Eurographics Symposium on Rendering (2005)
Kavita Bala, Philip Dutré (Editors)

Ray Maps for Global Illumination

1 2

Vlastimil Havran® Jifi Bittner

Robert Herzog1 Hans-Peter Seidel'

I MPI Informatik, Saarbriicken, Germany
2 Institute of Computer Graphics and Algorithms, Vienna University of Technology, Austria

Abstract

We describe a novel data structure for representing light transport called ray map. The ray map extends the concept
of photon maps: it stores not only photon impacts but the whole photon paths. We demonstrate the utility of ray
maps for global illumination by eliminating boundary bias and reducing topological bias of density estimation in
global illumination. Thanks to the elimination of boundary bias we could use ray maps for fast direct visualization
with the image quality being close to that obtained by the expensive final gathering step. We describe in detail our
implementation of the ray map using a lazily constructed kD-tree. We also present several optimizations bringing
the ray map query performance close to the performance of the photon map.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism

1. Introduction

Most of the current global illumination techniques simulate
light propagation by tracing a large number of rays through
the scene. Methods like distribution ray tracing or path trac-
ing construct light paths and evaluate their contribution to
the resulting image without storing any auxiliary informa-
tion. This has an advantage of generality and unbiasedness,
but achieving visually pleasing results requires shooting a
huge number of rays that often follow the same paths or
paths with minor contributions.

One way to tackle this problem is to store some of the
computed illumination and use it for generating the im-
age. This idea is exploited in different forms by several ap-
proaches, like the photon mapping [Jen96], the light vol-
ume [CZS96], the irradiance cache [WRC88], the irradiance
volume [GSHGI8], or the light field [LH96]. From these al-
gorithms only the photon map stores independent illumina-
tion samples. It neither implies any structuring of these sam-
ples, nor it restricts the type of illumination stored.

Despite its generality the photon map has one major re-
striction: the light flux carried by a photon can only be found
in proximity of the photon impact. Even if we could store
the photon path with the photon, it does not allow us to find
paths in proximity of an arbitrary point in space. The well

(© The Eurographics Association 2005.

(a) (b)

Figure 1: The direct visualization with (a) photon maps and
(b) ray maps. Notice the boundary bias removal on the lamp
for ray maps.

known consequence of this property is the substantial error
of the estimate on the boundary of objects, referred to as
boundary bias (Figure 1). The idea of extending the photon
map concept by storing rays was first presented by Lastra et
al. [LURMO2]. They organize rays in a ray cache and use
the ray cache for boundary bias elimination. In this paper we
build on this idea and define the concept of ray map — a data
structure for storing the rays and evaluating ray proximity
queries_ The ray map q eries open-new pnccihi]itipc for re-

delivered by
o @’m EUROGRAPHICS

= DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org

44 V. Havran, J. Bittner, R. Herzog, and H.-P. Seidel / Ray Maps for Global Illumination

trieving the illumination information for arbitrary points and
directions in space. We demonstrate this by reducing several
bias sources of density estimation.

This paper aims at three main contributions: (1) It for-
malizes the ray map concept by enumerating ray proxim-
ity queries required by global illumination algorithms. (2) It
presents a case study of density estimation using ray maps
versus photon maps. (3) It describes an efficient implemen-
tation of the ray map which provides more than an order of
magnitude speedup for density estimation compared to the
ray cache [LURMO2].

2. Related Work

Our work is closely related to the photon map [Jen96,Jen01]
that stores light flux on the object surfaces. Each point in
the photon map represents a photon carrying certain en-
ergy. The illumination on the object surfaces can then be re-
constructed from photon hits using density estimation tech-
niques [Sil86, WJ95] introduced to computer graphics by
Heckbert [Hec90]. Note that using a finite number of ob-
servations in density estimation always leads to a systematic
error referred to as bias.

