye rays of
the first camera,

3. and a matrixM2representing the transformation from the
first camera into image positions of the second camera.

If a vertex belongs to blocki, then thei-th component of the
primary color of this vertex is set to one. The other chan-
nels are set to zero. If all vertices of blockj are currently

evaluated, the displacement represented as a 4-component
vector has the current offset value at positionj and zeros
otherwise. Therefore a four-component dot product between
the primary color and the given displacement is either the
displacement or zero, depending whether the block numbers
match.

struct appdata {
float4 position : POSITION;
float4 color : COLOR0;

};

struct v2f {
float4 HPOS : POSITION;
float4 TEX0 : TEXCOORD0;

};

v2f main(appdata I,
uniform float4x4 M1,
uniform float4x4 M2,
uniform float4 displacement)

{
v2f O;

float4 winPos = I.position;
winPos.z = 0; winPos.w = 1;

float4 pos = mul(M1, I.position);

float oldDepth = I.position.z;
float delta = dot(displacement, I.color);
float newDepth = oldDepth + delta;
float4 newPos = newDepth * pos;

O.TEX0 = mul(M2, newPos);
O.HPOS = mul(glstate.matrix.mvp, winPos);

return O;
} // main

Figure 6: The vertex program responsible for warping the
secondary image. This vertex shader calculates appropriate
texture coordinates for the second image based on the rela-
tive orientation of the cameras and the currently evaluated
offset.

If A1 andA2 are the internal parameters of the key resp.
the second camera (arranged in an affine matrix) andR is the
relative orientation between the cameras, thenM1andM2are
calculated as follows:

M1=


1

1
0 1

1

×A−1
1
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and

M2=


1/w

1/h
1
1 0

×A2×R,

wherew andh represent the image width and height in pix-
els. If M1 is applied to a vector(x,y, ·,1), the result is the
direction(∆x,∆y,1,1) of the camera ray going through the
pixel at (x,y). This direction is scaled by the target depth
value to obtain the vertex in the key camera space. Conse-
quently, the vertex data for mesh points consists of vectors
(x,y,z,1), where(x,y) are the pixel coordinates in the key
image andz is the current depth value. The obtained texture
coordinates(s, t,q,q) for the secondary image are subject
to perspective division prior to texture lookup. On current
hardware perspective texture lookup is performed for every
texel, hence the correct perspective projection (and warping)
is achieved.

Additionally we remark, that texture coordinate transfor-
mation from one image to another cannot be accomplished
only by one transformation matrix: in this case the depth
changes are applied in screen space, which maps world co-
ordinates nonlinearly due to perspective division.

The described image warping transformation can result in
texture coordinates lying outside the secondary image. It is
possible to ignore mesh regions outside the secondary image
explicitly, but according to our experience simple clamping
of texture coordinates is sufficient in those cases.

4.2. Encoding of Integers in RGB Channels

Although the input images are grayscale images and one
8 bit gray channel is sufficient to represent the difference
image, summation of local errors is likely to generate over-
flows. The newest generation of graphics cards supports float
textures, but at the time of writing no pixel buffer format al-
lowed color channels with floating point precision. There-
fore we decided to employ a slightly more complex method
to perform error summation with 8 bit RGB channels. In our
current implementation no float textures are required.

Our integer encoding assigns the least significant 6 bits
of a larger integer value to the red channel, the middle 6
bits to the green channel and the remaining bits to the blue
channel. The two most significant bits of the red and green
channel are always zero. This encoding allows summation
of four error values without loss of precision using a frag-
ment program utilizing a dependent texture lookup. After
(component-wise) summation of 4 input values the most sig-
nificant bits of the red and green component of the register
storing the sum are possibly set, hence this register requires
an additional conversion to obtain the final error value with
the desired encoding. This conversion is performed using a
256 by 256 texture map.

If more than four values are summed in one step, the num-
ber of spare bits needs to be adjusted, e.g. if 8 values are
summed in one pass, the three most significant bits of the
red and green channel must be reserved.

5. Results

We tested our hardware based matching procedure on artif-
ical and on real datasets. In all test cases the source images
are grayscale images with a resolution of 1024 by 1024 pix-
els. For the real datasets the relative orientations between
stereo images are determined using the method described by
Klaus et al.8

The artificial dataset comprise two images of a sphere
mapped with an earth texture rendered by the Inventor scene
viewer (Figure7). The meshes obtained by our reconstruc-
tion method are displayed as point set for easier visual eval-
uation. Timing statistics for this dataset reconstructed at dif-
ferent resolutions are given in Table1. The matching pro-
cedure performs 8 iterations with 7 tested depth variations
for each hierarchy level. These values result in high qual-
ity reconstructions in reasonable time. Therefore the pipeline
shown in Figure5 is executed 56 times for each level. The
number of levels varies from 4 to 6 depending on the given
image resolution.

Hardware Resolution Matching time

Radeon 9700 Pro 256x256 0.187s
512x512 0.312s
1024x1024 0.71s

Radeon 9000 Mobility 256x256 0.231s
512x512 0.66s
1024x1024 2.23s

Table 1: Timing results for the sphere dataset on two differ-
ent graphic cards.

The real datasets consist of resampled grayscale images of
facades with given orientation. The reconstructed models are
visualized in Figure8–9. Note, that wrong matches occur in
homogeneous regions showing the sky. Since the number of
iterations is equal to the one chosen for the artificial dataset,
the times required for dense reconstruction are similar.

6. Conclusion and Future Work

We presented a method to reconstruct dense meshes from
stereo images that is almost completely performed in pro-
grammable graphics hardware. Pairs of oriented images with
one megapixel resolution can be matched from scratch in
less than one second on current consumer level hardware.

Future work includes the use of several images to obtain
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more accurate matching results. Additionaly our framework
is applicable to estimate disparity maps instead of mesh ge-
ometry, therefore the relative orientation and dense recon-
struction can be calculated simulatenously. In this case depth
variations along the camera rays are replaced with displace-
ments of mesh vertices of an initially regular 2D grid. This
approach can be applied in settings where fast, but not very
accurate reconstructions are required (e.g. for robot naviga-
tion).

Since our approach is originally targeted to speed up high
quality reconstructions, there remains some work to be done
to overcome hardware limits in texture and pixel buffer res-
olutions. Our goal is to obtain dense reconstruction for in-
put images with a resolution of more than 10 Megapixels.
The presented current matching procedure has difficulties
with homogeneous image regions with little texture. Our
CPU based implementation of a high-quality stereo matcher
demonstrates, that modified error metrics incorporating a
smoothness term give better results in such cases. We added
preliminary support for smoother reconstructions (at the ex-
pense of slightly longer matching time), but this extension
requires still more investigations. The obtained models have
better quality in regions with homogeneous textures. These
enhancements rely on higher accuracy of color channels
found in newest generation graphics hardware.

This work has been done in the VRVis research cen-
ter, Graz and Vienna/Austria (http://www.vrvis.at), which is
partly funded by the Austrian government research program
Kplus.
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(a) The key image (b) The second image (c) The reconstructed model

Figure 7: Results for the artifical earth dataset.

(a) The key image (b) The second image (c) The reconstructed model

Figure 8: Results for a dataset showing a historic building.

(a) The key image (b) The second image (c) The reconstructed model

Figure 9: Results for a dataset showing an apartment house.
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