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Figure 1: RISSAD prototype: A) scatterplot, B) data table, C) descriptive rules, D) data distributions, and E) isolation and similarity scores.

Abstract
Anomaly detection has gained increasing attention from researchers in recent times. Owing to a lack of reliable ground-truth
labels, many current state-of-art techniques focus on unsupervised learning, which lacks a mechanism for user involvement.
Further, these techniques do not provide interpretable results in a way that is understandable to the general public. To address
this problem, we present RISSAD: an interactive technique that not only helps users to detect anomalies, but automatically
characterizes those anomalies with descriptive rules. The technique employs a semi-supervised learning approach based on
an algorithm that relies on a partially-labeled dataset. Addressing the need for feedback and interpretability, the tool enables
users to label anomalies individually or in groups, using visual tools. We demonstrate the tool’s effectiveness using quantitative
experiments simulated on existing anomaly-detection datasets, and a usage scenario that illustrates a real-world application.

CCS Concepts
• Computing methodologies → Interactive systems; Pattern analysis;

1. Introduction

Anomaly detection plays an important role in many areas of re-
search, including education [MXC∗19], cyber-security [HLG14]
and mechanical engineering [GMESK99]. In general, an anomaly

is vaguely defined as a data point that does not share a similar pat-
tern with the rest of the population. However, this ambiguity in the
definition leads to the lack of ground-truth labels in many datasets.
Because of this, and the imbalance of normal vs. anomaly points
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by definition, many traditional supervised learning algorithms such
as decision trees, neural networks and multi-class support vector
machines, will often perform poorly on problems in which it is ex-
pensive to obtain labels for each training case [CBK09]. Faced with
those challenges, many state-of-art techniques for anomaly detec-
tion rely heavily on unsupervised learning algorithms such as Lo-
cal Outlier Factor (LOF) [BKNS00], Isolation Forest [LTZ08] and
One-Class SVM [SPST∗01]. Despite some promising results deliv-
ered by these techniques in various situations, they generally do not
provide a robust mechanism for interpretation of the results.

To address this issue, efforts are being made in machine learning
interpretability [GBY∗18, MQB18, RSG16a, RSG16b], and with
visualization across different application domains. For anomalies,
Mu, et al. [MXC∗19], introduce a system that detects abnormal be-
haviors of users registered in Massive Open Online Courses. Lin,
et al. [LGG∗17], build a visual system to identify rare categories
based on active learning. Zhao, et al. [ZCW∗14], contribute a time-
line visualization tool to analyze anomalous user behaviors in so-
cial media platforms. Although these studies all made meaningful
contributions to help users understand the data instead of simply
applying a “black-box” machine learning technique, their target au-
diences are mostly experts.

To fill this gap, we developed an interactive anomaly detection
technique that generates rules for anomaly groups that will be un-
derstandable to a broader user base. Anomalies are a technical con-
cept, so as opposed to a general audience, we target those comfort-
able enough with data analysis to engage conceptually. We pre-
serve user effort by needing only a limited number of labels, and
we restrain the interface to interactions that do not require expertise
in anomaly detection. Applying this technique requires two steps:
in the first step, the user labels anomalous points based on their data
understand using visual tools. Anomalies are grouped into clus-
ters automatically, and in the second step of user interaction, the
user may extend them before choosing to characterize the anomaly
groups and remaining data each with a series of descriptive rules
based on their distinctive value ranges across relevant variables.
The main contributions of our work are: (1) RISSAD: an interactive
anomaly detection technique for non-expert users that character-
izes groups of anomalies automatically with descriptive rules, (2)
a prototype implementation of this technique, (3) an evaluation by
simulation of user interactions over multiple datasets, demonstrat-
ing accurate rule sets with limited user feedback, and (4) a usage
scenario showing how this can be applied to discover and describe
anomalies in real-world data.

2. Related Work

2.1. Anomaly Detection Algorithms

In general, most anomaly detection techniques are traced
back to four categories: (1) classification-based algorithms
[HHWB02, MC03, WMCW03], (2) nearest-neighbour-based algo-
rithms [BS03,BKNS00], (3) clustering-based algorithms [MLC07,
SPBW12], and (4) statistical-based algorithms [KK17,YTWM04].
To combine the advantages of various techniques, ensemble
approaches have gained popularity in recent years [VC17,
ZDH∗17]. Dimensionality-reduction, such as multidimensional

scaling (MDS) [Kru64] and principal component analysis (PCA)
[SCSC03], is also used for anomaly detection given its advantage
in reducing model complexity and reducing the computational cost.

