
Thirteenth Eurographics Workshop on Rendering (2002)
P. Debevec and S. Gibson (Editors)

Hardware-Accelerated Point-Based Rendering of Complex
Scenes

Liviu Coconu and Hans-Christian Hege

Zuse Institute Berlin (ZIB), Germany

Abstract

High quality point rendering methods have been developed in the last years. A common drawback of these ap-
proaches is the lack of hardware support. We propose a novel point rendering technique that yields good image
quality while fully making use of hardware acceleration.
Previous research revealed various advantages and drawbacks of point rendering over traditional rendering. Thus,
a guideline in our algorithm design has been to allow both primitive types simultaneously and dynamically choose
the best suited for rendering. An octree-based spatial representation, containing both triangles and sampled points,
is used for level-of-detail and visibility calculations. Points in each block are stored in a generalized layered depth
image. McMillan’s algorithm is extended and hierarchically applied in the octree to warp overlapping Gaussian
fuzzy splats in occlusion-compatible order and hence z-buffer tests are avoided. We show how to use off-the-shelf
hardware to draw elliptical Gaussian splats oriented according to normals and to perform texture filtering. The
result is a hybrid polygon-point system with increased efficiency compared to previous approaches.

1. Introduction

Although graphics hardware technology is one of the most
rapidly advancing areas in computer industry, the complex-
ity of models and scenes to be rendered seems to grow
even faster. Applications aiming at interactive rendering of
large virtual environments or extremely complex models
must deal with the problem of unnecessarily processing large
amounts of geometry that only cover a few screen pixels.
Geometrical complexity should be adapted to the object’s
screen size.

Considerable research effort has been devoted in the past
years to this subject, resulting in a variety of approaches,
most of them being based on level-of-detail (LOD) control.
One intensively investigated approach is mesh simplifica-
tion. An appealing alternative to pure polygon based ren-
dering turned out to be the point rendering paradigm. Rep-
resenting object surfaces as sets of points without connec-
tivity allows for easier simplification and generation of LOD
representations. Recent papers have evidenced advantages of
points for fast rendering of very complex models19. Others
17, 25 have shown that point models also allow for high qual-
ity rendering. While current hardware is highly tailored for

polygon rendering, there is unfortunately only limited sup-
port for point primitives. For this reason, rendering methods
offering high quality results must be implemented in soft-
ware7, 17, 25.

Point-based rendering can be more efficient than tradi-
tional rendering for complex-shaped models if triangles oc-
cupy a small screen area. If the projected screen area grows,
traditional rendering becomes more efficient. The idea of
combining the two paradigms has been investigated23, 4, 2,
resulting in systems that benefit from the advantages of both
primitives and a wide range of available LOD representa-
tions. This research clearly shows that such systems could
greatly benefit from efficient, but also high quality, point ren-
dering.

The current paper is the result of an analysis whether is
possible to use hardware acceleration for point rendering
such that image quality similar to previous techniques is
achieved while rendering speed is boosted. Our main con-
tribution is a novel rendering algorithm based on fuzzy el-
liptical Gaussian splats, which can be efficiently rendered
using recently introduced hardware features (point sprites,
programmable geometry and texture pipelines). The main

c© The Eurographics Association 2002.

http://www.eg.org
http://diglib.eg.org


Coconu and Hege / Hardware-Accelerated Point-Based Rendering of Complex Scenes

challenges are to correctly render overlapping fuzzy splats
on z-buffer hardware in one rendering step and to perform
texture filtering. We ensure correct blending order by using
a per-object octree representation similar to a LDI tree21, 3

which we call ’loose’ LDI tree, constructed in a pre-process.
We then extend McMillan’s algorithm15, 16, 14 to warp this
hierarchy of overlapping splats in approximate back-to-front
order and discuss the limitations and problems that may oc-
cur. Another issue that we address is the integration of point
and triangles primitives in one rendering system. We record
both points and triangles in the LOD hierarchy. During ren-
dering, we switch to triangles if the point density is too low
to ensure a hole-free surface. This leads to the situation in
which parts of one object are rendered with points and oth-
ers with triangles.

We use hardware also to perform mipmap texture filtering
similar to Pfister et al.17, and to draw elliptical Gaussians
oriented by the per-point normal with low overhead. This re-
sults in similar image quality, but uses hardware acceleration
and thus saves CPU resources and allows CPU/GPU paral-
lelism.

The method is applicable to any 3D geometric model
which can be decomposed into triangles. It supports instance
sharing, which makes it particularly attractive for demanding
applications like urban walkthroughs and interactive land-
scape visualization. The hybrid approach ensures efficient
rendering of both magnified and minified objects by employ-
ing in each case the best suited rendering primitive. A wide
range of LOD representations is available, which all benefit
from hardware acceleration and thus ensure a good workload
distribution between host processor and graphics hardware.
At the same time, the simple and robust point rendering al-
gorithm guarantees good image quality also for point prim-
itives. Other types of drawing primitives could also be inte-
grated, as well as scene occlusion culling using the already
computed occlusion-compatible ordering.

2. Related Work

Over the recent past years, there have been many papers on
point- or image-based rendering. The pioneering paper of
Levoy and Whitted10 proposes the use of points to model
and render 3D continuous surfaces with textures. Splatting
with fuzzy points and an adapted A-Buffer algorithm imple-
mented in software are used for image reconstruction.

