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Figure 1: Globally injective shape deformation. A tetrahedral hand mesh (a) is mapped to a target surface that has self-intersections (b).
Flowing the surface with cMCF [KSBCI12] (c) resolves the penetrations but creates many element inversions in the resulting mesh (d). From
this starting point, we apply our algorithm (GINI) to resolve all inversions and preserve non-penetration, producing a final mesh (e) that is
globally injective. Our method combines a fast approximate quadratic programming (QP) solver with a constraint polisher to simultaneously
minimize deformation energy (here, neo-Hookean) and resolve hard constraints. At right, we visualize progress in resolving injectivity
violations over first GINI iteration (50 QP iterations, 16 polisher iterations), with a vertical line indicating the start of the constraint polisher.

Abstract

We present a method to minimize distortion and compute globally injective mappings from non-injective initialization. Many
approaches for distortion minimization subject to injectivity constraints require an injective initialization and feasible inter-
mediate states. However, it is often the case that injective initializers are not readily available, and many distortion energies
of interest have barrier terms that stall global progress. The alternating direction method of multipliers (ADMM) has recently
gained traction in graphics due to its efficiency and generality. In this work we explore how to endow ADMM with global injec-
tivity while retaining the ability to traverse non-injective iterates. We develop an iterated coupled-solver approach that evolves
two solution states in tandem. Our primary solver rapidly drives down energy to a nearly injective state using a dynamic set of
efficiently enforceable inversion and overlap constraints. Then, a secondary solver corrects the state, herding the solution closer
to feasibility. The resulting method not only compares well to previous work, but can also resolve overlap with free boundaries.

CCS Concepts
e Computing methodologies — Shape modeling;

1. Introduction tortion subject to these constraints, which together ensure global

injectivity, is a challenging task. First, many deformation energies
Many important tasks in computer graphics require computing a of interest are designed to diverge to infinity as elements approach
low-distortion mapping of a shape subject to two constraints: no in- degeneracy and so pose severe difficulties for numerical solvers.

verted elements and no interpenetration. Minimizing mapping dis-
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Such barrier-type energies are often essential for modeling elastic
deformation as well as for high-quality mesh parameterization and
geometry processing. Second, non-inversion and non-overlap give
rise to challenging nonlinear constraints that are not easy to en-
force globally, particularly for high-resolution meshes. However,
these constraints are necessary for many applications in geometry
processing and penetration-free shape manipulation.

Most prior work in geometry optimization, following the sem-
inal work of Smith and Schaefer [SS15], focuses on iteratively
approaching a minimum while ensuring each intermediate step
remains globally injective. These conservative approaches, called
“maintenance-based” methods by some [SFL19], comes with nat-
ural limitations. First, ensuring injectivity at each iteration necessi-
tates a filtered line search step. The presence of even a small num-
ber of highly distorted elements can generate “line search block-
ing” [ZBK18] which may stall global progress. Because of this,
maintenance-based methods often perform better when the starting
point has lower distortion. Second, the solver must be initialized
with a globally injective state in order to begin the optimization.
Creating a globally injective initializer itself is a nontrivial task for
many problems, such as 3D deformation with user-specified con-
straints, and 3D shape mapping, where typical initializers such as
harmonic mapping [EDD*95] or Tutte embedding [Tut63] do not
guarantee an injective solution.

For these problems, maintenance-based solvers must be pre-
ceded by an initial phase that repairs the input mesh until it is feasi-
ble. This task is addressed by a much smaller class of methods, re-
ferred to as “map fixers” [NZZ20]. For large and complex domains,
this map-fixing phase can have a substantial additional cost. More
importantly, there are no map fixers that can also maintain non-
penetration in the presence of free boundaries, necessitating that
the boundary be artificially held fixed to ensure a globally injective
output. Therefore, a general solution for nonlinear infeasible-start
geometry optimization with global injectivity constraints remains a
challenging problem.

Our Approach In this work, we investigate a different, less con-
servative approach to globally injective distortion minimization
that permits the use of non-injective initialization and intermedi-
ate iterates.

Building on the ADMM-PD algorithm’s [OBLN17] ability to
take large optimization steps even when initialized with many in-
verted elements, we introduce an ADMM-based solver that quickly
reduces distortion while approximately respecting injectivity con-
straints. This is interleaved with a secondary “polishing” solver that
rapidly drives the mesh towards global injectivity. These solvers
are coupled through a dynamically updated set of constraint func-
tions to enforce per-element volumes and non-penetration that ac-
tivate when they are near violation. These three novel components
together define our algorithm for globally injective geometry op-
timization with non-injective steps (GINI). Compared to existing
techniques for this task, GINI offers the following advantages:

1. It is highly efficient at computing a low-distortion globally in-
jective mapping on large-scale problems. In our experiments,
we find that it reaches injectivity much faster, and often more
reliably, than existing map fixers on problems with fixed bound-

aries (Sections 8.1) and free boundaries (Section 8.2). As such,
it can be used in place of a map fixer to compute an initialization
for a maintenance-based solver.

2. It efficiently supports overlap constraints, which pose a chal-
lenge for existing techniques, especially in 3D. When starting
from a state that does not have boundary overlap, it can be used
as a standalone solver to perform interpenetration-free shape de-
formation (Section 8.3).

We show two examples in Fig. 2 of both a fixed boundary
mapping problem and energy minimization. In the left image, a
high-resolution armadillo mesh has 219,355 vertices and 928,030
tetrahedra. Our algorithm reaches injectivity in just 9.9 seconds
with one QP iteration and ten polisher iterations. In the right im-
age, a wrench of 14,798 vertices and 50,122 tetrahedra is sheared
and rotated inducing 4,726 inversions. A globally injective state is
reached in just under a second, with further iterations continuing to
minimize energy.

2. Related Work

General deformation tasks and quasi-static simulation aim to
achieve realistic behavior in the form of hyperelastic models found
in continuum mechanics literature. These derive from empirical
analysis and include neo-Hookean [BW97], St. Venant-Kirchhoff,
Mooney-Rivlin [Riv97, Moo40], Fung [Fun13], and others. These
models resist extreme compression, typically in the form of a bar-
rier term which goes to infinity as the volume approaches zero.
Numerical problems related to these energies have motivated tech-
niques to improve robustness under inversion [ITF04, SHST12].

