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Abstract

Rendering refraction in volume graphics requires smoothly distributed normals to synthesise good quality visual
representations. Such refractive visualisation is more susceptible to noise in the data than visualisations that do not
involve refraction. In this paper, we addresses the need for improving the continuity of voxel gradients in discretely
sampled volume datasets using nonlinear diffusion methods, which was originally developed for image denoising.
We consider the necessity for minimising unnecessary geometrical distortion, detail the functional specification of
a volumetric filter for regularised anisotropic nonlinear diffusion (R-ANLD), discuss the further improvements of
the filter, and compare the efficacy of the filter with an anisotropic nonlinear diffusion (ANLD) filter as well as a
Gaussian filter and a linear diffusion filter. Our results indicate that it is possible to make significant improvements
in image quality in refractive rendering without excessive distortion.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image Generation,
1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism, 1.4.3 [Image Processing and Computer

Vision]: Enhancement, J.3 [Computer Applications]: Life and Medical Sciences.

1. Introduction

In order to produce high quality images featuring volume ob-
jects which are refractive, we must concern ourselves with
the quality of the datasets from which the images are syn-
thesised. For these purposes, mathematically defined scalar
fields provide unsurpassed quality. They are free from both
noise and discretisation errors, and therefore allow us to an-
alytically derive precise normals. Consequently, the images
produced are of excellent quality.

The situation is somewhat different, however, with dis-
crete datasets. Even if the dataset has been sampled above
the Nyquist limit, theoretically permitting a perfect recon-
struction of the original signal, in practice aliasing errors are
hard to avoid. This is particularly the case where a low ren-
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dering time is desirable, since it imposes limits on the com-
plexity and degree of the interpolation function. Further, if
the dataset has been acquired from a real world source, such
as an MRI scanner or similar, the introduction of noise in
the scanning process poses considerable problems specific
to refractive volume rendering, as discussed in [RCO1].

As Moller et al point out in [MMMY97], the quality of
the normals has a greater effect on image quality than the
quality of the data itself. They were referring only to im-
age quality in the context of opaque, non-refractive objects,
but this observation is even more applicable to transparent,
refractive objects. This is because when a ray refracts, its
direction after refraction is directly governed by the normal
at the point of refraction. Consequently, an error in the nor-
mal estimation process affects not only the shading at that
point (as is the case where refraction is not involved), but
also the location of every subsequent sample point. A means
of obtaining high quality normals is therefore critical to good
image quality with refractive volume rendering.

We demonstrate the importance of having good quality
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(b) translucent (c) refractive

(a) opaque

Figure 1: Importance of accuracy in refractive images. Nor-
mals of the sphere are perturbed by an average of 15°. In
(a) an opaque sphere where the normal perturbation sta-
tistically follows a normal distribution; in (b) a translucent
sphere with the same normal perturbation as (a), but with no
refraction; in (c) a translucent sphere, as (b), with refraction.

normals for refraction with a simple test case. Figure 1
shows three spheres; in each case, the normals are perturbed
by an average of 15°, and the level of perturbation at every
point has a normal distribution. It can be seen by visual in-
spection that image quality is better preserved in the absence
of refraction, than in its presence. This observation is also
endorsed by a numerical image comparison, confirming that
an image of an object featuring refraction is more severely
affected by the presence of noise than an image of a similar
but non-refractive object.

Errors in the normals may be attributed to three main
sources. Reconstruction errors occur when a dataset is
under-sampled (pre-aliasing), or when the reconstruction
method used is inadequate (post-aliasing). Additionally, the
scanning process typically introduces noise into the data.
Post-aliasing may be reduced to acceptable levels by use of
higher order filters; this problem has been thoroughly ad-
dressed in the literature (e.g., [ML94]) and will not be dis-
cussed further here. Pre-aliasing and noise in the dataset,
however, have been dealt with in general less satisfactorily,
and not at all in the specific context of refraction.

In addition to issues caused by pre-aliasing errors and
noise in the data, an excess of fine detail in the dataset
can also reduce the effectiveness of refraction in delivering
depth cues and other information about the shape of the vol-
ume object to the viewer, with similar results to noisy data.
Hence, the modelling and rendering of discrete, noisy vol-
ume datasets with refractive effects is a challenging problem
in volume graphics. Figure 2(a) shows a typical example of
this challenge, where a noisy dataset is rendered with and
without refraction. The background image helps highlight
the impact of noise in the rendered image. Our objective is
to synthesise a smooth refractive image with a minimal level
of distortion as in Figure 2(b).