2.2. Anomaly Detection Visualization

Combined with detection algorithms explained in subsection 2.1,
visualizations are widely used to enhance a user’s understanding
of the problem and supplement the learning process of the chosen
technique. For example, Arakwa, et al., present an automated vi-
sual system to detect anomalous patterns in human behaviors with
a modified Gaussian mixture model (GMM) [AY19]. Lin, et al.,
proposes a visual system that relies on the scatterplot generated us-
ing dimensionality reduction [LGG∗17]. Xu, et al., present a hybrid
approach that ensembles multiple state-of-art anomaly detection al-
gorithms and assists users in interacting with data [XXM∗18]. Al-
though all those techniques provide interpretable insights, they of-
ten require a high-level understanding of statistics, which are gen-
erally obscure to non-experts. Inspired by this, our technique offers
a solution to generate comprehensible rules based on interactive
feedback from users without expertise.

3. Anomaly Detection and Description Algorithm for RISSAD

RISSAD requires an anomaly detection algorithm that can use
limited user labels and produce understandable, descriptive rules
for the anomalies. Our algorithm is based on ADOA, presented in
Zhang, et al. [ZLZ∗18]. Its underlying assumption is that anomalies
are often isolated from the rest of the population, but close to other
anomalies in distinct clusters. These concepts are made concrete
with the Isolation Score (IS) and similarity score (SS).

IS represents the isolation degree of a point from the majority of
the population. The score is calculated for a point, x, using the mul-
tiple random-attribute decision trees produced by running the unsu-
pervised algorithm isolation forest [LLYL02], based on the point’s
average depth E(d(x)) (in the formula below, c is a normalization
constant). Conversely, SSi(x) represents the similarity of x within
each anomaly cluster, i, where µi is the cluster center.

IS(x) = 2−
E(d(x))

c

SSi(x) = e−(x−µi)
2

(1)

Each point gets its final SS score as the max over i (the score from
the cluster it fits best). However, we give the user the ability to
override this with their labels.

The algorithm is implemented in two stages. First, (1) the labeled
anomalies are clustered using k-means. For each unlabeled point,
its Isolation Score (IS) and Similarity Score (SS) are computed sep-
arately. Then in stage two, (2) any unlabeled point is also automat-
ically labeled as one of the anomaly types, or normal class if the
weighted average of IS and SS exceeds a upper threshold or falls
below a lower threshold. A weight (w) is computed as the reliabil-
ity of this automatic labeling [ZLZ∗18]. User labels are weighted
the full value of w = 1. Next, a supervised learning algorithm is
trained, using w as per-case weights. Although the original ADOA
paper chooses SVM as the learning model, we use a decision-tree
based rule learner (C5.0 R library [Rul19]), as in related interactive
rule learning work [CB20].
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4. The RISSAD Prototype

This section covers (1) the visual components of the prototype, (2)
the workflow for providing feedback on anomalies, and (3) the fea-
tures of descriptive rule generation.

4.1. Overview of the Components

Our prototype tool (Figure 1) constitutes five parts, each with a
specific contribution to the workflow. In the figure, A is the scat-
terplot with a projection of multi-dimensional data points into 2D
using multidimensional scaling (MDS) [Mea92]. We choose this
straightforward method because no projection is perfect, but newer
algorithms like t-SNE can reveal misleading groups due to param-
eter sensitivity [WVJ16], which would be problematic for anomaly
detection.

Figure 1B is the data table, providing a detail view correspond-
ing to A. C shows the descriptive rules learned from interactions
with the tool. D is a barcode or parallel bars plot showing the dis-
tribution of the data variables, with highlights for individual data
points as needed for context [Bos21, BLBC12]. Each attribute of
the original dataset corresponds to one column, mapping the value
range to the full height. Each thin line in the column represents a
datapoint, drawn with transparency so that the color density rep-
resents the data distribution of that column’s variable. Figure 1 E
shows violin plots for (1) the Isolation Scores of the entire dataset
and (2) the distributions of the Similarity Scores in each anomaly
cluster, computed based on the algorithm explained in section 3.
When reviewing points from the scatterplot, highlights in E help
quantify the likelihood of an anomaly.

