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Abstract

This paper is a report on the 3D Shape Retrieval Constest 2010 (SHREC’10) track on large scale retrieval. This
benchmark allows evaluating how wel retrieval algorithms scale up to large collections of 3D models. The task
was to perform 40 queries in a dataset of 10000 shapes. We describe the methods used and discuss the results and
signifiance analysis.

Categories and Subject Descriptors (according to ACM CCS): I.5.4 [Pattern Recognition]: Applications—Computer
vision; H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—Clustering; Experimenta-
tion; Performance

1. Introduction

In this paper we describe the 3D retrieval experiments
done in the large scale retrieval track of SCHREC 2010,
the 3D Shape Retrieval Contest held in conjunction with
the third Eurographics Workshop on 3D Object Retrieval,
see http://www.aimatshape.net/event/SHREC.
This benchmark allows evaluating how wel retrieval algo-
rithms behave on large collections of shapes. Section 2 de-
scribes the task that was set for the participants. The three
following sections describe the methods used by the partici-
pants to solve the task. Section 6 contains a discussion of the
results.

2. The task

Participants of the contest were presented a dataset of 10000
3D models in the ply format. The files contain only geo-

† Organizer of this SHREC track. For any information about the
benchmark, contact Remco.Veltkamp@cs.uu.nl

metrical information, no textures or colors. 493 files con-
tain real models, made with modelling software for real
use. The other files contain random generated content. The
idea behind adding the random content was to discourage
manual inspection of the models. The real models were
classified by human inspection in 54 classes. Similarity
in shape was taken as the classification criterion. We se-
lected 40 queries from 36 classes. We did not select queries
from all classes, because there are quite a few residual cat-
egories, like other animals or other electrical equipment
where the models hardly resemble each other. See http://
give-lab.cs.uu.nl/SHREC/ULS3SRB/2010/ for
the Utrecht Large Scale 3D Shape Retrieval Benchmark.

3. The methods of Zhouhui Lian and Afzal Godil

The visual similarity based method has been widely con-
sidered as the most discriminative approach in the field of
3D content-based object retrieval. We ran three such kind
of methods, denoted as LiCm, LiGsmd and LiVlgd, respec-
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Figure 1: The visual similarity based framework.

tively, on the Large Scale Benchmark of SHREC’10. Basi-
cally, these three algorithms are similar due to the fact that,
they all utilize a particular visual similarity based frame-
work, and the only difference between them is how to de-
scribe the depth-buffer views captured around a 3D object.
More specifically, CM-BOF uses a local feature based shape
descriptor to represent a view as a histogram, and GSMD
describes the view by a global feature vector, while VLGD
utilizes a linear combination of above mentioned 2D shape
descriptors.

3.1. A Visual Similarity based Framework

As demonstrated in Figure 1, our visual similarity based 3D
shape retrieval framework is implemented subsequently in
four steps:

1. Pose Normalization: Given a 3D object, we first trans-
late the center of its mass to the origin of canonical coor-
dinate frame and then scale the maximum polar distance
of the points on the surface to one. Rotation invariance
is achieved by applying the PCA technique to find the
principal axes and align them to the canonical coordi-
nate frame. Note that, we only employ the information of
eigenvectors to fix the positions of three principal axes,
namely, the direction of each axis is still undecided and

the x-axis, y-axis, z-axis of the canonical coordinate sys-
tem can be located in all three axes. That means 24 differ-
ent orientations are still plausible for the normalized 3D
object, or rather, 24 matching operations should be car-
ried out when comparing two models. It should also be
pointed out that, the exact values of the surface moments
used in our PCA-based pose normalization are calculated
via the explicit formulae introduced by [ST01].

2. View Rendering: After pose normalization, 66 depth-
buffer views with size 256×256 are captured on the ver-
tices of a given unit geodesic sphere whose mass center
is also located in the origin, such that a 3D model can be
represented by a set of images. We render the views base
on OpenGL.

3. Feature Extraction: For each view, a specific image pro-
cessing technique is applied to represent the view as a
compact feature vector. Based on the different 2D shape
descriptors used (see corresponding subsections), our
three algorithms are classified as the following three cate-
gories: local feature based (i.e. CM-BOF), global feature
based (i.e. GSMD), and composite (i.e. VLGD) meth-
ods. The average dimension of this 3D shape descriptor
is about 3000.