Denoising is a classic problem in image processing and
computer vision. Nonlinear diffusion filtering is a power-
ful and effective tool built on a solid theoretical founda-
tion [Wei97]. In this paper, we addresses the need for im-

(b) after volume denoising

Figure 2: The solid objects illustrate the level of noise in the
original digitised dataset and the ability of a volume denois-
ing method in preserving the geometrical features of the ob-
Jject. The transparent objects, aided by a background image,
highlight the significant impact of noise upon the quality of
the rendered refraction and necessity of reducing noise.

proving the continuity of voxel gradients in discretely sam-
pled volume datasets using anisotropic nonlinear diffusion.
After a brief review of previous work in related areas in
Section 2, we outline the algorithmic process for rendering
refraction using discrete ray tracing in volume graphics in
Section 3. We then detail the functional specification of a
volumetric filter for regularised anisotropic nonlinear diffu-
sion in Section 4. We discuss the further improvement of the
filter through effective controlling the regularisation step in
Section 5 and selecting the diffusivity function in Section 6.
We present a set of experimental results in Section 7, and
highlight the efficacy of regularised anisotropic nonlinear
diffusion in comparison with a Gaussian filter and a linear
diffusion filter. Finally, we offer our observations and some
concluding remarks in Section 8.

2. Related Work

The concept of refraction with which we are familiar nowa-
days was developed in 1621 by the Dutch astronomer and
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mathematician Willebrord van Roijen Snell (1580-1626).
Snell’s law [BW75], that is, M; sin(8;) = 1 sin(6;), remains
a basic principle in modelling the behaviour of light.

Yagel et al. [YCK92] suggested a limited approach to im-
plementing refraction in volume graphics in 1992, requiring
the analytical intersection locations, and the analytical de-
rived normals. Neither of these data are usually available in
volume datasets. This approach may be characterised as us-
ing discrete ray tracing for colour accumulation, but using
surface ray tracing for rendering refraction.

Refraction was first introduced in discrete ray tracing in
a general manner by Rodgman and Chen in 2001 [RCO1].
A comprehensive treatment of refraction and some related
problems was given by Rodgman in 2003 [Rod03].

There are a diversity of modalities, such as CT and MRI,
for the acquisition of volume datasets. The aliasing and noise
introduced during digitisation is of concern to many algo-
rithms for processing and rendering such datasets. It is nec-
essary to investigate the use of denoising methods in the con-
text of direct volume rendering with refraction. The success-
ful deployment of nonlinear diffusion methods in surface de-
noising offers a good starting point for volume denoising,
and the demand for a smooth gradient in rendering refrac-
tion, as shown in Figure 2, makes it a suitable case study for
evaluating the effectiveness of volume denoising methods.

Much effort has been placed on the correct reconstruction
of normals. A number of normal estimation methods have
been studied and compared [YCK92, MMMY97]. There has
been recent attempts [MMK*98, NCKGO00] to reconstruct
accurately the continuous scalar function associated with a
volume dataset and its gradient.

In image processing and computer vision, we commonly
see a different approach to the problem of noise, and a
variety of filters were designed for smoothing or denois-
ing images (e.g., [PM90, WtV98]. In recent years, some of
these filters have been successfully generalised for smooth-
ing surfaces. For example, Peng er al. employed Wiener
filtering for smoothing noisy triangular meshes [PSZ01].
Desbrun et al. employed anisotropic diffusion for denois-
ing height functions and bivariate data [DMSBO00]. Tasdizen
et al. used an anisotropic diffusion method for smoothing
surfaces via normal maps [TWBOO02]. In addition, there
was much other effort in surface fairing and denoising (e.g.,
[MS92, WW94, DMSB99]).

In terms of volume visualisation, surface denoising can
be applied to a particular iso-surface contained in a vol-
ume dataset, but is not suitable for direct volume rendering.
There have been some attempts in direct volume smoothing.
Hilton et al. proposed two wavelet-based noise removal al-
gorithms for denoising MRI data [HOH*96] and Angelini
et al. gave a brief description of a three-dimensional imple-
mentation of brushlet basis functions for Fourier domain de-
noising [ALTH99]. The former was a study based on statisti-
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cal analysis and the latter was an investigation in the context
of segmentation.