Grossman and Dally6, 7 propose an object representation
consisting of a dense set of surface point samples which
contain color, depth and normal information. Max13 and
Gortler 5 represent scenes as collections of parallel projec-
tions with multiple depths layers – so called layered depth
images (LDI). Shade et al.21 used LDIs as intermediate
representation and developed a basic method for rendering
these, employing an ordering algorithm proposed by McMil-
lan 15, 16, 14 to splat points in back-to-front order as well as
incremental warping.

Several extensions of the LDI concept have been pro-
posed. Lischinski12 introduce the so-called layered depth
cube, consisting of three orthogonal LDIs. Chang3 intro-
duced the LDI tree combining a hierarchical space partition-
ing scheme with the LDI concept. During rendering the LDI
tree is traversed to the level that matches the output resolu-
tion.

Rusinkiewicz and Levoy19 combine a multi-resolution hi-
erarchy based on bounding spheres with a point rendering
system. They mention fuzzy splatting as an alternative for
better reconstruction and implemented it using multi-pass
rendering.

Pfister et al.17 perform sampling of geometrical complex
textured objects into LDIs from 3 orthogonal views and cre-
ate a spatial octree-based representation called LDC tree.
Optionally, on each level the 3 LDIs are merged into a single
one and the duplicated points are removed. The image recon-
struction relies on so-called visibility splatting for removing
invisible points and detecting holes, which are then filled us-
ing different reconstruction kernels to guarantee high qual-
ity texture filtering. The goal is the development of a point
rendering pipeline which can be easily implemented in hard-
ware.

Wand et al.23 proposed a splatting approach combined
with level of detail control to render impressively complex
scenes. They use a variable number of random points sam-
pled on the fly and rendered in sampling order. However, the
texture filtering problem is not specifically addressed and the
splats are opaque squares.

Techniques specifically aiming at high quality point ren-
dering are presented by Zwicker et al.25 and Schaufler et
al. 20. Zwicker et al.25 extend the resampling framework of
Heckbert9 to irregular point grids to filter high quality tex-
tures.

Recent papers4, 2 investigate more closely the integration
of point and geometry rendering in one system and pro-
pose data structures which allow fine-grained transitions be-
tween different primitives driven by each primitive’s render-
ing costs. This would ideally result in a totally balanced sys-
tem, but there is also an overhead associated with primitive
selection. Stamminger and Drettakis22 propose an elegant
and efficient sampling scheme for complex and procedu-
ral objects. A very recent paper of Ren et al.18 proposes
a hardware-accelerated, multi-pass implementation of EWA
surface splatting25.

Our rendering method was inspired by several of these
techniques , especially the work of Pfister et al.17. In contrast,
we specifically aim at efficient usage of existing graphics
hardware and our main target are interactive applications like
virtual walkthroughs.

c© The Eurographics Association 2002.



Coconu and Hege / Hardware-Accelerated Point-Based Rendering of Complex Scenes

GeometryPoints

LOD selection

Shading
Texture filtering

Warpingloose LDI octree

Rendering

Traditional Back-to-front ordering

Fuzzy splatting

Textured View frustum culling

LOD generation
Sampling

triangles

Figure 1: Schematical overview of the algorithm.

3. Method Overview

The proposed method consists of the following steps
(Fig. 1): in a preprocessing step, an octree-based LOD hi-
erarchy containing the original triangles and sampled points
is built. During rendering, this spatial structure is used to se-
lect the level of detail and draw the scene parts (i.e. octree
blocks) in appropriate resolution, using either triangles or
points. The point rendering technique will be the main focus
of the rest of the paper.

4. Preprocessing

The off-line preprocessing phase of the algorithm takes an
arbitrary triangulated model as input, chooses a set of sample
points on the model’s surface and computes a LOD hierarchy
of both points and triangles.

Conceptually, an object is sampled from three orthogonal
view directions corresponding to the axes of its bounding
box. Sampling and LOD generation from points is similar in
many respects to Pfister et al.17. Thus in the following we
will only note the differences.

Instead of a ray tracer, our current implementation uses
a geometry rasterizer for point sampling. Each triangle con-
tained in a leaf octree node is orthogonally projected on the
bounding cube face and rasterized at the fixed grid resolu-
tion. Position, normal, material and texture information are
computed by linear interpolation between the vertices and
recorded for each point sample. This simple rasterization
technique results in a short preprocessing time. A ray tracer
could potentially offer better results and can be easily used
instead.

In this way, we first obtain 3 LDIs, similar to the system of
Pfister et al.17. In contrast to their work, for reasons that will
be made clear in the rendering section, we always merge the
three LDIs into a single data structure which we callloose
LDI (LDDI). This is similar to a LDI, but the original sam-
pled (x,y,z)-coordinates of each sample are preserved and
explicitly stored per sample. As such, the LLDI structure is
only a spatial classification of the contained samples. Be-
sides points, all triangles contained in a leaf octree cell are

stored at that node. After the geometry is sampled into the
leaf octree nodes, we further construct the rest of the octree
bottom-up, as Fig.2 shows.

Figure 2: Level-of-detail generation by sub-sampling the original
loose LDI (shown in 2D). The sampling points do not strictly match
the LDI grid.

During rasterization, the surface attributes are stored at
each sampled point. Special attention is required by the tex-
ture sampling, since it is performed at preprocessing time in
a view-independent fashion and at a fixed resolution. Similar
to Pfister et al.17, we perform view independent EWA (El-
liptical Weighted Average, described by Heckbert9, 8) tex-
ture pre-filtering by projecting Gaussian kernels in texture
space and store several mipmap levels per sample to deal
with minification. Due to the hybrid nature of our rendering
algorithm, we don’t have to take magnification into account,
since in this case the original geometry is rendered with tra-
ditional texture mapping.