To decrease the bias in the context of photon mapping a
number of techniques have been proposed. Hey and Purgath-
ofer dealt with the boundary bias using the average com-
puted from several oriented photon maps [HPO1]. Lavignotte
and Paulin extend the object boundaries for storing of pho-
tons in polygonal scenes [LP02]. Other photon map opti-
mization techniques such as the density control of photons
were presented by Suykens and Willems [SWO00] and Pe-
ter and Pietrek [PP98]. The use of convex hull to decrease
boundary bias is described in [JenO1, Jen02]. However, the
computation of the convex hull leads to overestimation and
decreases the performance. More importantly, the convex
hull does not help in cases of density estimation on small
or elongated objects, where the number of photons stored on
surfaces is too low. More efficient data structures for photon
search were discussed by Wald et al. [WGS04]. An exten-
sion of photon maps to account for the temporal domain was
introduced by Cammarano and Jensen [CJ02].

There are numerous other data structures for stor-
ing illumination such as irradiance cache [WH92], light
maps [WTPOO], line-space hierarchy [DS97], light vectors
[ZSP98], or irradiance volume [GSHGY8]. These methods
aim either at representing reconstructed illumination func-
tion (light volume), regularly sampled illumination (light
field), or a particular type of illumination (irradiance cache,
irradiance volume). The underlying data structures are
tightly coupled with the particular illumination reconstruc-
tion algorithm. The data structures represent illumination ei-
ther approximately or with a systematic error: for example
the irradiance cache turns a bundle of rays intersecting the
given cell into a single scalar, which is used further on for
interpolation.

This paper deals with an efficient way for organizing rays
in space which is a subject that penetrates into the field
of computational geometry. Although there are theoretical
analyses of complexity of maintaining lines or rays in space
[PelO4] we are not aware of a practical and efficient data
structure maintaining a large number of rays (i.e. line seg-
ments) that would support efficient proximity queries and
dynamic insertion and removal.

The usage of photon paths for density estimation was first
proposed by Lastra et al. [LURMO2]. Their method locates
rays intersecting a disc on a tangent plane in order to elim-
inate boundary bias inherent to photon maps. This advan-
tage is however penalized by the two orders of magnitude
increase of computational time compared with the photon
maps.

3. Ray Map Overview

In this section we present an overview of the ray map data
structure by first discussing the way the ray map repre-
sents light paths and then enumerating the desired proximity
queries.

3.1. Representation of Light Paths

The ray map stores information about light paths traced dur-
ing a global illumination simulation. Unlike the other data
structures storing directionally dependent illumination (light
field, light volume) the ray map does not aim to reconstruct
the illumination per se, but only to provide an efficient tool
for such a reconstruction. Hence the ray map is independent
of the algorithm used to sample illumination as well as the
algorithm used to reconstruct the illumination. Additionally,
the ray map poses no restriction on the structure of the sam-
ples.

The ray map organizes photon paths by indexing the rays
which form the path. The ray indexing then allows to deter-
mine photons passing in the proximity of an arbitrary point
in space or all photons passing near the boundary of an ob-
ject. These photons can be found independently of the dis-
tance of their actual impacts on surfaces. As we will show
later, it has several advantages and enables reduction of dif-
ferent types of bias.

3.2. Ray Proximity Queries

We distinguish between two different classes of ray prox-
imity queries: intersection queries and nearest neighbor
queries. The intersection queries determine all rays inter-
secting a given spatial domain of fixed size. The nearest
neighbor queries find K nearest rays using a particular dis-
tance metric. The queries can use different spatial domains
and distance metrics (see Figure 2):

(© The Eurographics Association 2005.

V. Havran, J. Bittner, R. Herzog, and H.-P. Seidel / Ray Maps for Global Illumination 45

e Proximity bias — given by a finite number of observa-
2 tions in the proximity of the evaluated point X (see Fig-
ure 3 (a)). The proximity bias leads to blurring of edges in
the photon maps, since the neighborhood of X is of non-
zero size. This problem can be alleviated by increasing
the number of photons or by using better density estima-
tion techniques, such as a varying kernel-width estima-
tion [Sil86, WJ95]. Note that proximity bias is inherent to

Figure 2: Three nearest neighbors according to different ray any density estimation technique.

distance metrics. (left) Euclidean distance of intersection of ¢ Boundary bias — a visible underestimation of illumina-

the ray with a tangent plane. (right) Euclidean distance of tion on the boundary of objects due to the overestimation

the ray itself and the center of the query. of the surface area (see Figure 3 (b)). The darkening on
the visible surfaces is well visible.

o Topological bias — the error due to the assumption that the
L. Intersection Queries surface in the neighborhood of the estimated illumination
Intersection domain: (a) disc, (b) hemisphere, (c) sphere, is planar (see Figure 3 (c)). The underestimation of the
(d) axis aligned bounding box. area for the curved surface leads to an overestimated result
II. Nearest Neighbors Queries from the density estimation.
Proximity metric: (a) distance to the intersection of the ray
with the tangent plane, (b) distance to the ray segment, (c)
distance to the supporting line of the ray.