3. Refraction in Volume Graphics
3.1. Modelling Refraction

A scalar field is a function F : E* > R. A spatial object
is defined as a tuple of scalar fields, (Ap,Aq,...,Ar),k >0,
where each field specifies a particular attribute of the ob-
ject, such as colour and reflection coefficients. In volume
graphics, an important attribute is opacity, which defines the
visible geometry of the object. We write a spatial object as
(0,Ay1,...,A;), where O is a scalar field specifying the opac-
ity of every point p € E3.

From this general definition of spatial object, we can treat
a volume object as a spatial object whose opacity field is
bounded [CTO0O]. This also facilitates the construction of a
volume object from one or more volume datasets coupled
with some interpolation functions and transfer functions. By
using scalar fields as the basis of all spatial objects, we can
treat digitised volume datasets in a manner consistent with
mathematically or procedurally defined scalar fields.

In surface graphics, we typically model refraction by as-
sociating each object with two parameters, transmission co-
efficient ky and refractive index m [Whi80]. In the above
definition of spatial object, the opacity field O facilitates a
more accurate and flexible specification of transmission co-
efficient. For each object, we model its optical density in the
form of a scalar field H : B> — R, which gives a refractive
index | = H(p) for every point p € E>.

Of particular importance in modelling refraction is the
change in refractive index. When modelling the path of a
ray of light from one continuous medium to another, we
use the relative refractive index, My to refer to the relative
change in refractive index. In classical ray tracing, as shown
in Figure 3(a), given the respective refractive indexes of the
medium that the ray is leaving, and the medium that the ray

enters, 1; and 1n;, we have 1, = ?T;

As we do not assume the existence of a surface of in-
finitesimal thickness in volume graphics, the definition of
a signal 1, at every point on a surface is not directly appli-
cable to spatial objects. As illustrated in Figure 3(b), a more
tangible specification of 1 would be 1, = %, where u and
v are two arbitrary points in . However, from both mod-
elling and rendering perspectives, there is no longer a unique
1M defined at an individual point in E3. Obtaining a sensible
value of 1, at individual samples hence becomes a critical
problem for rendering refraction in discrete ray tracing.

3.2. Rendering Refraction

When directly rendering a volume graphics scene, for each
ray, as it passes through a spatial object, we sample at dis-
crete points, Sg,S81,.-.,Si,..., along the ray, accumulating
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\ the n, at
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refractive index field H
(a) n- on a surface (b) 1, in a volume (c) SSFL sampling

Figure 3: In volume graphics, while defining a refractive in-
dex field H(p),p € E? is physically meaningful and appro-
priate (b), the specification M, is not as straightforward as
in surface graphics (a). In the process of sampling a refrac-
tive index field, we assume some uniformity in a small region
around a sampling point. One basic but effective sampling
approach is the SSFL method (c).

colour and opacity at each point. With the specification of
refractive indices, the ray may change its direction at each
sampling position if the sampled relative refractive index,
1M, is not equal to one.

When the sampling step is sufficiently small, we may as-
sume some uniformity in a small domain around a sampling
position s;. If the refractive index field is not constant in this
domain, then we consider the domain to be divided into two
sub-domains, as shown in Figure 3(c), each with a uniform
optical density. It is obviously sensible to separate the two
sub-domains by the tangent plane perpendicular to the nor-
mal N at s;. We may compute or estimate the normal based
on an appropriate scalar field of the spatial object, typically
a geometry field, an opacity field or the refractive index field
itself. For example, given a mathematically defined geom-
etry field (e.g., a spherical function), we can calculate nor-
mals analytically. Given an opacity field defined upon a raw
dataset (e.g., through an opacity mapping), we can estimate
normals using central differences.

Within the small sampling domain around s;, we compute
the relative refractive index at s; by obtaining two representa-
tive refractive indices, one for each sub-domain. For a known
incident ray I = normalise(s; — s;—1), we obtain the direc-
tion of refraction vector 7 in the normal way (as discussed
by Foley er al. [FVFH96]). This is consistent with the Snell’s
law.

T= (n,(N.I) \/1 —n,Z(l —(Nol)z) )Nnrl.

In the following discussions, we assume that vectors N, I,
and T are normalised.

Rodgman and Chen proposed several algorithmic ap-
proaches to the sampling process in discrete ray trac-
ing [RCO1]. One simple but effective approach is the SSFL
(Single-sided Sampling, Fixed interval Length) method. In
order to focus on the issue of denoising in a consistent man-

ner, all experimental results presented in this paper were ren-
dered using this method.