Texture parameterization is another task that necessitates a low-
distortion, one-to-one mapping, but from a 3D surface to a 2D
plane. Tutte’s theorem [Tut63] guarantees such a mapping exists
when the boundary is convex, though the result has high distortion.
Harmonic maps [EDD*95] often produce lower distortion, but do
not guarantee injectivity on general meshes. Tutte and harmonic
embeddings are often used as initializers for other methods, includ-
ing volumetric mappings, that aim to further minimize distortion.
However, Tutte’s guarantee of injectivity does not extend to 3D.
We discuss methods for injective geometry optimization and creat-
ing injective initializers below.

Geometry Optimization Early methods for distortion minimiza-
tion with local injectivity relied on barrier functions [SKPSH13,
FLG15] which have been improved in terms of speed and scala-
bility [RPPSH17]. Barrier energies have also been used for global
injectivity by [SS15] to prevent overlap in free boundary pa-
rameterization and were one of the earliest methods to prevent
interpenetration in computer graphics simulation [TPBF87]. To
improve efficiency, [SS15] introduce flip-avoiding line search to
compute the maximum allowable step size until an element in-
verts, thus reducing the amount of energy evaluations. Another
approach called barrier-aware filtering has been used to mitigate
line search blocking [ZBK18]. Interest has also grown in ficti-
tious domain methods to prevent overlap, which recast the prob-
lem to the embedding domain by creating so-called scaffolding or
an air-mesh [ZMTO05,JSP17, SYLF20, MCKM15]. While [JSP17]
and [MCKM15] are capable of volumetric simulation, the approach
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Figure 2: Two example applications of the GINI solver. Left: GINI resolves 74k initial inversions (yellow) of a 928k element fixed boundary
mesh in 9.9 seconds, with a vertical bar indicated the start of the polisher. Right: ARAP energy is minimized on a 50k element mesh, showing
intermediate configurations at initialization (left), the 3rd iteration in which all inversions have been resolved (center), and 50th iteration

(right).

does not scale well to 3D due to the challenges imposed by bound-
ary conforming tetrahedralization.

If the distortion or deformation model is nonlinear, it requires
some iterative technique to minimize. Descent-based approaches
are most common and require the computation of the gradient and
potentially the Hessian. However, commonly used energies may re-
sult in a Hessian that is not symmetric positive definite (SPD) which
is needed for stable descent. Methods that retain second-order ac-
curacy focus on projecting the energy Hessians to SPD [TSIF0S5,
GSC18,CW17,SGK19] or apply majorization [SPSH*17]. In ge-
ometric optimization it is also common to approximate or replace
the Hessian with the mesh Laplacian [KGL16,RPPSH17], or use it
as a preconditioner [CBSS17].

Infeasible Initialization Robust approaches exist for generating
injective initializers for 2D problems [SJZP19, WZ14]. For this
reason we focus on 3D initialization. A common approach is
to project a mapping into the bounded distortion space [AL13,
KABL14,KABL15]. Similarly, [FL16] project individual simplices
into a distortion-bounded space and then reassemble connectivity.
[SFL19] perform bounded projections with a local-global solver.
One of the few methods that guarantees injective volumetric map-
pings is [CSZ16] but does so through mesh refinement. Most re-
cently, [DAZ*20] introduce an energy model with injective min-
ima, called total lifted content (TLC), that can be optimized with
standard descent methods. They report a much greater success rate
than previous works. We compare to TLC in Section 8.1 and show
that our method is as robust for most 3D problems, but much faster.
One of the few methods that does not require fixed boundaries
is ABCD [NZZ20] which introduces a modified distortion energy
to repair injective elements. We also compare to ABCD in Sec-
tion 8.2 and show our method scales better with increased com-
plexity. Apart from being faster, our method has another benefit
over previous methods: it can attain global injectivity in problems
with free boundaries.

ADMM Typically, the nature of barrier energies prohibit infea-
sible initialization for general nonlinear solvers. Proximal algo-
rithms [PB14] provide a way around this restriction, in which en-
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ergy or constraint evaluations are broken down into smaller, easier
to solve proximal operators that can be evaluated even at infeasible
points. The alternating direction method of multipliers (ADMM)
is a proximal algorithm that has gained popularity in the computer
graphics community [BOFN18,ZPOD19,L.J19,FLGJ19,0PY *20].
ADMM-PD [OBLN17] in particular has several attractive features,
including support for arbitrary nonlinear deformation energies with
or without infinite energy barriers, and fast iterations using a pref-
actored linear solve. Most importantly, even in the presence of
barrier-type energies, it supports initial states that have inverted el-
ements. Despite this, ADMM’s ability to take non-injective steps
while maintaining generality to nonlinear energies has been over-
looked in the context of infeasible-start mesh optimization, perhaps
because it is not guaranteed to fully satisfy constraints except at
convergence. Our work alleviates that limitation and exploits the
efficiency and generality offered by ADMM.

3. Method Overview

We aim to minimize energy on an input triangular or tetrahedral
mesh subject to positional constraints and global injectivity. The
mesh has n vertices in d-dimensional space assembled in the state
variable x € R™. A matrix D is used to map X to some energy-
specific reduction (typically, the deformation gradients of all el-
ements). The energy is expressed as a sum of per-element ener-
gies Y E;(Dx) which may be elastic constitutive models (e.g., neo-
Hookean) or a measure of distortion between mappings (e.g., sym-
metric Dirichlet). Hard positional constraints can be supported by
simply removing the fixed vertices as optimization variables, while
soft constraints Px = q with user-specified stiffness K are repre-
sented as a quadratic penalty X |[Px — q||. Then, the full problem
we seek to solve is:

. K 2
—||Px— E;(D
min > [Px—g|* + Y Ei(Dx). "

s.t. x is globally injective.