The sampling process and data structure described above
refer to a single three-dimensional object. For scenes con-
taining many objects, we preserve instantiation by encoding
the scene as a collection of nodes representing instances of
objects. Each node contains a pointer to the corresponding
sampled object and a transformation matrix which can be
then processed at rendering time without significant over-
head. This storage scheme also offers the possibility to ren-
der scenes with moving objects.

5. Image Reconstruction

The previously discussed hierarchical structure is used for
rendering. As triangles are straightforward to render on cur-
rent hardware, we focus in the following on point rendering
issues.

The simplest reconstruction method is splatting with
opaque splats. In this case, the image quality drops rapidly
as the splat size increases. More sophisticated reconstruc-
tion methods have been proposed which offer better image
and especially texture quality17, 25 using Gaussian kernels
for the reconstruction. However, these methods would re-
quire special hardware features like an accumulation buffer
and are currently implemented in software.

c© The Eurographics Association 2002.



Coconu and Hege / Hardware-Accelerated Point-Based Rendering of Complex Scenes

A good compromise would be to draw each point as a
Gaussian splat (with an alpha channel falling off with a
Gaussian) and to use hardware alpha blending for composit-
ing the splats. The main difficulty when rendering fuzzy
splats on current hardware is the well known conflict be-
tween alpha-blending and z-buffer tests: transparent surfaces
must be drawn back-to-front. Again, the general solution
is the A-buffer algorithm of Carpenter1. Rusinkiewicz and
Levoy 19 mention fuzzy splatting as an alternative for bet-
ter image quality and implemented it using double-pass ren-
dering and z-offsetting. However, this won’t produce correct
results for surfaces with large depth discontinuities and re-
quires the scene to be rendered two times, which is expensive
for large scenes.

To render fuzzy splats, we use a simpler and more efficient
solution which requires only one rendering step: exploiting
our spatial classification, we draw the splats in paint order,
without using the z-buffer. We extend the idea of Shade et
al. 21 which uses McMillan’s algorithm15, 16, 14 to render a
single LDI.

The rendering process can be described by the following
simple algorithm:

for ob ject:= backto f ront do
TraverseOctree(object.octree_root)

od

proc TraverseOctree(octree_block) ≡
if (visible)

then
if (estimated_max_distance < threshold)

then splat_points(octree_block)
elseif (!leaf_block(octree_block))

then
for child_bl := back_bl to front_bl do

TraverseOctree(child_bl)
od

else
draw_triangles(octree_block)

fi
fi

fi
.

The level-of detail selection is rather straightforward and
shortly described in the next section. Then, the generic
occlusion-compatible traversal in the algorithm above is de-
tailed in section5.2, followed by shading, splatting and tex-
ture filtering issues.

5.1. Level-of-Detail Selection

The level-of-detail selection algorithm is derived from Pfis-
ter et al.17. We start with the root block in the octree, repre-
senting the coarsest resolution, and traverse the octree recur-

sively top-down, performing view frustum culling. In con-
trast to them, we employ an occlusion-compatible traver-
sal and switch to triangles when the estimated point density
becomes insufficient. Related to this, the sampling resolu-
tion should be chosen such that the optimal balance between
point and triangle rendering is met. Ideally the algorithm
switches to points if the rendering time for triangles exceeds
the time for points. A triangle/point rendering performance
model similar to Cohen et al.4 can be used for this purpose.
In our current system this is a user-defined parameter. As a
future work, we plan to implement an automatic procedure
for computing the optimal sampling resolution.

In the case of large environments, like e.g. in landscape
walkthroughs, many objects may occupy a small screen area
for which even the coarsest representation is too detailed,
which results in waste of rendering time. The problem arises
as the resolution of the root block of the octree is the coarsest
resolution which we can represent. We handle this by further
sub-sampling the coarsest LLDI at rendering time (picking
fewer points from the LLDI in a random fashion).

5.2. Paint-Order Warping

The method we use to ensure that the splats are drawn in
paint order is an extension of the algorithm presented by15

and adopted by Shade et al.21 for LDI rendering. The orig-
inal algorithm warps a LDI from an arbitrary input camera
position to a new camera position. In our case of ortographic
projection, input camera can be considered at infinite dis-
tance. The algorithm is illustrated in Fig.3: the new camera
position is projected on the LDI plane. The projection, called
epipolar point, determines 4 quadrants (in the most general
case) separated by 2 epipolar lines. The layered pixels are
processed inwards and back to front. As demonstrated by
Shade et al.21, this algorithm ensures occlusion-compatible
warping for primitives that do not exceed the LDI grid cells.

loose LDI

Figure 3: Paint-order warping: each quadrant determined by the
projection of the eye position in the LLDI plane is processed in-
wards. At each grid location, the samples are processed back-to-
front with respect to the view direction.

We first ignore our LLDI structure and consider a stan-
dard LDI. To enable correct image reconstruction with fuzzy
splats, the splats must overlap, thus exceeding the grid cells.
In this case, the algorithm does not necessarily work cor-
rectly, as shown in Fig.4. Visibility artifacts appear for low
angles between LDI plane normal and view direction, as sur-
fels from a far surface may overlap previously drawn sur-
fels from a near surface and alter its color. We circumvent

c© The Eurographics Association 2002.