The SSFL approach takes samples at intervals of a pre-
defined length A as shown in Figure 3(c). The relative re-
fraction index 1, at s; is approximated with the two refrac-
tive indices sampled at s;_1 and s;, that is:

H (S,‘_ 1 )

a representative M;

"7 arepresentativen,  H(s;)

From 1, we compute the refraction vector 7' (and conse-
quently s;41) as s;11 = s; +AT. The critical angle in relation
to total internal reflection can be determined in the same way
as in traditional ray tracing.

This method is consistent with the standard sampling
mechanism for accumulating colour and opacity in volume
ray casting, and thus it intrinsically facilitates an efficient
implementation. It does not suffer from any anomalies as
some other approaches [RC01], and its accuracy can easily
be achieved by depth-supersampling, that is, reducing the
pre-defined interval length A.

4. Regularised Anisotropic Nonlinear Diffusion

Improving dataset normals does not necessarily connote
greater accuracy; rather, our goal is to manipulate the dataset
normals in such a way that we may produce refractive im-
ages of the dataset which use refraction to convey three-
dimensional cues such as depth perception in a meaning-
ful way, without overwhelming the viewer with noisy, over-
complicated images. In some senses, we wish to simplify the
dataset, and smooth the appearance of the object in question
somewhat, in order to improve the subjective image quality.

In the following discussion, we adopt the terminology and
notation of Weickert [Wei97] with a specific focus on 3D
scalar fields and volume datasets. Consider a volume dataset
of the resolution R = (Ry,R2,R3) € N3. We thus denote the
unprocessed dataset by F(x) where x = (x|,x,x3) € N°,
such that 0 < x; < R; fori = 1,2, 3, and denote the processed
dataset derived from F by F’(x). We also define X to be the
set of all such x.

Firstly, we define a scale-space of scalar fields as U (x,t),
where ¢ is the scale. We consider the scale-space to be evolv-
ing such that at scale r = 0, U (x,¢) = F(x), and so that as ¢
increases, U (x,r) represents a more heavily processed ver-
sion of F'(x).

Given a specific scalar field in the scale-space, U (x,t),
VU refers to the gradient of U, which is a vector field. Given
an arbitrary vector field V, V -V refers to the divergence of
V.Hence V - VU is the divergence of the gradient of U.

We begin by defining the general diffusion equation in
terms of the rate of change of U (x,r) with respect to ¢ as:

du
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Regularised ANLD (R-ANLD), A = 60%, 6 = 1

Figure 4: Results of applying the ANLD and R-ANLD meth-
ods to the CT head dataset, and rendering the processed
datasets as opaque and transparent objects respectively.

where, D - VU is the flux, which is equal to the diffusion ten-
sor D, a positive definite symmetric matrix, multiplied by
the gradient of U. This flux can be thought of as represent-
ing the flow of ‘particles’ from a region of high density to a
region of low density.

When D is a constant over the entire X, this process is
said to be linear and homogeneous, and is in fact equivalent
to convolution with a Gaussian filter. However, if D is a func-
tion of x, or more typically, a function of F(x), D is said to
be inhomogeneous or space-dependent. When D is a func-
tion of the differential structure of the evolving X, that is, a
function of U (x,t), D is said to be nonlinear. When D - VU
is parallel to VU, this condition is referred to as isotropic,
and D can be replaced by a positive scalar-valued diffusivity
g, otherwise it is said to be anisotropic.

Weickert proposed the Anisotropic Nonlinear Diffusion
(ANLD) method for image enhancement [Wei98]. This
method derives its non-linearity from the fact that g is a func-
tion of U (x,7). We therefore have the diffusion equation as:

v

=V (s0vup)-vu) 0
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where g is a scalar-valued diffusivity function. There are
many possible choices for g; here we use the diffusivity func-
tion proposed by Charbonnier et al. [CBAB94], that is:

1
VI+|VU2/A2

With such a diffusivity function, at a given time ¢, there is a
flow of density along the direction of the current voxel gra-
dient, VU, the magnitude of which is proportional to the
diffusivity, g(|VU |2) This diffusivity function inhibits dif-
fusion as |VU/|? increases. The effect is to better maintain
well-defined surfaces (by inhibiting smoothing for large val-
ues of |[VU |2), whilst permitting smoothing in inner regions.

g(IVU) = (A #£0).

As U is also a function of #, this has the effect of allowing
the flow to increase for large values of ¢ at the location of
small structures that have been smoothed at lower values of
t. We might therefore expect more smoothing at the location
of these small structures for sufficiently large values of ¢.