As discussed in Section 1, we solve this problem with a com-
bination of a primary ADMM solver, a secondary polisher, and a
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Figure 3: An illustrative diagram of the different components of
our algorithm. Left: We approximate the space of globally injec-
tive states (unshaded) using a set of constraint functions € (black
curves). Middle: The primary ADMM solver updates X using a lin-
earization of the constraints in €. Right: The polisher updates X to
an intersection-free state near X. Meanwhile, constraints that were
not active in the ADMM step are removed, and new constraints en-
countered by the polisher are added to €.

dynamically updated set of constraint functions, €, which together
act as a model of a global injectivity constraint.

Each constraint in € characterizes a specific potential violation
of injectivity, namely inversion of a particular element or intersec-
tion between a pair of surface elements, encoded as a simple-to-
evaluate constraint function ¢(x) > 0. We maintain the invariant
that if x is not globally injective, there is at least one constraint
¢ € € such that ¢(x) < 0, which we can use to push the state to-
wards injectivity. Thus, if all constraints in € have ¢(x) > 0, the
state is globally injective. The constraint set is further described in
Section 6.

A unique component of our algorithm is that we maintain two
separate states of the mesh, X and x. To fully exploit ADMM’s
strengths as a proximal method, we allow the primary solver to
take large infeasible steps in X, only requiring it to approximately
satisfy a linearization of the constraints in €. Thus, there may exist
both self-intersection and inverted elements in X. Then, the pol-
isher takes X and finds a nearby corrected configuration x that is
fully intersection-free and has fewer inversions. Consequently, X is
a state where non-penetration is always maintained. The resulting
output, X, is the output variable of the overall algorithm: the glob-
ally injective, energy minimized state. We describe the constraint
polisher in Section 5.

The algorithm alternates between ADMM and polishing while
simultaneously refining € according to the inversion- and
interpenetration-prone elements in X. This can be done efficiently
because the primary solver, being constraint-aware, gives an X that
is already close to injective. The rationale for two states is subtle
but important: we do not want to modify ADMM’s path and pos-
sibly harm optimization progress. The path from x to X also gives
us a set of linear trajectories from which to perform continuous
collision detection (CCD). The constraints necessary to take X to
injectivity are added to € and used by the primary solver in sub-
sequent iterations, while unnecessary constraints are removed. The
different steps of our algorithm are illustrated in Fig. 3.

4. Approximately Injective ADMM

The primary solver that minimizes energy is based on ADMM-
PD [OBLN17], which alternates between a local step that min-
imizes per-element energies in parallel, and a global step which
solves a prefactored linear system. We extend this approach to in-
corporate injectivity constraints by linearizing the constraint set €
and including them in the global step. The efficiency of ADMM-PD
is retained using a fast approximate quadratic programming (QP)
solver which still leverages the prefactored global matrix.

We linearize the constraint functions c¢(X) about the current
ADMM state Xcurr via first order Taylor series expansion,

vciTi > —Ci(’_(curr) + VCiT?_(curr +Ni, 2)

which we collect into the form CX > d, with the vector inequal-
ity interpreted element-wise. We associate a constraint offset, 1,
for each constraint to represent the desired gap for collision con-
straints, or minimum volume for inversion constraints. This is a
user-specified parameter, but if set too large it may result in prob-
lems without a feasible solution, discussed in Section 8. The goal
of the primary solver, then, is to solve

. X 2 e
min 2 |Px — g|* + ¥ Ei(D), 5
s.t. Cx > d.

Following [OBLN17], we introduce a consensus variable z and
obtain the following splitting:

min gHPi—qHZ—O—ZEi(Z) (4)
st. WDx—1z)=0, (4b)
Cx>d. (40)

The consensus constraint Eq. 4b ensures that z = DX at the solution,
where W is a diagonal weighting matrix chosen to improve conver-
gence speed. This produces the following ADMM update rules:

Z < argmin (Z’E,-(z)—Q—%HW(D}’(—z-q-u)Hz)7 (5a)
z
u+—u+Dx—z (5b)
. (X 1
Xeargrmn(EHPiquer§\|W(Difz+u)||2>. (5¢)
Ccx>d

The z- and u-updates forming the local step and the initial choice
of W are unchanged from [OBLN17]; in particular, the local step
can be carried out independently on all elements in parallel.

The global step, Eq. Sc, is equivalent to

min LT ax—vx (6a)
x 2
sLCx>d, (6b)
where
A=D"W'wWD +«P’P, (7a)
b=D"WWE — v 1Pl q. (7b)

The Laplacian matrix (plus positional penalties), A, is constant
with unchanged mesh topology and pin indices. Thus we only need
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to perform factorization once during initialization. Importantly, A
is dimensionally separable. This means that solving Ax = b is
equivalent to solving a much smaller n X n system AX = B, where
X,Be R are reshaped copies of x,b. In large domains, this can
reduce the run time of both the initial factorization and linear solves
considerably. To simplify the exposition, we continue to write A as
if it were R"<"

Eq. 6 is a standard convex QP problem: a quadratic objective
with a symmetric positive definite (and notably, sparse) Hessian
subject to linear inequality constraints. While QP solvers have
seen recent advancements, e.g., OSQP [SBG*20] and NASOQ
[CKKD20], these are expensive options requiring factorization of
KKT-type matrices. We have tried both these solvers for Eq. 6, but
even with careful tuning and warm starting they remain too costly
for our purposes in large domains. Moreover, solving the QP to
high accuracy is wasted effort for our iterations. This is because
even when the linearized constraints are resolved, the original non-
linear constraints may still be violated. Additionally, the global step
will almost always introduce new inversions or collisions that must
be dealt with. This motivates the need for an approximate solution
to Eq. 6, obtained as fast as possible, taking advantage of A’s con-
stant structure.