4. Dissimilarity Calculation: The last step of our frame-
work is the dissimilarity calculation for two shape de-
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scriptors. The basic idea is that, after we get the principal
axes of an object, instead of completely solving the prob-
lem of fixing the exact positions and directions of these
three axes to the canonical coordinate frame, all possible
poses are taken into account during the shape matching
stage.
The dissimilarity between the query model q and the
source model s is defined as,

Disq,s = min
0≤i≤23

65

∑
k=0

D
(

FVq(p
′

0(k)),FVs(p
′

i (k))
)

,

where FVm = {FVm(k)|0 ≤ k ≤ 65} denotes the shape
descriptor of 3D object m, FVm(k) stands for the feature
vector of view k, the permutations p

′

i = {p
′

i (k)|0 ≤ k ≤
65}, 0 ≤ i ≤ 23 indicate the arrangements of views for
all (24) possible poses of a normalized model, and D(·, ·)
measures the dissimilarity between two views. For more
details about this multi-view shape matching scheme, we
refer the readers to our previous papers [LRS] [LGS10].

3.2. A Local feature based Method: CM-BOF

In our CM-BOF algorithm, each view is described as a word
histogram obtained by the vector quantization of the view’s
salient local features, and the distance between two his-
tograms H1,H2 with Nw bins is evaluated by the formula,

D(H1,H2) = 1−
∑

Nw−1
j=0 min(H1( j),H2( j))

max(∑Nw−1
j=0 H1( j),∑Nw−1

j=0 H2( j))
.

Note that, the 2D salient local feature is calculated using
the VLFeat matlab source code developed by Vedaldi and
Fulkerson [VF]. On average, this 3D shape descriptor con-
tains about 3000 integers. This method is denoted LiCm in
the results section.

3.3. A Global feature based Method: GSMD

In our GSMD algorithm, each view is represented as a global
feature vector with 47 elements including 35 Zernike mo-
ments, 10 Fourier coefficients, eccentricity and compact-
ness, and the dissimilarity between two feature vectors is
measured by their L1 difference.

Note that, the global feature vector is calculated using the
C++ source code provided by [CTSO03], and the vector is
normalized to its unit L1 norm. The dimension of this 3D
shape descriptor is 3102. This method is denoted LiGsmd in
the results section.

3.4. A Composite Method: VLGD

Our VLGD algorithm is a composite method based on a
linear combination of CM-BOF and GSMD. More specifi-
cally, in this method, a view is expressed by a feature vec-
tor consisting of two kinds of shape descriptors, which are

used in CM-BOF and GSMD, with pre-specified weights.
We experimentally select the weights as Wlocal = 7.0 and
Wglobal = 1.0 for local and global features, respectively, by
maximizing the retrieval accuracy on PSB train set with base
classification. This method is denoted LiVlgd in the results
section.

4. The method of Ryutarou Ohbuchi and Takahiko
Furuya

Our algorithm (denoted ObFu in the results section) com-
pares 3D models based on their appearances, that is, by us-
ing range images of the 3D models rendered from multiple
viewpoints. The algorithm is designed so that it could handle
(1) a diverse range of shape representations, including poly-
gon soup, point set, or B-rep solid, and (2) models having
articulation or deformation. Almost all 3D model retrieval
algorithms deal with geometrical transformation invariance,
typically up to similarity transformation. However, invari-
ance to articulation has been dealt with by only a small sub-
set of algorithms, and only for a limited subset of shape rep-
resentations (e.g., manifold mesh).

Appearance based comparison gives the algorithm its
ability to handle diverse shape representation. Invariance to
articulation and/or global deformation is achieved through
the use of a set of multi-scale, local, visual features inte-
grated into a feature vector per 3D model by using Bag-of-
Features (BoF) approach. By comparing an integrated fea-
ture per 3D model, instead of a set of thousands of local
features per 3D model, cost of comparing a pair of 3D mod-
els has become manageable. We call the algorithm Bag-of-
Features Dense-SIFT with Extremely randomized clustering
tree (BF-DSIFT-E). We present a short description of the al-
gorithm in the following. Please refer to the paper by Furuya
et al [TF09] for details.

Figure 2 shows the processing steps of the BF-DSIFT-E
algorithm. After normalizing the 3D model for its position
and scale, a set of range images of the model is generated by
using multiple virtual cameras looking inward at the model
sitting at the coordinate origin. From each depth image, our
algorithm densely and randomly samples a few hundreds of
local, multi-scale image feature using Scale Invariant Fea-
ture Transform (SIFT) algorithm by David Lowe ( [Low04]).
The original SIFT algorithm first detects salient points in the
image, and then compute local, multi-scale, visual features
at these points. However, we disable the salient-point detec-
tor of the SIFT for dense and random placement of sample
points. Each SIFT feature encodes, in its 128D vector, po-
sition, orientation, and scale of gray-scale gradient change
about the sample point.