Some results of applying ANLD to the CT head are given
in the first and third rows of Figure 4. The effectiveness of
such a process is of course strongly dependant on the value
chosen for A. Selecting suitable values for A is not straight-
forward, and will be discussed in detail in the last para-
graph of this section. ANLD preserves surfaces by inhibiting
smoothing at boundaries.

A significant prob-
lem with ANLD is that
it gives rise to so-called
staircasing  artefacts,
as shown in Figure 5.
These artefacts man-
ifest themselves as
small, regularly spaced
discontinuities in the
processed dataset.
Whilst they do not
significantly affect the
shape of the processed
dataset on a large scale,
they introduce energy
near the Nyquist fre-
quency, which has a substantial effect on the normals of the
processed dataset and is critical to obtaining high quality
refractive images.

Figure 5: Staircasing effect
with ANLD.

In order to improve the performance of ANLD, we make
use of a regularisation step [ALM92] to control the diffu-
sion process, giving rise to the following equation for Regu-
larised Anisotropic Nonlinear Diffusion (R-ANLD):

dU,
s _ . (g(IVUc\Z) ~VUG>
dt
where we replace U in Equation 1 with Us, which is the
convolution of U with a Gaussian filter with a fixed ¢ > 0.
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In other words, we have
Ud(x7[) = (KG * U)(x7t)

where

ks(v) = ﬁ '6(7%)

Kos(x) = ko(x1) ko (x2) - ko (x3)

The effect of this regularisation step is to improve the stabil-
ity of the diffusion process. In particular it improves the per-
formance of the diffusion process in the presence of noise,
and dramatically reduces staircasing artefacts. It is therefore
well suited to applications such as refractive visualisation,
where the smoothness of the normals is critical. Some re-
sults of applying R-ANLD to the CT head are given in the
second and fourth rows of Figure 4.

The choice of a value for A strongly determines the ef-
fects of the diffusivity function. However, fine-tuning values
for A by hand is a time consuming trial and error process.
Specifically, very low values for A result in smoothing being
suppressed everywhere, and the resulting images do not con-
vey the benefits of having been smoothed. In the case where
A is set too high, smoothing is not sufficiently inhibited at
surfaces, and the result is that the surfaces, as well as the in-
ternals of the dataset, become blurred; distortion is therefore
increased. A useful approach for structuring the choice of A
is to compute the magnitudes of the normals in the dataset,
sort them (in ascending order) by magnitude, discard zero-
length normals, and then set A equal to the magnitude of the
normal at the nth percentile, where n is controlled by the
user. We make use of this method in this paper where we re-
fer to A = n% indicating lambda equal to the magnitude of
the normal at the nth percentile. This is similar to the method
used by Canny in [Can86].

5. Controlling the Regularisation Step

The presence of a Gaussian filtering stage in R-ANLD aims
to prevent noise in the data from interfering with the direc-
tion of smoothing. However, by Gaussian filtering the data,
an undesirable averaging effect is also had on the magni-
tude of the normal; thus for sufficiently large values of G,
smoothing is not sufficiently inhibited in boundary regions.
Conversely, for values of ¢ which are too low, sharp bound-
aries are well preserved, but the resulting quality of the nor-
mals is diminished. This results in staircasing artefacts. The
effect that these staircasing artefacts, which are most clearly
visible below the eye, can have on refraction is obvious.

Figure 6 shows a selection of visualisations of the CT
head dataset for different values of ¢. The images show
clearly the trade-off between excessive smoothing across
boundary regions for higher values of 6 (which is best dis-
played by the 2D slices in the first column), and the dimin-
ished quality of normals for low values of ¢ (in the opaque

Figure 6: Effects of varying 6 in R-ANLD (t = 50, A = 50%).

images in the second column). The images in the third col-
umn reveal the effects of ¢ on transparent images.

Results suggest that an acceptable balance is obtained for
values of ¢ in the range one to two. For values below one,
some banding is visible in the opaque images; the staircas-
ing in the data responsible for this effect is also responsi-
ble for the disturbance in the upper left part of the head
in the transparent set of images. This effect is typical of
anisotropic diffusion methods where the regularisation step
is insufficient [CM96]; smooth edges evolve into discontin-
uous piecewise linear segments.

It is clear that, for the CT head dataset, higher values of
© can cause significant distortion to the head, particularly to
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thin structures such as the nose and the ear. However, deter-
mining a suitable value for & is not straightforward; the ac-
ceptable range for ¢ is data-dependent. Datasets containing
few small features (relative to the sampling interval; that is,
datasets sampled at a rate much higher than the Nyquist fre-
quency) will clearly be less affected by the Gaussian smooth-
ing step, since this step corresponds to the application of a
low-pass filter. Clearly, the proportion of high frequency en-
ergy present in the dataset must inform the selection of a
value for 6; however, the trade-off between staircasing arte-
facts and distortion still remains.