1

4.2. Ray Map Density Estimation

The ray map allowed us to design a novel density estima-
In practice we should be able to use combinations of tion technique which makes use of a combination of metrics
queries from the two classes. That is we should determine IL(a), IL(b), and IL(c). More specifically, we use a K-nearest
K nearest neighbors under a condition that they intersect a neighbor search which takes a maximum of the distances
given spatial domain. given by IL.(a) and IL.(b), i.e. the distance to the point on the
tangent plane and the distance from the ray segment. Either
the distance to the supporting line of the ray (IL.(c)) or the
distance II.(a) is then used as a weight for the density esti-
The task of maintaining rays in 3D is significantly different mation kernel.
from the task of maintaining points or polygons. The rays
extend through a large portion of the scene which makes
most techniques of spatial indexing [Sam89] unsuitable for
their maintenance. On the other hand rays can be parameter-
ized quite easily which suggests that they could be organized
according to such a parameterization [Pel04]. Although the

3.3. Maintaining rays

We call the resulting method a hemisphere-disc inter-
section: it considers all rays which intersect an expanding
hemisphere (metric II.(b)) and which after prolongation also
intersect the disc corresponding to the hemisphere (metric
IL.(a)). Such a combination has several advantages:

theoretical studies done in computational geometry follow e itis consistent with the rendering equation formulated for

this idea, as we will discuss later in the paper, such tech- photon maps over the disc since it normalizes the estimate

niques do not seem practical for ray proximity queries used over the area of the disc.

in the context of global illumination. e it removes boundary bias completely since the rays pass-
ing near the boundaries of objects are also taken into ac-
count.

4. Ray Map versus Photon Map Density Estimation e it reduces topological bias, since only the rays intersecting

In this section we describe the sources of bias in the context a disc are taken into account, which is consistent with the

of photon maps. Then we describe how the density estima- density estimation formula.

tion is applied to the ray maps. Further, we present the case o the distance used in the kernel metric II.(c) is invariant

study of the density estimation that we have made for ray with respect to the rotation of the surface normal, which

maps and photon maps on a set of simple scenes and ray makes the estimate consistent on wrinkled surfaces. How-

distributions. ever, it can lead to the overestimation for strongly direc-

tional ray distributions. The metric II.(a) in this case does
not lead to overestimation, but the results are more de-
4.1. Sources of bias pendent on surface normal orientation. We have used the

Every density estimation technique results in a systematic metric IL(a) below.

error, referred to as bias [Sil86, WJ95]. In the application of In the next section we document the above stated advantages
density estimation for global illumination, the bias in photon of our method experimentally on three simple representative
maps can be classified as follows [Suy02, Sch03]: scenes.

(© The Eurographics Association 2005.

46 V. Havran, J. Bittner, R. Herzog, and H.-P. Seidel / Ray Maps for Global Illumination

kernel width

(a)

4 A

Figure 3: Visualization of the bias sources (a) Proximity bias (b) Boundary bias (c) Topological bias.

4.3. Experimental evaluation

Using photon maps the irradiance E (x) at the point X is com-
puted as:

E(x)~ | = (1

1

i AD(x,dA, 0;,dw;)
=1

A =7-R®

For Lambertian surfaces this is equivalent to density estima-
tion. We have used the following four methods of density
estimation:

e the reference irradiance computed by a reference algo-
rithm from several magnitudes higher number of photons
following the same distribution.

e the irradiance from density estimation over the photon
map.

o the irradiance from density estimation using the ray map
with the combination hemisphere-disc.

o the irradiance from density estimation using the ray map
with the disc only [LURMO02].

In order to model basic geometric features occurring in
rendered scenes we constructed three simple scenes depicted
in Figure 4. These scenes exhibit boundary and topological
bias, which allows us to compare properties of different den-
sity estimation methods and draw conclusions about the util-
ity of our hemisphere-disc intersection using ray maps.