Typically, a 3D model is rendered into 42 depth images,
each one of which then is sampled at 300 or so locations.
Thus, a 3D model is described by a set of 13k SIFT fea-
tures. Naïve comparison of a pair of such sets would take a
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Figure 2: Flow of the Bag-ofFeature Dense-SIFT with ERC-Tree algorithm

long time. To reduce the cost of model-to-model dissimilar-
ity computation, the set of 13k visual features is integrated
into a feature vector per model by using the BoF ( [CDF∗04],
[SZ03]) approach. The BoF approach vector quantizes, or
encodes, each SIFT feature into a representative vector, or
“visual word”, using a previously learned codebook. These
visual words are accumulated into a histogram, which then
becomes the feature vector. The optimal dimension of the
histogram (i.e., feature vector per 3D model) depends on the
shape and diversity of the 3D models in a database. We ex-
perimentally choose dimension of about 30k for this track.

To extract this many features quickly, we use a fast GPU-
based implementation of the SIFT algorithm called SiftGPU
by Wu ( [Wu]). We also adopted Extremely Randomized
Clustering Tree, or ERC-Tree, by Guerts, et al ( [PG06]),
for both feature set clustering during codebook learning and
for vector quantization of the SIFT features during retrieval
[TF09]. The ERC-Tree clustering is much faster for code-
book learning than the k-means clustering. The ERC-Tree is
again much faster than the linear search of nearest neighbor
in the vector quantization step.

After encoding into visual words, frequencies of words
are accumulated into a histogram, which becomes a fea-
ture vector for the 3D model. Optimal dimension of the fea-
ture vector depends on visual complexity of the image from
which the SIFT features are extracted, that are, the 3D mod-
els in the database. We experimentally found the dimension-
ality of about 30k for the feature used in this benchmark.

Distance computation among feature vector used a sym-
metric version of the Kullback-Leibler Divergence (KLD),
which is sometimes called relative entropy. The KLD per-
forms well for comparing two histograms.

The KLD for a 30k dimensional vector is rather expensive
to compute, especially sing the KLD must be computed 10k

times for a database having 10k entries. To accelerate dis-
tance computation, the algorithm reduces quantization levels
of the histogram entry to a small integer (e.g., 512) via clip-
ping, so that the distance computation loop fits easily in a
CPU cache. The algorithm then employs table lookup into a
small array to compute costly ln() function quickly [RO08].

5. The methods of Waqar Saleem, Thomas Baumbach,
Hannah Bast, and Joachim Giesen

In a nutshell our approach to large scale shape retrieval
can be characterized as localize (geometric features) and
quantize (the localized features). Our approach is based on
the observation that many geometric feature based shape
descriptors—also global ones—can be localized in the fol-
lowing sense: first the shape is sampled, i.e., the boundary
that represents it, and then the features are computed at
each sample point. The localized features can be treated like
words in a document—turning shape retrieval into a text
retrieval problem. But localization alone is not enough to
provide an efficient, robust and relevant 3D shape search
engine. While localization essentially allows for efficient
top-k search by enabling efficient indexing of the local
features their quantization is needed for robustness (recall),
accuracy (precision) and also efficiency. With almost no
quantization a shape query might not provide any hit due to
small shape variations, noise or even just numerical inaccu-
racies, whereas quantizing too aggressively can render many
hits irrelevant and makes it harder to rank them properly.
The two extremes—almost no hits when not quantizing and
almost every shape in the collection being a hit—illustrate
the virtue of quantization, namely trading-off accuracy and
robustness. Note that sampling already introduces some sort
of quantization, but this is not enough to ensure robustness
(a high recall value). To achieve the latter also the computed
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words need be quantized.

Our generic approach follows the following pipeline to
build an index:

1. Sample the shape which is given by a boundary descrip-
tion.

2. Compute features localized at the sample points.
3. Quantize the localized features, providing a (feature)

word frequency vector representation.
4. Build a weighted inverted index on the (feature) words.

This pipeline is generic as it allows many different
geometric features to be used in its second step. For our
experiments we used a localized version of the D2 shape
distribution which we will describe in detail. The D2 shape
distribution is a global feature in the sense that it considers
the relation of the sample point at which the feature is
localized to other sample points that can be located all over
the shape. In that sense we are dealing with a localized
global feature that is not invariant under articulated motions
of the shape. We are also considering an example of a
localized local feature, namely geodesic D2 distributions
that should perform better for articulated motion invariant
shape search. For geodesic D2 distributions we consider
the distances of sample points on the surface in contrast
to the Euclidean distance in ambient space that is used for
the D2 distributions. The rest of the pipeline is standard,
we use a standard weighting scheme in our index, namely
“term-frequency-inverse document frequency” (tf-idf).