6. Selecting a Diffusivity Function

Several diffusivity functions are mentioned in the literature.
Perona and Malik proposed two possible functions for g
in [PM90], which we refer to here as gpys1 and gppsn. Others
include g¢ by Charbonnier et al. [CBAB94], gp by Black et
al. [BSMH98], and gw by Weickert [WtV98]. Equations for
these functions are given below:

1
gPMl()C) = W where o0 > 0
grma(x) = e~ WA’
1
) = e
1 X122
_ 2= k<A
8B(x) {O x> A

3315
gW(x) = 1l—e Wn*

One can study the behaviours of these diffusivity func-
tions by plotting each g(x) and its corresponding flow func-
tion ®(x) = g(x)-x. In fact ®(x) is an abstraction of
g(|VF(x)])-|VF(x)|, which provides a useful means for vi-
sualising the degree of flow between adjacent voxels permit-
ted by the diffusion function, as a function of the normal
magnitude.

Due to space constraints, it is not feasible to show all these
graphs, which can be reproduced trivially. Instead we outline
what one can observe from the graphs.

The flow function for gpys has a long ‘tail’ section af-
ter the peak, indicating that flow is permitted, even for large
normal magnitudes, thus implying poor edge preservation
compared to the other functions. The location of the peak in
the flow function for gpys» corresponds more closely to the
value chosen for A; flow quickly ceases for larger values of
x. For this reason, we would expect this function to better
preserve edges than gpyy; .

The diffusivity function proposed by Charbonnier et al.,
gc, has a unique flow function, which rapidly, asymptoti-
cally, increases to a maximum value and does not decrease.
For small values of A, this function would behave similarly
to linear filtering. In general, this flow function suggests that
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it should smooth most heavily in the region of normals of
high magnitude, whilst potentially preserving subtler fea-
tures in a dataset. Despite this odd behaviour, good results
have been obtained with this function [Wei97]. This is one
of the reasons why gc was used to synthesise most of the
images in this paper.

Function gw has, uniquely, a significant ‘flat’ section, in-
dicating an equal response to all normals below the threshold
(here, the end of this section corresponds to the value chosen
for A); that is, uniform smoothing in regions with low normal
magnitudes. Peak flow is achieved for x equal to A; the long
‘tail” of the flow function indicates that there will be some
smoothing parallel to the normal even for normals of high
magnitude. This is expected to improve surface smoothness,
albeit with some cost in terms of distortion.

Function gp has, by far, the least area of all these func-
tions, indicating a considerably lower degree of smoothing
for a given value of A. It is similar in shape to the gpp;
however, the corresponding flow function reveals a ‘hard’
cut-off point for values of x > A. Smoothing parallel to the
normal is therefore entirely inhibited for such values of x;
this would imply less distortion.

7. Results and Analysis

In order to evaluate the denoising methods and parameter
variations, it is necessary to devise an objective scheme for
quantifying the ways in which both the data and the images
are affected. Since the smoothing process represents a trade-
off between smoothing and volume shape degradation, we
separate this task into two separate sub-tasks, namely eval-
uating the degree to which the overall shape of a volume is
affected, and measuring the improvement in image quality.
We utilise a distortion metric, m, for quantifying the former,
a coherence metric, me, for the latter.

In order to evaluate the level of distortion present, we must
first introduce a transfer function 7, in the form of a lookup
table. This corresponds to the transfer function responsible
for extracting the data of interest during visualisation. Our
motivation in using the same transfer function also used for
visualisation is to enable us to ignore small changes in the
data which do not affect our visual interpretation. For ex-
ample, if F(x) # F'(x), but both F(x) and F’(x) lie in the
range taken to represent air, so that T(F(x)) = ©(F’(x)), no
distortion is considered to have occurred at x. This allows the
distortion metric to take advantage of the a priori knowledge
of the dataset encapsulated in 7.

We then define P, the set of points at which F(x) and
F’(x) are considered to represent different features, by

P={vx € X|1(F(x)) #t(F'(x))}.

The distortion metric my is then defined as the ratio of the
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number of points in P to the total number of voxels in X:
P
IX| Ri-R2Rs
It follows that low values of m, indicate lower distortion,

and that 0 < my <1 (since P C X). The ideal smoothing
method will have my close to zero, indicating no distortion.