Figure 4 shows three selected test scenes from the analysis
together with the associated ray-photon distributions. Just a
small portion of the rays is shown for aesthetic reasons.

We have used ray distributions corresponding to an area
light source and parallel light source. The area light source
distribution approximates indirect light of scenes consist-
ing mainly of Lambertian surfaces, whereas the parallel one
simulates highly specular illumination. The graphs in Fig-
ure 4 visualize the computed density estimation for the three
tested estimators along the path depicted in the scenes. The
reference estimate (black dotted line) was computed from
two orders of magnitude higher number of samples (5 x 10°
photons). For the actual tests we used 100,000 samples, K-
nearest neighbor search with K=200, and Epanechnikov ker-
nel [Sil86].

The two corner scenes illustrate how the boundary bias is
eliminated using our hemisphere-disc method. Clearly, the
estimation from photon maps either underestimates the sur-
face area (Figure 4 (a)) by including wrong samples from
the neighbor plane or overestimates the surface area on the
boundary (Figure 4 (b)). The density estimation with pho-
ton maps on the wave scene (Figure 4 (c) and (d)) results in
topological bias arising from the curvature of the surfaces. It
also shows the problem when using only the disc intersec-
tion query [LURMO2] at concave surfaces (Figure 4 (c) blue
dashed line, point B and D).

5. Ray Map Implementation Using a kD-tree

In the previous section we have shown that ray maps provide
advantages in illumination reconstruction compared to pho-
ton maps. In the rest of the paper we present an efficient im-
plementation of the ray map and associated queries. We de-
scribe the algorithms for ray map construction and ray map
queries. We also present a strategy that keeps the memory re-
quirements of the method low while not causing significant
performance penalty in practice.

5.1. Overview

We represent the ray map using spatial subdivision based on
kD-trees. The rays are organized in a way similarly to or-
ganizing objects for ray shooting acceleration. We construct
a hierarchical spatial subdivision that contains references to
rays intersecting the cells of the subdivision. For each ele-
mentary cell of the subdivision we maintain a list of refer-
ences to rays that intersect the cell. Then for a given query
domain we first determine which cells of the subdivision it
intersects and evaluate intersections only with rays referred
at these cells. The resulting spatial subdivision should ad-
dress the following two points during querying:

e Distribution of rays and queries
e Coherence of the queries

The first point is addressed by hierarchical subdivision
with termination criteria based on the number of rays con-
tained in its cells. Additionally as we describe later we use

(© The Eurographics Association 2005.

V. Havran, J. Bittner, R. Herzog, and H.-P. Seidel / Ray Maps for Global Illumination

1

----- Reference (5,000,000 photons)
Point KDE (photons)

Boundary bias at edge (parallel light) oy KDE (pmpneredisc)

3 5 7 9 1113 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

1

Boundary bias 2 (parallel light)

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

----- Reference (5.000.000 photons)
Point KDE (photons
—— = Ray KDE (disc only) <=>

Ray KDE (hemisphere-disc)

(a)

(b)

1

..... Refer (4.000.000 phot

Topological bias P KB (hsony o)
— = — Ray KDE (disc only)

(cosine distributed ray direction) Ray KDE (homisphéredisc)

5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Topological bias (parallel light)

-+~ Reference (4.000.000 photons)
—— Point KDE (photons)
~ —— Ray KDE (disc only)

Ray KDE (hemisphere—disc)

Figure 4: Scenes used to study the bias of density estimation methods. The graphs show the resulting irradiance computed by
the density estimation along the depicted path on the surfaces (marked in red-blue). The following scenes were evaluated: (a)
Convex corner with a parallel distribution of rays. (b) Concave corner with a parallel distribution of rays. (c¢) Wave scene with
a cosine distribution of rays. (d) Wave scene with a parallel distribution of rays. The black dotted line is the reference value.
The red full line is computed from the photon map. The blue dashed line is computed from the ray map using a disc [LURMO02].
The yellow full line is computed from the ray map using the new hemisphere-disc method.

(© The Eurographics

©

Association 2005.

(d

48 V. Havran, J. Bittner, R. Herzog, and H.-P. Seidel / Ray Maps for Global Illumination

a lazy construction of the kD-tree that adapts to the distribu-
tion of the queries.