Coconu and Hege / Hardware-Accelerated Point-Based Rendering of Complex Scenes

1 1

2

LDI
plane

S
2

LDI plane

I

III I

epipolar
line

III

II II2

1

Figure 4: Top: surface 1 is overwritten by surface 2 (left); this
does not happen if the view angle is large (right), allowing a splat
size of2S. Bottom: artifacts result along the visible epipolar line
(left), which can be avoided by choosing the other epipolar line for
the external loop of the algorithm (right).

this problem by maintaining a second LDI representation
from another orthogonal view. The memory overhead is not
high, as this is only an array of indices. For each view direc-
tion, there is a LDI representation with view angle greater
thanπ/4. We use this property to derive the maximum splat
size in the worst case, shown in the same Fig.4. If the dis-
tance between different surfaces is greater or equal to the
grid spaceS, the worst case yields a maximum splat size of
2S when drawing elliptical splats according to the normal.
However, in practice, we use smaller splats and so compen-
sate for the fact that samples do not strictly match the LDI
grid. If the distance between different surfaces is less thanS,
they begin to be blended together.

A less obvious source of artifacts still exists. The original
algorithm consists of three nested loops: split the LDI plane
grid by one epipolar line and process each row inwards (I),
split each row by the other epipolar line and process layered
pixels inwards (II) and finally process each layered pixel
back-to-front (III). An epipolar line isvisible if it falls in-
side the LDI domain. As Fig.4 bottom-left shows, artifacts
can occur in the vicinity of the visible epipolar line if cho-
sen for the most external loop of the algorithm (I), as sam-
ples from region 2 belonging to far surfaces can overwrite
near surfaces in region 1. By using two LDI representation,
we always have at most one visible epipolar line. Conse-
quently, we modify the algorithm to always choose the in-
visible epipolar line for the external loop (I) (Fig.4 bottom-
right). This eliminates the problem and the previous splat
size determination applies.

We apply the same algorithm to traverse in back-to-front
order the children of an octree block in the rendering algo-

rithm. Each block is regarded as a LDI with a 2x2 grid and 2
elements on each layered pixel. The aforementioned obser-
vations also apply in this case, as blocks may overlap. In this
way, we ensure back to front order for the whole object by
applying the same algorithm hierarchically.

For scenes containing several objects, we must ensure that
the objects are also processed in occlusion compatible order.
Currently we do this by representing the scene as a quadtree
and traversing this quadtree in occlusion-compatible order.
However, such an order may not exist or may be difficult
to compute if objects intersect each oder. Our warping algo-
rithm computes an occlusion-compatible order for the splats,
but it does not necessarily guarantee the correct z-order for
very closed splats (which are blended together). For this
reason, the z-buffer must be turned off, otherwise artifacts
would occur when rendering continuous surfaces. It suffices
to turn off only z-buffer updates and still allow z-buffer tests.
In this way, if necessary, the visibility can be solved by an
additional rendering step: after fuzzy splatting, each object is
rendered again, only in the z-buffer using standard splatting
and (possibly) a coarser resolution. It is, of course, much
preferrable to avoid this by properly modelling the scene
and sampling intersecting objects together. For certain non-
compact objects like trees, we can turn the z-buffer on, since
artifacts are only visible on continuous surfaces. An efficient
and general solution would be an extension of z-buffer hard-
ware to allow z-offseting in one step: the updated z-value
should be allowed to differ from the value used for the z-
test.

Regarding the effective warping, one attractive feature of
layered depth images is incremental warping, using the uni-
form grid, as presented in detail by Grossman6. In contrast,
our current system relies on the high vertex processing speed
of modern graphics hardware, thereby freeing host proces-
sor resources to balance the workload. This also allows to
use the non-strict LLDI representation. Thus, we perform
warping in hardware, keeping our LLDI data in 1D arrays
(vertex buffers) which can be sent to the graphics engine to-
gether with index buffers reflecting the back-to-front order
computed per frame as above (see the implementation sec-
tion for details). However, as processor speed increases, in-
cremental warping might be a viable alternative. We plan a
thorough comparative analysis of the two warping methods
in the future.

5.3. Shading

Since we store normals at each sample, we can apply arbi-
trarily complex local light models and other shading tech-
niques. The only restriction is to use the same illumination
for both triangles and points to ensure similar appearance. In
our current implementation we use either a simplified Phong
model or a diffuse illumination model for both points and
triangles.

c© The Eurographics Association 2002.



Coconu and Hege / Hardware-Accelerated Point-Based Rendering of Complex Scenes

5.4. Splatting

The level-of-detail selection algorithm presented above
guarantees that the maximum distance between the projec-
tions of two adjacent points,smax, is always smaller than a
specified thresholddt , expressed in pixels. We can directly
usedt as splat size for opaque discs to guarantee a hole-free
reconstruction. However, opaque splats produce a poor im-
age quality, especially for textured objects, which dramati-
cally drops if the splat size exceeds one pixel. We use ellipti-
cal Gaussians which offer improved texture quality (see next
section) and avoid silhouette artifacts like thickening.

For fuzzy Gaussians, the splat size should be chosen such
that α = 1/2 at dt/2 distance from center, which guaran-
tees opaque surfaces in the worst case (Fig.5). This is true
for a A-buffer approach, where visibility and blending are
separated, like in Zwicker et al.25. We rely on back-to-front
sorting for visibility and draw the splats without any other
test using alpha blending in the following manner:

colscreen= colsplat∗αsplat+ colscreen∗ (1−αsplat). (1)

1

1/2
splat 2splat 1

alpha

d=min

d=max

Figure 5: Fuzzy splatting: visual appearance (left),α values of
two superposed fuzzy splats (right).