Noting that the number of constraints in Eq. 6 is invariably far
smaller than the number of vertices, we work with the dual QP
[NWO06, p. 349], shown below for clarity. Consider the Lagrangian
of Eq. 6

1
L(x,\) = E‘TAi—bTi—hT(Ci—d), @®)
with dual function g(A) = infz L(X, ). For a fixed A the infimum is
attained with

xM)=A"'(b+C"). )

Substituting this into the dual problem and minimizing the negative
dual Lagrangian results in the problem

.1 Ta T s —1 T T
~(b MNTA (b A —d A 10
in;&z( +C'A) (b+C'A) (10)

Now the QP has been simplified to a box-constrained minimization
on dual variable A, with X recoverable via Eq. 9.

This formulation has two significant benefits. First, the most
computationally expensive component of Eq. 10 is the application
of A™', in which the matrix is already factorized and does not
change with new C or d. Second, to obtain fast convergence we can
apply off-the-shelf L-BFGS-B implementations [ZBLN97], which
require just the gradient of the dual function, Vg = CX(A) — d. We
also warm start L-BFGS-B using the value of A cached from the
previous iteration. As a result, solving the QP is efficient, robust,
and easy to implement.

5. Nonlinear Constraint Polishing

After an ADMM step, X mostly satisfies the linearized injectivity
constraints present in C, but may violate the original nonlinear con-
straints or ones not included in the constraint set €. The role of the
constraint polisher, similar to post-stabilization approaches [CP03]
used in rigid body simulation, is to compute a nearby state X which
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Figure 4: A sculpture is mapped to a polycube with many initial
inversions. The lower bound of Y is varied and the number of in-
versions is plotted over 30 polisher iterations. Smaller values of Y
result in aggressive steps that may introduce more inversions, while
larger values are overly damped.

better satisfies the nonlinear injectivity constraints. Specifically, we
require that X has no self-intersections, and all inversions have been
brought closer to resolution (Section 5.1).

The constraint polisher performs its operations on a temporary
variable X that initialized with X = X. At the start of every pol-
isher iteration, the constraint set € is updated and CCD queries
are performed from x to X (see Section 6.1). Viewing polishing
as a feasibility problem, we define a function (%) which penal-
izes constraint violations, then perform descent iterations to min-
imize it. We define a vector e(X) of constraint evaluations with
e;(%X) = min(0, ¢;(8) —m;) for each ¢; € €, and set

W(®) = 3 Y min(0,ci(8) ~ 1P = 1 e®F, (1)

which is zero only when all ¢;(%) > 1;. Adopting a Gauss-Newton
approach, we approximate e(X + p) =~ e(X) + Jp for small pertur-
bations p, where J = Ve(R) is the Jacobian. The optimal p then
satisfies J7 Jp = —J7e(&). However, this is an underdetermined
problem since there are invariably far fewer constraints than ver-
tices. To remain as close as possible to the original X, we take the
minimum-norm solution for p, given by p = —J7 (JJ7) " 'e(R).

As the matrix JJ T may be ill-conditioned, we follow the
Levenberg-Marquardt (LM) algorithm and regularize the linear
system by adding a diagonal matrix U. We choose a simple heuris-
tic: a weighting that is the product of an adaptive damping parame-
ter Y and the maximum coefficient of the diagonal of JJ T denoted
Jmax. Then, our weighting matrix is U = I'Yjmax. The constraint pol-
isher proceeds by taking iterative steps of the following update:

p=-J" " +U) e®), (12a)
o = linesearch (%, p), (12b)
% =%+ op, (12¢)

in which Eq. 12b performs backtracking to find the largest o0 =
(0, 1] such that A(X 4+ ap) < h(X). We initialize the LM damping



116 M. Overby, D. Kaufman, R. Narain / Globally Injective Geometry Optimization with Non-Injective Steps

parameter Y to 1073, and update it after each line search using:

v/3 if o> 0.75,

Y12y ifa<0.25, (13a)
Y otherwise,
¥« clamp(y,[107*,1071)). (13b)

In practice, y quickly reduces to 10~*. We show an example of a
fixed boundary mapping with different Y lower bounds in Fig. 4.
As expected, larger values result in damped but stable iterations.
Smaller values may result in faster resolution of the constraints,
but if set too low the iterates are less stable. For our constraints, we
find 10~ to be a reasonable lower bound.

The Hessian approximate N +Uisa square matrix of the
same dimension as the number of constraints. So as the constraint
set grows, so does this matrix. Fortunately, the descent direction
Eq. 12a depends on only a subset of the vertices in X. Additionally,
the violated constraints are often scattered in many small regions
of the mesh. This allows us to split the constraint set € into in-
dependent “constraint zones” and solve Eq. 12 for each zone in
parallel. This is done by merging all constraints that share vertices
into a single zone. For each zone, JJ T 1 U remains small relative
to the domain and so can be practically factorized using Cholesky
decomposition.

After performing a step of Eq. 12, X has changed and there may
be new penetrations or inversions. Immediately following the pol-
isher iteration, previous constraints are updated, new constraints
are added into new zones, and then all zones (including previous
ones) are merged if they share a vertex. For any two zones that are
merged, the lower 7y of either zone is kept. Solving, updating, and
merging zones is repeated until X meets the termination criteria de-
scribed in the following section. This process is similar to impact
zones [Pro97, BFA02, HVTGOS] popular in cloth simulation.

5.1. Constraint Polisher Termination

Each iteration of constraint polish may carry sizeable computa-
tional cost, since it involves at least one constraint set update. For
3D tasks involving overlap constraints, the broad phase of CCD can
be expensive. Furthermore, for a high-resolution mesh, a loop over
all elements to find inversion constraints has a non-negligible cost.
Thus, it is desirable to terminate the constraint polisher as early as
possible.

Note that it is unnecessary to require full global injectivity in x
at every GINI iteration, and only a penetration-free state is needed
for updating the collision constraints. However, we still want the
polisher to make significant progress on resolving inversions. We
find a reasonable balance and stop only once the state is penetration
free and c(X) > c(x) for all violated inversion constraints c(%) < 0.
When this termination criterion is met, we update x = X.

If the constraint polisher reaches some maximum number of it-
erations before the state is free of penetration, we leave x at its
previous state. However, all is not lost: the polisher has spent time
refining the constraint set, so the ADMM step will find a state closer
to injectivity in the next GINI iteration.