4.2. Points Labeling

In the beginning, all data points in the scatter plot (Figure 1A) are
assumed to be normal (non-anomalies) and are marked in blue. In
the violin plot (Figure 1E), only the Isolation Scores plot exists, as
no anomaly clusters exist. When a user is interested in a point, they
can place the mouse cursor over it to see: (1) the corresponding row
placed at the top and marked in green in the table (Figure 1B), (2)
the barcode plot showing thin lines in each column of each attribute
corresponding to that specific data point marked in red (Figure 1D),
(3) and a black line placed on the violin plot (Figure 1E), to show
the Isolation Score of the moused-over sample in context. Each line
of the barcode plot is also bound with a mouse-over event to pro-
vide a tool tip at the bottom of the plot with the attribute name and
percentage. While the barcode plot, scatterplot and table provide
views of the data in their raw context, the violin plot of the Isolation
Scores gives an intuitive measure that may contribute to the user’s
consideration in labeling a point as an anomaly. Higher scores lead
to higher probability of being an anomaly. Based on understanding
of the data and exploration with the provided visual tools and inter-
actions, the user can then click all potential anomalous points and
those points will be marked in red.

Once a user decides that a sufficient number of points have been
labeled, they can then enter the number of anomaly types based on
observation of the scatter plot or on prior knowledge, or they can
simply leave the default of three. Then the violin plots (Figure 1E)
will be updated with Similarity Scores for each anomaly type. In

the previous step, the user checks points mainly based on their Iso-
lation Scores. In the next step, similarity scores can be utilized for
selecting more anomalous points while everything else remains the
same. The user also has the flexibility to assign a point to any of
the anomaly types by selecting the options in the drop-down menu.
Each anomaly type is marked in a different color. As more points
are assigned to each anomaly type, the violin plots of the similarity
scores are adjusted accordingly. This capability does not exist in the
original ADOA algorithm, because labels provide binary anomaly
status only, and there is no opportunity to get user feedback about
the clusters of anomalies.

4.3. Rules Generation

After anomaly points are labeled as described in subsection 4.2,
the user can click the Generate Rules button on the top left cor-
ner of the descriptive rules (Figure 1C). The rules are created us-
ing algorithm explained in section 3 and displayed as illustrated in
Figure 2b. Each anomalous class and the normal class has its own
corresponding set of rules. The user can use the dropdown menu on
the top right corner to check the rules of other classes. Each rule has
a highlight button originally marked in green. Once the user clicks
the button, the button will be switched to orange and the follow-
ing two events will be activated: (1) points associated with the rule
will be highlighted with black borders as shown in Figure 2a, and
(2) lines associated with rules in the barcode plot (Figure 1D) will
be marked in orange as illustrated in Figure 2. By checking those
highlighted points, the user can choose to assign each point to any
of the anomaly types or reassign it to any of the anomalous groups
or to the normal class if they decide the point is mis-classified, by
checking the dropdown menu on the top right corner of the scatter-
plot as shown in Figure 1A. After this step, the interface will start
with updated information, forming a feedback loop for the user to
further refine the rules by repeating these steps.

Figure 2: An example interaction between the Scatterplot (a), the
Rule Panel (in highlight mode) (b), and the Barcode Plot (c), as
described in the usage scenario of subsection 5.2

5. Evaluation

We evaluate RISSAD with (1) simulated interaction experiments to
estimate expected performance on varied datasets, and (2) with a
usage scenario to illustrate its capabilities on real-world data.

5.1. Simulation

To understand how RISSAD may perform with varied data and
different tasks, we simulate sequences of user interactions and
compare the resulting models against those of three other algo-
rithms in the same context. We evaluate our proposed algorithm
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(ADOA_Tree) against three others: (1) Isolation Forest (IF), an un-
supervised approach, (2) a decision tree (Naive_Tree), which rep-
resents a fully supervised approach, and (3) the technique adopted
by the original ADOA authors (ADOA_SVM).

We simulate a user labeling one point at a time, and since we
expect labels often will be related to the Isolation and Similarity
scores (see section 3), we simulate using each one half the time
(always strongest scores first). In each experiment run, we cre-
ate training and validation sets (70% vs. 30%). When training, we
use further three-fold cross validation to tune the hyper-parameters.
Rather than accuracy, we use area under the curve (AUC) as a per-
formance metric. Because the classifiers are probabilistic, AUC can
be calculated based on a range of thresholds.