The second point is addressed as follows: once a cell with
a set of rays is subdivided, the resulting ray classification
(i.e. rays associated with the subdivided cells) is reused by
all subsequent queries. If we access a cell that needs further
subdivision, it is very likely that it already contains a lim-
ited set of rays due to the previous subdivisions. Thus if the
queries are coherent, only a small number of splits is per-
formed for each query, since we mostly access cells already
subdivided by the previous queries.

5.2. Static kD-tree Construction

The static construction of the ray map kD-tree proceeds as
follows: Starting at the root of the tree we check if it satisfies
the subdivision criteria. If the subdivision criteria are met,
we subdivide the node and distribute all rays it contains to
the new leaves. A ray gets associated with a leaf only if it in-
tersects the cell corresponding to the leaf. After the subdivi-
sion we continue by recursive traversal of the newly created
children.

We have used three subdivision criteria: The node is sub-
divided if all of the following three conditions hold:

e The number of ray references in the node is greater than a
predefined constant C,,,;;, (we use Cpip, = 32).

e The diagonal of the corresponding cell is longer than a
fraction of the diagonal of the scene bounding box R,
(typically R, = 0.1% of the size of the scene bounding
box).

e The depth of the node is smaller than a predefined maxi-
mal depth Dyax (We use Dipax = 30).

We have used splitting planes positioned at the spatial me-
dian of the current node that is perpendicular to the axis with
greatest spatial extent. The resulting algorithm has several
desirable properties:

e Since we use a spatial median the kD-tree is spatially bal-
anced.

e Due to the later presented lazy construction the kD-tree
automatically adapts to the query distribution.

e Except for the termination criteria the subdivision is inde-
pendent of the actual distribution of rays. While this might
be a drawback for a static set of rays, it turns out to be a
benefit for a dynamically changing ray set and the caching
strategy we use.

e We do not have to evaluate a cost function which is re-
quired for more advanced splitting plane selection. In
asymptotic complexity bounds this brings down the cost
of the plane selection from O(n log n) (sorting accord-
ing to the cost) to O(n). Additionally the constants hidden
by the O-notation for the spatial median split are several
times lower than for the cost based one, which is impor-
tant for the on-the-fly construction.

5.3. Intersection Query

An intersection of a given spatial domain with the rays in
the ray map is carried out by constrained traversal of the kD-
tree and computing intersections with rays stored at the leaf
nodes. The traversal is constrained only to nodes intersect-
ing the spatial domain of the query. In fact we constrain the
traversal to a bounding box of the spatial domain and use the
actual domain (disc, sphere, hemisphere) only for evaluating
the ray/domain intersection.

5.4. K-Nearest Neighbors Query

A K-nearest neighbors query aims to locate K nearest rays
for the given query center. It uses a similar traversal as the
intersection query, however it requires that the leaf nodes
are processed according to their distance from the center of
the query. This can be achieved by using a priority queue
in which the priority of the node is inversely proportional to
its distance. The approach is similar to K-nearest neighbors
over the point data [AMN™98].

Initially we push the root node in the priority queue and
proceed as follows: we pop the node with the highest pri-
ority from the queue. If it is an internal node, we compute
minimal distances d;,d, of its children from the query cen-
ter and insert them in the priority queue with priorities equal
to —d; and —d,, respectively. When reaching a leaf node
we evaluate the distance of all rays associated with the node
with respect to the query center and add these rays to the
ray candidate list. If the ray candidate list gets larger than
K, we apply the K-median algorithm to select the K rays
with minimal distance. If the distance of the K-th selected
ray is smaller than the distance of the unprocessed node on
the priority stack, we can terminate the algorithm, since no
unprocessed ray can be closer that the already found K-th
ray.

The described technique considers the whole scene as a
query domain. It is advantageous to constrain the query do-
main even for the K-nearest neighbor queries. This is easily
incorporated in the algorithm by pushing only those nodes
in the priority queue that intersect the query domain. This
limits the number of nodes in the queue and thus provides
a minor speedup. The set of leaves traversed is mostly iden-
tical to that of the unrestricted query. Note that the prior-
ity queue provides a natural adaptation of the traversed part
of the scene to the range where the K-nearest rays are ac-
tually found, without the need of any complicated estima-
tion techniques. The nodes further away from the K-nearest
neighbors are accessed at the higher levels of the hierarchy,
but they do not get accessed any further. The process of K-
nearest neighbor query without and with the restriction of
the query domain is illustrated in Figure 5.