6. The Constraint Set

We have shown how the primary solver minimizes energy in Sec-
tion 4 and the constraint polisher finds injectivity in Section 5. Both
solvers rely on the characterization of global injectivity provided by
the constraint set €. In this section, we describe in more detail how
€ represents injectivity through constraint functions c¢(x) > 0, and
how it is updated as the algorithm proceeds.

An inversion constraint is defined on each element that is close
to inversion. The natural choice of constraint function ¢(x) is the
signed volume of the element. Overlap constraints are defined on
pairs of surface primitives (vertex-face and edge-edge) that are
likely to intersect, which we find through CCD as described be-
low. For vertex-face pairs, we use the predicted intersection points
x;,X; and face normal n(x) to define the gap constraint c(x) =
n(x)7 (x; —x ;). Edge-edge pairs, conversely, do not have a contin-
uous well-defined normal. In particular, the commonly used cross
product vanishes when edges are parallel, which occurs often in
practice. Instead we find it effective to treat edge-edge pairs as vol-
umetric constraints, in which an “air element” similar to [SMTO08]
is inserted in place of a gap constraint and its signed volume is used
as c(x). However, our approach differs from [SMTO08] in that the
winding order is set so that the volume is positive immediately be-
fore time of collision, and not in the collision-free state. Addition-
ally, these “air-tets” stay within the constraint set and are updated
throughout the solve.

The scaling of the constraint functions affects the convergence of
both the QP solver in the ADMM step and the LM iterations in the
polisher. If the gradient of one constraint is much larger in magni-
tude than others, it will dominate the descent direction. To mitigate
this, gradients of inversion constraints are scaled by (s/2) ™! where
s is the boundary measure (perimeter or surface area) of the refer-
ence element. This ensures that the magnitudes of constraint gradi-
ents are close to unity, even if the element volumes differ by orders
of magnitude. Gap constraints for vertex-face pairs are automat-
ically well-scaled. Volumetric constraints for edge-edge pairs are
scaled by surface area in the same manner as inversion constraints.

6.1. Constraint Set Update

We perform a constraint set update before each iteration of the pol-
isher, to account for new injectivity violations introduced by the
previous ADMM or polisher step. We also disable interpenetration
constraints that are no longer relevant, to prevent locking artifacts.

Inversion constraints are added for all elements whose signed
volume is less than its associated 1 (See Table 1). New collision
constraints are found with standard CCD using a bounding volume
hierarchy. Due to ADMM’s large step sizes, the full swept volume
can be quite large for a single primitive, resulting in many points of
contact. To minimize the inclusion of unnecessary constraints, we
find a good heuristic is to only add the first colliding pair for any
given vertex, face, or edge that does not already appear in €.

The question remains of what to do with collision constraints in
@ that are no longer colliding. We do not want to remove them
because they may help prevent penetration, especially with large
displacements and sliding contact. But naively considering all col-
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Figure 5: An elephant deforms as its trunk is pulled downward
toward its body, undergoing collisions with the tusks and ear. In-
termediate iterations of the simulation are shown with and with-
out constraint removal (center and right, respectively). When con-
straints are not removed, visible sticking occurs between the trunk
and tusk, motivating the need for a dynamic constraint set.

lisions constraints in Eq. 11 results in locking artifacts, in which
the polisher iteration may become blocked from making progress.
Consider the illustration
to the left. Here, a parti-
cle collides with a trian-
gle on the first iteration
(xl) and a constraint is
created showing the re-
stricted space in red. In the next iteration (x%), the particle attempts
to move past the triangle but is blocked unnecessarily by the con-
straint.

To reduce locking artifacts, all constraints in € that are no longer
colliding are flagged as proximal constraints. If any barycentric co-
ordinate of the projection onto the splitting plane is negative for
proximal constraints, it is temporarily skipped, but not removed,
during the calculation of the Jacobian. Any such skipped constraint
is then ignored in that iteration when calculating Eq. 11 in line
search.

6.2. Constraint Removal

It is not appropriate to only add constraints, we need to remove
unnecessary ones as well. These may include elements that are
no longer prone to inversion, and collision constraints between
two primitives separated by a third (layered contact). We perform
constraint removal once per GINI iteration, immediately follow-
ing the ADMM global step. The Lagrange multipliers A calculated
in Eq. 10 are valuable in finding such constraints. If A; = 0, the
constraint is not active at X, and the corresponding constraint is re-
moved from €. We also remove collision constraints flagged as
proximal if the distance between two non-colliding primitives is
much greater (100n) at X than x, since this indicates the primitives
are moving apart. Finally, air-tets used by edge-edge collisions may
be incorrectly active, e.g., if they are counter-rotating against each
other. For this reason we find it effective to remove any edge-edge
constraint that was flagged as proximal from €. Otherwise, the
solver will encounter sticking artifacts as seen in Fig. 5 between
the trunk and tusk in the rightmost image of the elephant.
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Algorithm 1: GINI
Initialize x, X
Factorize A
Update € at x (Section 6.1)
while not injective do
ADMM local step: update z, u (Egs. 5a, 5b)
ADMM global step: update x (Eq. 10)
Remove inactive constraints from & (Section 6.1)
X=X
for i to max iterations do
Update € from x to X (Section 6.1)
if criteria met (Section 5.1) then
X=X
break
end
Form constraint zones (Section 5)

for each zone in parallel do
| Polisher step, update X (Eq. 12)

end

end
end

7. Summary

We summarize the entire algorithm in Alg. 1. Each iteration of
GINI begins with one iteration of ADMM to reduce the energy sub-
ject to linearized constraints. This is followed by removal of unnec-
essary constraints. Finally, we perform polisher iterations until all
the intersections are removed and inversions are improved. Before
each polisher iteration, the constraint set is updated so that any new
violations of injectivity are accounted for. This process continues
until the mesh is globally injective. Alternatively, the algorithm can
be run until the energy is sufficiently minimized according to user
preference.