Since the goal of this work is to produce refractive images
which are free from noise, a coherence metric should thereby
measure the improvements made in the image domain. We
therefore consider the frequency distribution of an image by
applying the discrete Fourier transform to the image. Images
with a high proportion of coherent rays (that is, rays which
travel along similar paths to adjacent rays) will tend to con-
tain less high frequency energy. Given an image i : N> — N
of resolution M, N, we have:

[(u V) _ 1 MZ_]Ni]i(-x y)e—Zth(ux/M+Vy/N)
’ MN = = ’
x=0 y=
S 7 2
4 @ u v
me = gy L LMl s i

u=0 v=0
According to the periodicity property of the discrete Fourier
transform, the discrete Fourier transform of i(x,y), denoted
here by I(u,v), is symmetric about the origin, and repeats
horizontally and vertically respectively, at distances % and
% from the origin. For this reason, in order to analyse the fre-
quencies present in the discrete Fourier transform we need
only consider the values in the range (0,0) to (%, %), there-
fore we sum only these frequencies, and multiply the result
by ﬁ, which is the reciprocal of the number of values con-
sidered. Note that in computing the frequency represented by
some point in /(u,v) — that is, in the last term of the equation
of m¢ — we scale u,v by M, N respectively in order to ensure
that the value produced by this metric is (approximately) in-
variant with respect to image size and resolution, modulo
changes in precision attributable to change in resolution.

Applying the two metrics to Figure 4, we obtain a set of
quantitative results in Table 1, indicating that R-ANLD per-
forms better than ANLD.

Direct comparisons are difficult, since values for m; and
m¢ do not exactly correspond. We therefore select values
for ,A and & such that m, remains approximately constant
in Table 2, so that we may directly compare the effective-
ness of different methods in terms of m.. In this experi-
ment, we also included two other filters, namely Gaussian
and inhomogeneous linear diffusion [Wei97]. When my is
fixed at around 0.015 giving similar level of distortion for
all methods, the R-ANLD method (and, to a lesser extent,
the ANLD method) offers better improvement of smooth-
ness than Gaussian and linear diffusion filters.

Similarly, in Table 3, we select parameter values such that
m¢ remains approximately constant to enable us examine re-
sults in terms of my. It is clear that when m,; is fixed at

t 0 20 40 60
mgy 0 0.0122 0.0398 0.0617
ANLD me 2319 14.12 10.80 10.44
RANLD ™Md 0 0.0024 0.0066 0.0102

me 2319 17.22 14.70 13.33

Table 1: Results of applying distortion and coherence met-
rics to datasets and refractive images in Figure 4. R-ANLD is
shown to produce more coherent images with less distortion
than ANLD.

Method my me
IHLD (t = 35, A = 60%) 0.0147 16.88
Gaussian (6 = 3.18) 0.0151 16.09
ANLD (t= 15, A = 70%) 0.0153 13.64
R-ANLD (t=95,A=60%,c6=1) 0.0152 12.11

Table 2: Comparison of results for different methods in a
condition where parameters selected to give similar values
for my. Methods are listed in the descending order of the
noise level (i.e., incoherence) indicated by m.

Method my me
IHLD (t = 30, A = 70%) 0.0261 15.12
Gaussian (¢ = 3.75) 0.0253 15.08
ANLD (t =75, A = 40%) 0.0204 15.13
R-ANLD (t=135,A=40%,c=1) 0.0067 15.06

Table 3: Comparison of results for different methods in a
condition where parameters are selected to give similar val-
ues for me. Methods are listed in the descending order of the
amount of distortion indicated by m.

around (for instance) 15.1, R-ANLD results in much less
distortion than any of the other three methods.

Considering the combined effects of further improve-
ments discussed in Sections 5 and 6, we conducted a large
experiment with a wide range of parameters (for 2250 differ-
ent combinations in total). Firstly, for each diffusivity func-
tion, the diffusion process was applied for 10% < A < 90%
(with lambda increasing in steps of 10%), for 0 < < 150,
with ¢ = 1. Secondly, the effects of increasing & in the range
2 <o <4 were explored by generating datasets as above, but
with A restricted to the two values giving the most promising
results from the data generated by the first set of parameters.