Compared to the ideal A-buffer compositing of two splats,
alpha-blending does not guarantee perfect opacity: a small
amount of background color also contributes to the result.
However, this usually does not lead to objectable visual ar-
tifacts in practice if slightly more opaque splats are drawn;
the opacity is also improved because usually several other
samples from the same surface will contribute to the pixel.
Transparent surfaces are not handled correctly. The color
transition between adjacent points will also not be ideal, but
still much better compared to opaque splats.

5.5. Texture Filtering

Using opaque splats produces visibly aliased textures, as
each pixel receives color from only one splat and the equiva-
lent texture function is limited in frequency by the splat size.
In the high quality texture filtering method of Zwicker et al.
25, the color of each pixel is computed as a weighted average
of several samples. Although fuzzy splats cannot correctly
reproduce this behavior, they still produce significantly bet-
ter results than opaque splats, as each pixel can receive color
from more than one sample. We use the pre-filtered texture
mipmap levels to perform simple view dependent texture fil-
tering as detailed in17. The difference to their system is that

we also consider the perspective transformation when select-
ing the two mipmap levels. The mipmap selection and in-
terpolation can be implemented with hardware support (see
Section6).

The main drawback of this texture filtering scheme is the
order-dependent property of alpha blending: the final image
depends on the order in which splats are warped. If splats
are warped along a line in a direction, textures will appear
to be slightly displaced in the opposite direction, as an effect
of the incorrect weighting and normalization. Formally, in
the ideal reconstruction of Zwicker et al.25, the color of a
pixel p is computed as weighted average of the neighbored
samplespk:

c = ∑n
k=1 wkck

∑n
k=1 wk

,wk = Gk(pk− p). (2)

where Gk are Gaussian kernels. For our alpha blending
scheme, we obtain:

c = B
n

∏
k=1

(1−wk) +
n

∑
k=1

ckwk

n

∏
j=k+1

(1−w j ) (3)

whereby B is the background color. This simply means that
that later drawn splats contribute more to the pixel color.
However, our warping algorithm induces a well-define splat-
ting order and thus reduces this effect. Texture artifacts (a
small displacement due to change in the ordering) will still
be visible along the epipolar line and at block boundaries for
flat surfaces textured with high frequency, regular patterns
(see video). But, in practice, this kind of surfaces are any-
way more efficiently rendered with triangles.

6. Implementation and Results

The algorithm was implemented in the C++ language and
integrated in the data visualization system Amira24. Amira
provides a flexible and extensible framework and supports
a large variety of file formats. We have implemented two
modules, one for sampling and one for rendering. Our test
platform was a 2.0 Ghz Pentium 4 with 1 GB memory and a
ATI Radeon 8500 graphics card.

6.1. Sampling

The sampling module takes a geometrical triangulated 3D
model as input and produces a hierarchical LOD structure as
previously described. Table1 shows sampling times for our
test models.

Using geometry rasterization, the sampling times are re-
duced in comparison to other approaches; Pfister et al.17 for
example report a pre-processing time of 1 hour for typical
objects similar to our tree. A raytracer would probably offer
better sampling results for very small triangles (we intend
to test one in the future), but our sampling scheme could be
also improved.

c© The Eurographics Association 2002.



Coconu and Hege / Hardware-Accelerated Point-Based Rendering of Complex Scenes

Object Tris Sampl. Sampl. Sampl. Time
Res. Points Tris (m:s)

harley 45k 2563 135k 56k 0:05
lobus 1000k 2563 230k 1000k 1:20

tex.tree 250k 2563 350k 250k 0:50
tex.surf 128 5123 266k 352 0:35

Pisa 337k 3203 230k 350k 0:20

Table 1: Sampling times for different objects. The number of
recorded triangles is slightly larger than the original number of tri-
angles because triangles at octree block separation are duplicated
to avoid cracks when applying block culling. This, however, can be
avoided by relaxing the view frustum culling such that additional
neighbored blocks are rendered for blocks intersecting the frustum
limits.

6.2. Rendering

The main advantage of our technique is efficient implemen-
tation on current off-the-shelf graphics hardware. A recent
innovation are the programmable vertex and pixel process-
ing pipelines which were already implemented in hardware
(see Lindholm et al.11). We used the Microsoft DirectX 8
API to program a vertex shader (or vertex program in the
OpenGL context) which performs warping, shading as well
as texture mipmap level selection and interpolation. A pixel
shader is used to draw elliptical Gaussians by manipulating
an alpha texture.

Special attention is payed to sending primitives efficiently
to the graphics hardware. We store the LLDI in a com-
pact, space-efficient form as described in21. The samples
are stored in a one-dimensional array and the LLDI rep-
resentation is an array of offsets in this array. The second
LLDI representation (see Section5.2) requires an additional
index level. The initial idea was to pass the whole array of
samples as a vertex buffer to the hardware in one call and
then for each frame an index buffer reflecting the occlusion-
compatible order. This would have minimized the CPU bus
traffic, as the GPU can use DMA accesses to read data
from video or AGP memory for indexed primitives. Unfortu-
nately, points are an exception under DirectX with respect to
indexing: indexed point primitives are not supported. Con-
sequently, in the current implementation we have to do the
indexing in software and send more data over the CPU bus.
We will be able to use indexing in OpenGL, as soon as the
new features are incorporated.

6.2.1. Vertex Processing

The current vertex format is shown in Table2. The necessary
storage space per sample is 48 bytes per sample for specular
lighting. For diffuse light only, we can pack the normals in
a four-bytes integer and we obtain 32 bytes. We can even do
material indexing if we have few materials per octree block.

Otherwise, the overhead due to the increased number of state
changes will undo the gain obtained by reducing the vertex
size.