In Figure 3, we show graphs that compare the four algorithms on
four different datasets, chosen to cover a range of size and dimen-
sionality. The x-axis represents the total number of labeled samples,
and the y-axis represents the AUC score. Those experiments help
understand how the model can be expected to improve with incre-
mental human labelling. Overall, we find that in most cases, our
proposed approach outperforms Naive_Tree and has similar per-
formance to ADOA_SVM. In some cases, especially with fewer
labels, unsupervised IF performs better than ADOA_Tree. How-
ever, our algorithm provides a unique advantage of generating rules
to assist user comprehension of the anomalies. From the experi-
ments, we find that this advantage can be achieved without signifi-
cant trade-off on accuracy in most cases.

Figure 3: Our ADOA_Tree compared to other algorithms with
AUC vs. the number of labels provided. See subsection 5.1.

5.2. Usage Scenario

Robert is a professional winemaker and he wants to explore
rare, high-quality wines and understand their characteristics. An
anomaly detection tool could help him find such examples, because
these wines would stand out. He collects a dataset of 13 variables
with technical attributes of each of 6,497 wines, which has a qual-
ity rating from 0-10 for each wine [CCA∗09], and filters for quality
(quality ≥ 8). Robert is not proficient with machine learning, but
our technique helps him gain a competitive advantage by finding
anomalous wines and characterizing exactly what makes them un-
usual, so he can take action in designing his next recipe.

Robert works with the RISSAD prototype as illustrated in sec-
tion 4. He begins with the scatterplot (Figure 1A) and notices sev-
eral points that are clearly separated from the majority. The violin

plots of Isolation and Similarity scores (Figure 1E) confirm the sta-
tus of these points to be likely anomalies. To obtain optimal results,
in the first round, he only selects points with Isolation scores over
0.8. This produces a set of three points shown in red. He notices
two of those points are significantly closer to each other, implying
that there may be two groups of anomalies. He sets the Cluster Size
to two, and presses Submit to request a clustering.

Now, he has two groups of anomalous points and can view the
Similarity Scores per anomaly type in addition to the Isolation
Scores in the violin plots. He selects additional points, expanding
his labels, because he notes several that are close to his original
selection in the scatterplot and have high similarity score (above
0.6). The newly selected points were not obvious at first, but with
the Isolation and Similarity scores as a guide, he decides they are
different enough from the normal data to deserve a closer look.
Figure 1A illustrates the layouts after the selection. He clicks the
Generate Rules button and sees the result shown in Figure 2b, with
rules that describe these two anomaly clusters.

He then clicks the Highlight buttons next to each rule to find
other potential anomalous samples of each type. Out of those high-
lighted potential anomalies, which are previously assumed to be
normal, he finds that three points have exceptionally low total sul-
fur dioxide by checking the barcode plot. Since total sulfur dioxide
has been identified as one of the important features for the rule that
describes anomaly type 1, he checks those three points and clicks
Generate Rules. More refined rules are generated for both of the
anomaly types, and for the normal case. Figure 4 illustrates the
newly generated rules for both of the anomaly types. Compared
to the original rules in Figure 2b, the new rules for anomaly type
2 become more refined as they now include two other features (pH
and total sulfur dioxide) apart from the original, citric acid.

Figure 4: Refined rules of (a) Anomaly type 1, (b) Anomaly type 2

6. Conclusion and Future Work

In this paper, we present a technique, RISSAD, to help users detect
and understand anomalies. Our prototype provides its user visual
aids for finding and labeling anomalies, particularly with isolation
and similarity scores. It further characterizes anomalies through de-
scriptive rules. Through simulations, we find that the underlying
machine learning can accurately label and describe anomalies with
limited user intervention and without significant trade-off in accu-
racy. In a usage scenario, we provide an example of successful ap-
plication of our technique to real data. While our technique shows
promising results in generating interpretable results to anomaly de-
tection, there are limitations. Anomaly detection algorithms can be
expensive due to many similarity comparisons. These computations
can run in parallel, though. Visually, scatterplots get bogged down
with too many points and the barcode plot will be harder to use with
many dimensions. To best push past these limitations, our future
work will include a user study to understand how the limitations
actually affect the task, so we can choose appropriate alternatives.
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