We show a table of parameters and their default values in Table 1.
To the best of our ability we attempted to use the same parameters
throughout all the experiments, discussed in the next section.

Parameter Value Exceptions

3 A Section 8.2, 107 A4
N (VEcollision) 1074 -

M (volume) a/10 FF-Data, see Section 8.1
max iter QP 50 -

max iter polish 30 =

min Y 1074 -

Table 1: Parameters used in our experiments, with Aj™

diagonal coefficient of A, and a = rest volume. Some mappings
of the FF-Data testbed needed parameter adjustment, which we
describe in Section 8.1.

= max
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8. Evaluation and Discussion

We evaluate our approach, GINI, on many challenging problems
across different scales and inputs. All our examples were computed
on a desktop computer using Ubuntu 18.04LTS with a 3.5GHz Intel
Xeon processor. CPU parallelization was done with OpenMP. We
use Eigen [GJ*10] for matrix/vector calculations, MKL PARDISO
for linear solves, and libigl [JP*18] for geometry-processing re-
lated tasks and rendering. In all examples (unless otherwise noted),
the GINI solver minimizes ARAP energy and stops when the state
is globally injective. As a result, the output state is feasible but
may be arbitrarily distorted. If a low-distortion solution is desired,
it is recommended to subsequently use a higher order optimization
technique (e.g., [SPSH* 17, TSIF05]) starting from GINI’s output.
‘We show an example of this in Section 8.2.

8.1. Local Injectivity with Fixed Boundaries

We first consider a set of fixed-boundary, volume-mapping prob-
lems. Here we seek to map an input tetrahedral mesh to a tar-
get shape with a fixed, prescribed boundary. The boundary points
are mapped as hard constraints while methods seek inversion-
free tetrahedra. We compare GINI to total lifted content (TLC)
[DAZ*20] using the authors’ quasi-Newton reference implemen-
tation, which is the current state of the art. Both methods stop iter-
ating when an injective state is reached. We denote these as local
injectivity tests because overlap is not explicitly resolved. Obtain-
ing a non-inverting mesh then gives a globally injective solution.

GINI is compared to TLC on two data sets for a total of 950
mappings:

1. FF-Data: A reference set of mappings from [SFL19] that con-
tains 40 polycube mappings, 20 sphere mappings, and 40 free-
surface mappings (see Fig. 6). There are three different initializ-
ers for each mesh: vertices mapped to a point, vertices random-
ized, and harmonic initialization.

2. Dillo-Anim: Two data sets of a twisting armadillo at different
resolutions, 23,982 and 121,190 elements, all with harmonic
initialization. These were created by exporting the frame-by-
frame mesh of a simulation generated using the IPC integrator
[LFS*20]. The lower resolution animation contains 450 frames
provided by [DAZ*20]. The higher resolution animation was
generated by us and has 200 frames.

[DAZ*20] have shown that many previous methods [SFL19,
KABLIS, FL16] excluding their own fail to find an injective so-
Iution for some frames of the lower resolution armadillo in Dillo-
Anim. Our method finds local injectivity for all of them, and in-
deed, for all 950 target surface mappings and initializers in our
data sets. Interestingly, TLC was not able to reach injectivity on
63 of the one-point initializers in FF-Data. However, we note that
one-point initialization is not practical since a harmonic initializer
is always available. We still consider them because they are use-
ful for showing sensitivity to input and for inducing many initial
inversions to show how the methods scale with complexity.

Run time results are shown in Fig. 6 and Fig. 7, with data points
colored based on the number of initial inversions. We see that GINI
has a relatively flat scaling with problem difficulty, particularly pro-
nounced in the FF-Data testbed. Most of the cost associated with
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Figure 6: The FF-Data testbed [SFLI9]. Top: Example meshes
with inverted elements in yellow. Each tetrahedral mesh (a) is
mapped to a target surface (b) with three different initializers: one-
point (¢), random (d), and harmonic (e). Bottom: Comparison of
GINI to TLC [DAZ*20]. Data points are colored by the number of
initial inversions.

the solve is the initial factorization. We found the factorization
takes an average of 32% of the run time for FF-Data and 34% for
Dillo-Anim. In contrast, TLC requires more time as the difficulty
of the problem grows. For this reason, GINI tends to outperform
TLC on fixed boundary volumetric mappings, sometimes by sev-
eral orders of magnitude.

Caveats GINI attempts to push each element to at least its min-
imum volume (by default, n = a/10). A larger 1 allows the con-
straint polisher to complete sooner. However, if the target volume
is not achievable, i.e., the problem itself has no feasible solution,
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Figure 7: Comparisons of GINI and TLC [DAZ*20] on the Dillo-
Anim testbed. An armadillo at different resolutions is flung around
using the IPC [LFS*20] time integrator and frames are exported to
generate a database of surface mappings (top). Points are colored
by initial number of inversions.

the constraint polisher may not be able to resolve all inversions.
This was the case for the sphere mappings (a total of 60 samples),
in which we setm = a/100 and increased the volume of the mapped
surface. Similarly, the David mesh (Fig. 6, top) required uncharac-
teristically specific parameters to succeed. We had to change 1 to
0.15 for harmonic and one-point initialization, and 0.075 for ran-
dom initialization. The David mesh was the only mapping in the
entire set of 950 mappings that required this level of fine tuning to
succeed.

To investigate the limitation further, we devise a test specifically
to stress GINI. A spikey wheel is progressively smoothed in Ta-
ble 2, so that the spikes collapse to nearly zero-volume tetrahedra.
TLC performs significantly slower but succeeds at more smoothing
iterations. A better chosen 1 allows GINI to succeed up to a certain
point, highlighting the need for adaptive parameters as future work.