Element Size

position 3x32 bits
normal 3x32bits

ambient color 32 bits
diffuse color 32 bits

specular color+coef. 32 bits
3 texture mipmap levels 3x32 bits

Table 2: Vertex buffer format.

For each sample, the vertex shader performs following op-
erations:

• warp position using the composite world-view-projection
matrix
• perform lighting in model space
• interpolate between mip-map levels (2 or 3). The coeffi-

cients are set per octree block as vertex shader constants
• compute the inverse of the cosine of the angle between

normal and view directionβ = 1/cos(θ)
• compute thenx and ny normal components in camera

space and normalize this 2D vector.

The last two computations are necessary to render ellipti-
cal Gaussian splats according to the sample normals, as ex-
plained in the next section. When using point sprites, the out-
put texture coordinate registers are overwritten by internally
generated values, so we only can use the specular color out-
put register (denoted as oD1 in DirectX) to pass these values
down to the pixel shader. Because color components must
be in the range 0.0 - 1.0, we scale the above values appropri-
ately.

6.2.2. Point Splatting

Each point is splatted using a new feature of the graphics
hardware called ‘point sprites’. It allows to apply a texture
on a square described by a single vertex and a size. We
use a texture with alpha channel falling off with a circular
Gaussian and use alpha test to skip pixels withα less than a
threshold (0.1 - 0.2). A particularly interesting implementa-
tion issue is how elliptical Gaussians are drawn. In the vertex
shader, we compute for each sample the inverse of the co-
sine of the angle between normal and view directionβ and
the planar normal components in camera spacenx andny.
We can make the splats elliptical by manipulating the tex-
ture coordinates when rasterizing the square splat in the pixel

shader:(t
′
x, t
′
y)t = β (tx, ty)Rnx,ny, whereRnx,ny is the rotation

matrix determined by the normal components. This rotates
the texture and then shrinks it along the normal projection
according to the coefficientβ (Fig. 6).

c© The Eurographics Association 2002.



Coconu and Hege / Hardware-Accelerated Point-Based Rendering of Complex Scenes

Nxy

N
txtx

tx

ty

ty

Nxy

ty

Nxy

Figure 6: Using texture mapping to draw elliptical Gaussians.
First, texture coordinates are rotated such that they are aligned to
the projected normal. Then, a deformation is applied to obtain an
ellipse approximation.

However, due to current technical limitations (the texture
coordinate registers are overwritten), we cannot pass enough
data to implement this manipulation. Instead, we use the
following approximation at each pixel:

α = αcircGauss(1−‖b (tx, ty)t(nx,−ny)‖). (4)

b = (1− 1
e2 )(β− 1

β
)
√

2ln2. (5)

which represents a circular Gaussian multiplied with a lin-
ear approximation of an elliptical Gaussian (the minus sign
beforeny accounts for opposite direction of they axis in tex-
ture coordinate system). This yields satisfactory results in
practice. We also limit theβ coefficient (the ‘ellipsoidity’)
to avoid holes in the surface and actually computeb in the
vertex shader. The pixel shader performs the following:

• receive in the specular input register the vector
(nx,−ny,0,b)
• compute the dot product(nx,−ny).(tx, ty), after converting

texture coordinates(tx, ty) to signed floats relative to the
square center
• computeαlinear = (1−‖b(tx, ty)t(nx,−ny)‖)
• compute output alpha value as the product ofαlinear with

the value sampled from the circular Gaussian texture at
the location(tx, ty)
• transmit output color received from vertex shader.

6.2.3. Smooth LOD Transitions

Switching from triangles to points on a per-octree block ba-
sis results in visible popping. We implement a smooth transi-
tion using alpha blending: as the object part moves back, we
still draw the triangle representation for a while and render
the points over it, modulating the alpha value of the splats
with a coefficient that varies from 0 to 1. For non-compact
objects rendered with points (e.g. trees) we can have con-
tinuous LOD control, using a nice feature of our algorithm.
During transition to a coarser level, we eliminate progres-
sively and randomly points from the current level, taking
care to converge to the set of points of the coarser represen-
tation. The overhead is low, since we anyway loop through

the LLDI to select indices. We draw a LLDI sample if it is
marked as belonging also to the next coarser level or if it
meets a criterium which progressively decreases the number
of selected points. The technique could be also extended to
compact objects, if a proper compactness criterium is added
such that no holes appear.

6.3. Results

To demonstrate the image reconstruction for textured ob-
jects, we sampled and rendered two objects: a textured
height field and the classic checkerboard plane. The sam-
pling resolution was 5123 and the results are presented in
Fig. 8 and compared to simple splatting rendering. It can
be seen that paint-order fuzzy splatting offers significantly
better texture quality, reducing color bleeding and aliasing.
However, the EWA surface splatting approach of Zwicker
et al.25 offers higher quality textures and less frequency ar-
tifacts. The hardware-accelerated approach of Ren et al.18

also achieves high image quality, but needs two rendering
steps and uses 1 textured rectangle per sample. This signif-
icantly drops performance (3-4 times less splats per second
than our implementation on the same hardware). We intend
to continue the research and improve our texture filtering.

Fig. 7 and9 top show the Harley Davidson and the Pisa
Tower model, respectively, rendered with points. Drawing
elliptical Gaussians substantially reduces silhouette artifacts
(thickening). The surfaces look smoother and edges are anti-
aliased. We also tested our method for non-compact objects
like trees (Fig.9), which also benefit from our elliptical
primitives.