The set of parameters giving the lowest level of distortion
for a particular maximum level of coherence are shown in
Table 4, for a range of maxima for m.. The results clearly
show that g¢ typically produces least distortion for some de-
sired level of coherence. Whilst there is some variation for
extreme maximum values of m., the middle range of the ta-
ble is unequivocal. It should be noted that the extrema of the
data represent levels of smoothing that are of little practical
use; for values of m. above 22, there is little observable ef-
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Max. me A t Func. o© me my
24.5 80 085 gB 1 2410 0.0032
24.0 80 045 gB 1 23.66 0.0028
23.5 80 020 gB 1 23.10 0.0024
23.0 50 035 8B 1 2252 0.0001
22.5 20 005 gpypr 1 2241  0.0000
22.0 10 010 gc 1 2191 0.0015

... another 20 records of gc omitted here ...

11.5 40 130 gc 4 1133  0.0236
11.0 60 130 gpan 4 1098 0.0275
10.5 80 055 gc 1 1046 0.0356
10.0 80 075 gc 1 10.00 0.0420
9.5 70 120 gw 4 945 0.0477

Table 4: Diffusion parameters giving rise to least distortion
for some maximum level of coherence.

fect on the levels of noise present in the resultant images,
and for levels of m. below 11.5, the distortion is consider-
able, although of course the acceptability of such results is
application dependent.

When excluding g¢ from the results, we find that gpy
produces the next best results. In this way, we observed a
strong ordering on the diffusivity functions. With the help
of my and m., we may place the diffusivity functions in the
following order of preference (in the context of rendering
refractive images): gc < gpm1 < 8w < &pm2 < &B-

As the complexity of the algorithm depends primarily on
the scale ¢ and the dataset resolution R, the selection of the
diffusivity function has relatively minor effects on the run-
time.

8. Conclusions

We have shown that it is possible to achieve good results
when using refraction to render datasets which contain noise,
pre-aliasing and small features. Figure 2, shown at the begin-
ning of this paper, depicts a volume dataset both (a) unpro-
cessed and (b) after application of regularised anisotropic
nonlinear diffusion (R-ANLD), and gives a compelling ex-
ample of deploying such techniques in volume graphics.

By introducing metrics which allow us to quantify dis-
tortion and improvements in image quality, we are able to
make objective comparisons between a number of different
methods and parameter variations for smoothing datasets.
R-ANLD appears to be the most effective of the methods
tested, both from a theoretical standpoint, and in practice.
The diffusivity function proposed by Charbonnier et al. was
also shown to offer more efficacious results, in comparison
with other diffusivity functions in the literature.

The effective deployment of an appropriate denoising
method in volume graphics allows the direct rendering of
volume datasets with refractive effects, which can improve

(© The Eurographics Association 2005.

depth perception significantly. As shown Figure 7, a noisy
CT head dataset is visualised in conjunction with a brain
dataset, and the CT head has its top part removed and is
shown as a translucent object. Figure 7(a) was rendered us-
ing volume ray casting without refraction. Whilst it clearly
displays the internal structure of the brain, it offers limited
depth cues, and poor spatial perception of the brain and the
skull. Figure 7(b), which results from direct surface render-
ing, provides slightly better depth cues, but incorrect visual
representation of the spatial relationship.

(c) original, with refraction (b) denoising using R-ANLD

Figure 7: Combinational visualisation of a CT head dataset
and a brain dataset. The original CT head rendered with
refraction in (c) offers more depth cue than those without
refraction in (a) and (b). The visualisation produced after
denoising in (d) conveys more information about the internal
structure than (c).

Figure 7(c), also rendered using volume ray casting, in-
troduces refraction into the visualisation, which permits
much better depth perception and appreciation of geomet-
rical structure. However, it introduces at the same time sev-
eral artefacts, including scattered, noisy specular highlights,
large regions of noise attributable to incoherent refraction,
and a cracking effect directly above the brain stem, all at-
tributable to ‘noisy’ refraction. In Figure 7(d), a denoising
filter is applied to the CT dataset prior to the rendering; as a
result, the smoothed head dataset facilitates a much clearer
visualisation of internal structure (i.e., the brain). Moreover,
it gives a considerably less noisy impression of the neck area,
it conveys a sense of curvature via the refractive patterns in
the ‘glass’ which is not present in Figure 7(c), and it cor-
rectly shows the brain stem as an unbroken section of tissue.
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Artefacts such as scattered, noisy specular highlights present
in the unprocessed data are also eliminated in Figure 7(d).

Refraction is a powerful tool in visualisation. We aim to
develop denoising based on R-ANLD into a process requir-
ing minimal user involvement, and integrate such a process
into a general purpose discrete ray tracing pipeline for en-
abling high quality refraction rendering in volume graphics.
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