8.2. Non-Inversion with Free Boundaries

Next, we consider free-boundary problems where we seek a non-
inverting solution from an inverting initializer. The most recent
work in this domain is ABCD [NZZ20], which we compare GINI to
in this section. Table 3 shows the time to a non-inverting solution
using the data set provided by [NZZ20] which contains both 3D
(wrench, bar12k, bar30k) and 2D examples. We show one such ex-
ample in Fig. 9, where an elephant mesh is initialized with random-
ized vertex positions. Our timings differ considerably from those
reported in the original paper, possibly because we were only able
to run ABCD with Eigen but not with PARDISO — nevertheless,
our method outperforms most of the reported timings as well. Note
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TLC a/10 /100 a/1000

1 2634 1592 0.631 0.622
2 12999 - 1489  1.000
3 30.882 - - 2239
4 56.035 - - 6.048
5 73.203 - - 11.872
6 83.788 - - -

Table 2: A test designed to make GINI fail. A wheel is progres-
sively smoothed resulting in near-zero volumes at the cleats, and a
mapping is computed from the rest shape to the smoothed surface.
The time to injectivity for TLC and GINI with varying 1 is listed in
seconds if it succeeded. Shown is the mesh at 0, 2, and 6 smoothing
iterations.

that in order to perform a fair comparison, we modify GINI to also
use Eigen solvers for all tests versus ABCD. In terms of time to in-
jectivity, GINI outperforms ABCD on all examples, with a speedup
of over 50x for some 3D meshes.

In our experiments we found the meshes produced by ABCD
are often with lower distortion due to the increased number of it-
erations taken. To test how the methods perform in a practical set-
ting, i.e., using GINI’s output as an initializer for another method
to optimize, we conduct the following experiment. For the higher
resolution armadillo of the Dillo-Anim testbed (121,190 elements),
we pin the hands in place and run GINI until the mesh is injec-
tive. Then, we switch to ABCD’s core projected Newton solver and
optimize until the convergence criteria is met, which is the combi-
nation of the characteristic gradient [ZBK18] and a displacement
norm (see [NZZ20] for details). With ABCD, we give it the same
initializer as GINI and let the method run until the same conver-
gence criterion is met.

The results of both the time to injectivity and time to conver-
gence (which includes time to injectivity) are show in Fig. 8. GINI
greatly outperforms ABCD at reaching injectivity by several or-
ders of magnitude. We stopped ABCD if the total time ever reaches
more than 5 minutes, which occurs on 131 of the 200 examples. If
the final iteration started before the S-minute mark, we kept the so-
lution. As seen on the left of Fig. 8, GINI's output was sufficiently
low distortion so that the minimization always finished sooner than
ABCD. Each projected Newton iteration taken by the optimization
was approximately 30 seconds, so there is a visible clustering along
the horizontal based on the number of iterations.

8.3. Globally Injective Mappings

Next, we aim to minimize elastic energies subject to positional con-
straints while seeking global injectivity. Here the solver is given an
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Figure 8: Comparison of GINI to ABCD [NZZ20] on the higher
resolution armadillo mesh of Dillo-Anim. Convergence is deter-
mined by ABCD’s characteristic gradient and displacement norm.

Figure 9: An elephant mesh from [NZZ20] is initialized with ran-
dom vertex positions (left) and mapped to an injective state (right)
with a fixed boundary (green). The mesh has over 54k initial in-
verted elements and an injective solution is found in less than one
second with our method.

input volumetric mesh and a target boundary surface, and should
output a final mesh, free of inversion and self-penetration. We
add soft constraints pulling the boundary vertices towards the cor-
responding points on the target surface, with a stiffness of x =
1075AM¥ In this problem we also allow the constraint polisher
to move these soft-constrained vertices to resolve intersections.

We follow the same initial process as [SJP*13] to start the target
mapping in an intersection-free state, shown in Fig. 1. The mapped
surface mesh is flowed using conformalized mean curvature flow
(cMCF) [KSBC12] until it is free of intersection. Then, we com-
pute a harmonic initializer in the flowed state, preserving the tetra-
hedralization of the input volumetric mesh. After that, we start the
optimization. GINI uses quadratic constraints to pull the surface
close to its mapped shape, while minimizing elastic energy and sat-
isfying global injectivity.

The first example is a neo-Hookean material hand model, Fig. 1,
shaped to form a fist. The mesh has 31,197 tetrahedra, 7,256 ver-
tices, and 9,556 faces. GINI was able to achieve global injectivity
on the second iteration, taking a total of 19.0 seconds, with only
one inversion remaining after the first iteration. We plot the num-
ber of inversions and triangle-triangle intersections over the first
iteration in Fig. 1. Many initial constraints are resolved by the QP
solver while the energy is minimized. The deformation introduces
new collisions which can be seen over the first 50 QP solver iter-

Figure 10: An intersecting mesh is repaired with GINI. Left: The
initial intersected mapping. Center: The mesh is flowed to remove
intersections, but now has 3,374 inversions. Right: Stable neo-
Hookean energy is minimized alongside resolving collisions and
inversions as the mesh is pulled back to the target shape.

ations. Once the constraint polisher starts, indicated by a vertical
line, both the number of active inversions and collisions rapidly de-
crease. The most costly component of the simulation was collision
detection that occurred during constraint polish, taking a total of
17.2 seconds. Next was the global step, which took 1.07 seconds.

We show another example with a stable neo-Hookean material
[SGK18] arm bending at the elbow in Fig. 10. The mesh has 39,292
tetrahedra, 10,750 vertices, and 16,618 faces. Bending at the elbow
causes intersections between the upper and lower arm, which are
removed by flowing the surface. After one GINI iteration taking
47.7 seconds, the arm is free of inversions and self-intersection.
Like the hand mesh, collision detection takes the most time with a
total of 47.2 seconds. This is largely due to the number of broad
phase candidates encountered at the fingers which were collapsed
to thin strands.