In Table 3, we show rendering times for different test
models. We compare the rendering time with the following
times: without ordering, with ordering and square splats and
with an implementation that keeps data in video/AGP mem-
ory, computing the respective overheads. Obviously, doing
indexing in software and pushing large amounts of data
through the CPU introduces a significant overhead (more
than 50%, except the tree model which uses diffuse illumina-
tion and thus a reduced vertex size), while the overhead due
to ordering is around 30%. Our system will greatly benefit of
indexed point primitives. The comparison with pure triangle
rendering shows that some models are oversampled and do
not actually benefit from switching from triangles to points
(Harley), while other models (Lobus, Pisa) achieve signifi-
cant speed-up. It is therefore necessary to provide an auto-
matic selection of the sampling resolution to correctly bal-
ance the rendering times for triangles and points on a given
platform, as Cohen et al.4 do. We plan this as a future work.

As Table3 shows, we achieve high raw splat rates even
in the current CPU-bus-intensive implementation. On fast
CPU/memory systems and with indexed point primitives, we
expect to be limited only by the vertex processing speed of
the hardware. A key efficiency issue is the fact that we only
have to render the scene once.

c© The Eurographics Association 2002.



Coconu and Hege / Hardware-Accelerated Point-Based Rendering of Complex Scenes

model #tris #points tris only fuzzy splats splat rate non-fuzzy +ord +fuzz +index
(fps) (fps) (106/s) splats video/AGP(fps)

Harley 50k 130k 122 55 6.8 91 20% 5% 54%
Pisa 350k 230k 24 23.1 5.2 54 27% 9% 92%

Lobus 1000k 350k 8.3 16.7 5.6 38 33% 16% 63%
Tree 250k 200k 51 44.9 9 73 30% 19% 23%

Table 3: Rendering performance for different models at 640x480 output resolution and splat size 2.

scene size #tris splat=2 splat=3 splat=4 splat rate splat=3
(Pisa) (fps) (fps) (fps) 106/s non-fuzzy video/AGP(fps)

10x10 3.5x107 7.3 11.6 30.6 6.0 29.0
20x20 1.4x108 6.1 10.8 15.5 5.7 26.0
50x50 8.7x108 3.7 6.4 9.4 4.9 17.5

100x100 3.5x109 2.1 3.6 4.7 3.5 10.8
200x200 1.4x1010 1.3 1.8 2.2 2.1 5.9

Table 4: Rendering performance for different scenes and splat sizes at 500x400 output resolution.

To analyze the rendering time for complex scenes, we per-
formed several tests with scenes containing many replicated
objects arranged in a grid. Having different objects would
only imply a memory overhead. The viewpoint was chosen
as shown in Fig.7 right, resulting in the lowest frame rate for
the scene. We tested different splat sizes (which means dif-
ferent point density thresholds and is approximately equiva-
lent with testing for different image resolutions). As Table4
and the attached video shows, we can render complex scenes
interactively. The rendering time depends roughly logarith-
mically of the scene complexity. For many small objects, the
overhead due to per object and per octree block calculations
becomes high. Further enhancement of the algorithm in this
respect can greatly improve performance.

7. Conclusion and Future Work

We described a rendering method for complex scenes con-
taining textured models. As previous research pointed out,
the key to an efficient system is to use the different render-
ing primitives in their maximum efficiency domains. Recent
hybrid approaches4, 2 achieve a fine-grained triangle-point
trade-off by tightly integrating them in one data structure. In
our system, the trade-off is performed on a per octree block
basis. This can be regarded as trading off accuracy for pro-
cessing overhead. The main contribution of this paper is a
new hardware accelerated method for point rendering using
elliptical Gaussians which is integrated with traditional ren-
dering. This technique is suited for interactive applications,
as it offers much better image quality than previous hard-
ware accelerated systems (which use simple opaque splats)
and preserves the speed. With indexed point primitives sup-

port, it can further benefit from a speed up of more than 50%.
Moreover, it will directly benefit from further hardware im-
provements with respect to speed and programmability.

As future work, we will implement an automatic proce-
dure for selecting the adequate sampling resolution of a tri-
angulated model, given a point/triangle performance factor
on a system (similar to Cohen et al.4). This will guaran-
tee that the rendering performance of our system does not
fall below pure triangle rendering. In order to improve the
scene traversal and allow a very large numbers of objects,
a mechanism must be provided that joins several small ob-
jects together and thus avoids the overhead of processing
each object separately. A way of doing this is to extend the
LLDI hierarchy to the whole scene and merge the coarsest
object representations in it. We have already implemented
and tested such a scheme which allows the interactive ren-
dering of scenes containing up to 106 objects.

Furthermore we will investigate the possibilities to per-
form even smoother transitions between different levels of
detail. Our current sampling scheme also admits significant
improvements. Texture filtering deserves a more detailed
research. We plan to alternatively implement incremental
warping on LDI and compare with the current implementa-
tion. We also want to extend our system to other models like
procedural objects. We expect these future improvements to
allow the interactive rendering of much more visually ap-
pealing scenes.

c© The Eurographics Association 2002.