A query shape is processed exactly the same way as the
shapes in the collection, i.e., a weighted (feature) word fre-
quency vector is computed for the query shape. Shapes s in
the collection a ranked with respect to query shape q by the
normalized inner product of the weighted word frequency
vectors for s the and q.

5.1. Examples: localized D2 shape descriptors

5.1.0.1. Localization We assume that we are given a
boundary representation of a 3D shape that is normalized
to fit into the unit cube. Our two localized shape descrip-
tors are for each point on the boundary the distribution of
distances to the other points on the boundary. Globally the
shape is described by the functions that map each point on
the boundary to its associated distribution of distances. Our
two shape functions differ only in the distance measure used
to define them. The first distance measure (denoted SalEucl
in the results section) is the Euclidean distance of bound-
ary points, and the second measure (denoted SalGeod) is the
geodesic distance between points on the boundary surface,
i.e., the length of a shortest path connecting the two points
on the boundary. Note that especially the first function is
very similar to the D2 shape function studied by Osada et
al. [OFCD02].

5.1.0.2. Quantization Obviously our localized descriptors
cannot be used or even computed in practice. To discretize
them we sample 5000 points from the shape uniformly at
random (with respect to surface area). For each sample point
we compute the distance to another 100 sample points (sam-
pled uniformly at random from the 4999 remaining sam-
ple points). The distributions of these distances is our dis-
cretized version of the localized shape descriptor. Globally
the shape is now represented by the distributions at all the
sample points.

Computing the Euclidean distances of sample points is
straightforward, but computing the geodesic distance is
not possible without knowing the boundary surface. Hence
we only approximate the geodesic distances by building a
weighted graph on the sample points and approximating the
geodesic distance of two sample points by the shortest path
connecting the sample points in the graph. The graph con-
nects each sample point to its k nearest neighbors by an edge.
We weigh the edges of the graph by the Euclidean distance
of its endpoints. The rationale being that for “small values”
the Euclidean and the geodesic distance almost coincide. All
the geodesic distances can now by approximated by com-
puting all pairs shortest paths, e.g., by using Dijkstra’s algo-
rithm.

6. Discussion of results

For all methods we received for every query a ranking of all
models in the dataset. We computed five quality measures
for the methods. The results are listed in figure 3.

Furthermore we computed the 11-point interpolated av-
erage precision for the methods. We plotted the results in
figure 4.

Most of the measures seem to indicate that the order of
the methods from most to least succesful is LiVlgd, LiCm,
ObFu, LiGsmd, SalEucl, SalGeod.

6.1. Analysis of significance

We want to estimate whether the methods perform signifi-
cantly different. We took the average precision as the basis
for this procedure, as it is a good overall measure for the per-
formance of a method. For every query, we rank the meth-
ods by means of their average precision, using the Friedman
procedure. We then apply the Tukey-Kramer criterion –also
known as honestly significant difference criterion– to decide
whether the differences are significant.

In figure 5 we depict the average means and the confi-
dence interval. We take a confidence level of 0.05. In the
table below we list which defferences are significany (S) ac-
cording to this procedure.
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Measure LiCm LiGsmd LiVlgd ObFu SalEucl SalGeod
Mean Average Precision 0.60 0.52 0.63 0.55 0.37 0.26
Average First Tier 0.54 0.46 0.55 0.49 0.36 0.23
Average Second Tier 0.70 0.63 0.72 0.61 0.42 0.30
Mean Reciprocal Rank 0.77 0.69 0.78 0.77 0.62 0.51
Recognition Rate 0.68 0.60 0.70 0.68 0.52 0.45

Figure 3: Retrieval measures for all methods
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Figure 4: Recall and precision for all methods.
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Figure 5: Friedman Tukey-Kramer confidence intervals

1 2 3 4 5 6
1 LiVlgd - - - S S
2 LiCm - - - S S
3 LiGsmd - - - S S
4 ObFu - - - S S
5 SalEucl S S S S -
6 SalGeod S S S S -

We see that we can only conclude that the first four meth-
ods are better than the last two. In order to see whether the
differences we see between the other methods are signifi-
cant, an even larger experiment should be run.
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