To further test our algorithm on resolving challenging collision
scenarios, we reuse the higher resolution examples in Dillo-Anim.
For each of the 200 meshes, we pin the hands in place and run
GINI until a globally injective state is reached using the stable neo-

Mesh #V #E #1 ABCD GINI
elephant-low 1105 1796 786 0.102 0.051
elephant-med 15,193 28,736 14,043 2.223 0.173
elephant-high 59,121 114,944 54,906 25.155 0.533
octopus-low 3,924 5,986 23 0.330 0.106
octopus-med 13,833 23,944 95 1.771 0.715
octopus-high 51,609 95,776 1,007 19.329 3.067
d1-01121 49,274 95,880 3 0.653 0.275
d1-02392 47,535 91,912 25 5.063 0.291
d1-00478 25,293 48,964 22 0.685 0.175
gorilla 420,408 839,092 20 126.025 7.522
wrench 14,798 50,122 322 58.242 0.669
bar12k 2,541 12,000 4,726 15.871 0.179
bar30k 6,171 30,000 104 26.988 0.444

Table 3: Examples from the ABCD-Data testbed [NZZ20] with par-
tially fixed boundaries. Reported is number of vertices #V, number
of elements #E, number of initial inverted elements #I, and time to
injectivity (seconds) for ABCD and GINI. In problems with a large
number of initial inversions, the speedup is often over 10x (green).
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Figure 11: The Dillo-Anim testbed contains challenging initializ-
ers. When only the hands of the armadillo are fixed, minimizing
elastic energy results in many collisions, especially near the twisted
arms (bottom). The number of collisions and inversions resolved by
our algorithm in each example are plotted with the time to injectiv-
ity (TTI) in seconds.

Hookean energy. The number of collisions and inversions encoun-
tered by the QP solver are shown in Fig. 11, along with the time to
injectivity (TTI) measured in seconds. GINI reaches injectivity for
all examples; here, in several cases, there were over 3,000 collision
constraints being resolved. The bottom image of Fig. 11 shows the
twisted arm after the mesh has been made globally injective by our
algorithm.

8.4. Stress Test

To stress test our algorithm further we compress a bunny mesh
(32,126 tetrahedra, 8,112 vertices, 9,790 faces) with an ever-
shrinking cube using the ARAP energy. Every time the polisher
succeeds at finding a globally injective state, the cube is then fur-
ther compressed. Here this benchmark test will eventually exit once
the polisher fails three times consecutively. We show three states of
the optimization in Fig. 12. Our algorithm was able to compress
the bunny to 19.6% of its original volume after 126 seconds of run
time. Collision detection was the most expensive part of the solve,
which took 66.1 seconds of the simulation. The next most expen-
sive component was the QP solve, which took 22.9 seconds. In this
test case the constraint set grew to 14,298 active constraints in the
last successful iteration. Eventually, the solver was unable to make
progress because some faces were compressed to zero area and so
constraints could not be evaluated.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

Figure 12: A tetrahedral mesh is progressively compressed in a box
to stress test our algorithm. GINI resolves inversions and collisions
down to 19.6% of its original volume.

8.5. Limitations and Future Work

Our focus in this work is not solely on robustness. We attempt a
balance between generality with respect to energy models and scal-
ability for higher resolution meshes. Indeed, like most existing map
fixers, GINI is not guaranteed to find an injective state (see Table 2).
Additionally, we tested the rotating cube cutout example from the
concurrent work of [GKK*21] (Fig. 6 of their paper) and GINI was
only able to solve the 45-degree rotation. As evidenced by Fig. 4
and Table 2, parameter adjustment can improve the success rate. In
future work, we expect investigation of an automatic approach to
adjusting parameters will make our solver more robust.

As shown in Section 8.2, collision detection is often the most
expensive component of our solves. For meshes with surfaces that
are initialized with enough distance (e.g., Fig. 10) coarse bound-
ing meshes such as those employed by Jiang et al. [JSZP20] can
be used to speed up the collision processing. However, a thorough
analysis of different methods for collision detection is outside the
scope of this work. Additionally, we are unsure if coarse boundings
can be applicable to all our benchmarks, specifically the armadillo,
which has exceedingly small initial separation distances. Examin-
ing faster methods to process the overlap constraint would likewise
be a productive research direction.

Finally, we would like to apply our algorithm to texture mapping.
As GINI can start from infeasible configurations, there is more flex-
ibility for low-distortion initialization compared to maintenance-
based methods. We have tried this and found that GINI works well
even for high-resolution meshes. For example, Fig. 13 shows our
method starting from a non-injective harmonic initialization and
produces a globally injective result after the first iteration. Un-
fortunately, certain meshes exhibit “pinching” issues, where some
boundary triangles are compressed to near-degeneracy. From our
experiments we find that dynamically increasing or decreasing
ADMM weights can help resolve pinching, but then correspond-
ingly require a numerical refactorization of the global matrix. We
plan to investigate improvements for bijective texture mapping in
the future.
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Figure 13: Texture parameterization with symmetric Dirichlet.
Since GINI can take non-injective steps, it does not have to start
from a Tutte embedding (a) and can instead start from a harmonic
one (b) that has 25 inversions but lower distortion. An injective map
is found immediately on the first iteration (c). The third (d) and sev-
enth (e) iteration are also shown. Each iteration takes an average
of 8.4 seconds for a mesh with 1,357,857 vertices and 2,689,024

triangles.

9. Conclusion

Geometric optimization subject to global injectivity is a challeng-
ing problem and is important to computer graphics. A standing lim-
itation of many existing solvers is that they are restricted to feasi-
ble iterates and starting points, which can be difficult to produce
and impede solver progress. Map fixers can be used to generate in-
jective initializers, but are often slow or may fail to produce valid
results. Additionally, no previous map fixer is capable of maintain-
ing non-penetration with free boundaries. Methods such as ADMM
are not limited to feasible iterates and may take large, inexpensive
steps toward a constrained objective, but have difficulty fully satis-
fying constraints. We show how global injectivity can be approx-
imated using locally defined, incrementally constructed inequality
constraints for inversion and overlap. We build on ADMM to re-
solve these constraints using an approximate QP solver that benefits
from a constant system matrix, while still maintaining the benefits
of fast, non-injective intermediate steps. This is coupled with a sec-
ondary solver that rapidly attains global injectivity and updates the
set of constraints used in subsequent iterations. The resulting algo-
rithm outperforms the state of the art on a large testbed of complex
meshes, in some cases by multiple orders of magnitude.
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