Coconu and Hege / Hardware-Accelerated Point-Based Rendering of Complex Scenes

References

1. CARPENTER, L. The A-buffer, an antialiased hidden
surface method. InComputer Graphics (Proceedings of
SIGGRAPH 84)(Minneapolis, Minnesota, July 1984),
vol. 18:3, ACM, pp. 103–108.4

2. CHAN , B., AND NGUYEN, M. X. Pop: A hybrid point
and polygon rendering system for large data.IEEE Vi-
sualization 2001(2001). 1, 2, 9

3. CHANG, C.-F., BISHOP, G., AND LASTRA, A. LDI
tree: A hierarchical representation for image-based ren-
dering. Proceedings of SIGGRAPH 99(August 1999),
291–298. 2, 2

4. COHEN, J. D., ALIAGA , D. G.,AND ZHANG, W. Hy-
brid simplification: combining multi-resolution poly-
gon and point rendering.IEEE Visualization 2001(Oc-
tober 2001), 37–44.1, 2, 4, 8, 9, 9

5. GORTLER, S., HE, L. W., AND COHEN, M. Render-
ing layered depth images. Tech. Rep. MSTRTR 97-09,
Microsoft Research, 1997.2

6. GROSSMAN, J. Point sample rendering. Master’s the-
sis, MIT, Dept. of Electrical Engineering and Computer
Science, 1998.2, 5

7. GROSSMAN, J. P., AND DALLY , W. J. Point sam-
ple rendering.Eurographics Rendering Workshop 1998
(June 1998), 181–192.1, 2

8. HECKBERT, P. S. Survey of texture mapping.IEEE
Computer Graphics & Applications 6, 11 (November
1986), 56–67.3

9. HECKBERT, P. S. Fundamentals of texture mapping
and image warping. Master’s thesis, UCB/CSD 89/516,
1989. 2, 3

10. LEVOY, M., AND WHITTED, T. The use of points as a
display primitive. Tech. Rep. TR 85-022, University of
North Carolina at Chapel Hill, 1985.2

11. L INDHOLM , E., KILGARD , M. J., AND MORETON,
H. A user-programmable vertex engine. InProceedings
of SIGGRAPH 2001(August 2001), ACM, pp. 149–
158. 7

12. L ISCHINSKI, D., AND RAPPOPORT, A. Image-based
rendering for non-diffuse synthetic scenes.Eurograph-
ics Rendering Workshop 1998(June 1998), 301–314.
2

13. MAX , N. Hierarchical rendering of trees from pre-
computed multi-layer Z-buffers. InEurographics Ren-
dering Workshop 1996(New York City, NY, 1996),
X. Pueyo and P. Schröder, Eds., Eurographics, pp. 165–
174. 2

14. MCM ILLAN , L. Computing visibility without depth.
Tech. Rep. TR 95-047, University of North Carolina at
Chapel Hill, 1995. 2, 2, 4

15. MCM ILLAN , L. A list-priority rendering algorithm for
redisplaying projected surfaces. Tech. Rep. TR 95-005,
University of North Carolina at Chapel Hill, 1995.2,
2, 4, 4

16. MCM ILLAN , L., AND BISHOP, G. Plenoptic model-
ing: An image-based rendering system. InProceedings
of SIGGRAPH 95(August 1995), Computer Graphics
Proceedings, Annual Conference Series, ACM, pp. 39–
46. 2, 2, 4

17. PFISTER, H., ZWICKER, M., VAN BAAR , J., AND

GROSS, M. Surfels: Surface elements as rendering
primitives. Proceedings of SIGGRAPH 2000(July
2000), 335–342.1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 6, 6

18. REN, L., PFISTER, H., AND ZWICKER, M. Object
space EWA splatting: A hardware accelerated approach
to high quality point rendering. InProceedings of Eu-
rographics(2002). 2, 8

19. RUSINKIEWICZ, S., AND LEVOY, M. Qsplat: A mul-
tiresolution point rendering system for large meshes.
Proceedings of SIGGRAPH 2000(July 2000), 343–
352. 1, 2, 4

20. SCHAUFLER, G., AND JENSEN, H. W. Ray trac-
ing point sampled geometry.Rendering Techniques
2000: 11th Eurographics Workshop on Rendering(June
2000), 319–328.2

21. SHADE, J., GORTLER, S. J., WEI HE, L., AND

SZELISKI , R. Layered depth images.Proceedings of
SIGGRAPH 98(July 1998), 231–242.2, 2, 4, 4, 4, 7

22. STAMMINGER , M., AND DRETTAKIS, G. Interactive
sampling and rendering for complex and procedural ge-
ometry. InRendering Techniques 2001 (Proceedings of
the Eurographics Workshop on Rendering)(2001). 2

23. WAND , M., FISCHER, M., PETER, I., AUF DER

HEIDE, F. M., AND STRASSER, W. The randomized
z-buffer algorithm: Interactive rendering of highly com-
plex scenes.Proceedings of SIGGRAPH 2001(August
2001), 361–370.1, 2

24. Amira – User’s Guide and Reference Manualas
well as Amira – Programmer’s Guide. Konrad-
Zuse-Zentrum für Informationstechnik Berlin
(ZIB) and Indeed - Visual Concepts GmbH, Berlin,
http://www.amiravis.com, 2001.6

25. ZWICKER, M., PFISTER, H., VAN BAAR , J., AND

GROSS, M. Surface splatting.Proceedings of SIG-
GRAPH 2001(August 2001), 371–378.1, 1, 2, 2, 2, 3,
6, 6, 6, 8

c© The Eurographics Association 2002.



Coconu and Hege / Hardware-Accelerated Point-Based Rendering of Complex Scenes

Figure 7: Bike model rendered with ellipsoidal Gaussian splats (left), opaque splats (middle), scene with 50x50 models (right). Splat size=2.

Figure 8: Texture reconstruction. Top-down for each model: Gaus-
sian elliptical splats and view-dependent mipmap filtering, opaque
splats. Splat size = 3.

Figure 9: Top: comparison of Gaussian elliptical splats (left) with
opaque squares (right) at splat size=2. Bottom: 50x50 non-compact
objects (trees).

c© The Eurographics Association 2002.