There may be different distance metrics used for evalu-
ating ray distance. We can use some of the traditional tech-
niques that take points of intersection of the ray with scene

(© The Eurographics Association 2005.

V. Havran, J. Bittner, R. Herzog, and H.-P. Seidel / Ray Maps for Global Illumination 49

objects (photon maps) or with a tangent plane (Lastra et
al. [LURMO2]). Following the analysis in Section 4.3 we use
the minimal distance to the intersection of the (prolongated)
ray with the tangent plane (metric IL.(a)).

01

011

Figure 5: K-nearestneighbor queries using a priority queue.
(top) Traversal of the kD-tree for the unconstrained query.
The nodes are labeled according to their processing order.
The rays at the red leaves were actually tested for intersec-
tion. After testing these two nodes the query was terminated
since we have found a required number of rays that were
closer than any of the unprocessed nodes in the queue. (bot-
tom) Traversal of the kD-tree constrained by the query do-
main. Note that although we have accessed a smaller part of
the hierarchy we actually test the same number of leaves as
for the unconstrained query.

6. Ray Map Enhancements

This section presents several enhancements of the kD-tree
based ray map implementation. The first three presented
methods aim to improve the speed of the queries. The last
method limits the size of the ray map allowing the user to
tradeoff the total memory consumption for speed.

6.1. Lazy Ray Map Construction

In order to concentrate the splits in areas really accessed by
the queries we use a lazy kD-tree construction. Note that a
similar idea has been used by Ar et al. [AMTO02] for dynamic
collision detection. The kD-tree is constructed by interleav-
ing the traversal of the already existing part of the tree with
subdivision performed on its leaf nodes that satisfy the sub-
division criteria (e.g. contain too many ray references).

Given a query with its domain corresponding to an axis
aligned box, we start at the root node and proceed as follows:

e If the current node is an interior node, we check the po-
sition of the box with respect to the associated plane and
continue the traversal recursively for the subtrees inter-
sected by the box.

e If the current node is a leaf, we check if the subdivision
criteria are met:

(© The Eurographics Association 2005.

— If the subdivision criteria are met, we subdivide the
node and distribute all rays it contains to the two new
leaves. Recall that a ray is associated with a leaf only if
it intersects the corresponding cell. After the subdivi-
sion we continue by the traversal of the newly created
children.

— If the subdivision criteria are not met, we test all rays
associated with the node for an intersection with the
query box.

The lazy construction is visualized in Figure 6.

6.2. Directional Splits

Two important ray map queries use query domains that not
only restricts the spatial range of the rays but also their direc-
tional range. In particular the disc query and the hemisphere
query only consider rays with a negative dot product with the
normal of the disc or the hemisphere. If we only group rays
according to the spatial positions, we cannot efficiently cull
groups of rays with opposite directions than those desired by
the query.

To tackle this problem we extended the kD-tree by direc-
tional nodes. Unlike the usual kD-tree node the directional
node does not provide a split in the spatial domain, but rather
in the directional domain. The directional node contains a
reference direction. The node subdivides the current range
of directions into those having a positive and negative dot
product with the reference direction. For the density estima-
tion the negative directions are those feasible for the disc
or hemisphere intersection queries since they represent in-
coming rays. To allow sharing of the same directional node
by several queries with slightly different normals we enlarge
the set of feasible directions by a specified o angle (see Fig-
ure 7). Such an a-extended directional node does not cull all
infeasible rays, but allows to reuse the directional node by
all queries with normals within & angle from the reference
direction. The directional nodes are traversed as follows: if
the angle between its reference direction and the query nor-
mal is less than . In this case the query is covered by the
directional node and we only traverse the feasible subtree of
the directional node (and thus successfully cull all the rays
stored in the infeasible subtree). If the query is not covered
by the directional node we have to traverse both subtrees of
the directional node.

The directional nodes are introduced based on the nor-
mal of the actual disc or hemisphere queries. In the optimal
case we would place the directional nodes as high in the tree
as possible while making sure that the whole subtree cor-
responds to a spatial domain where directionally coherent
queries are expected. We use a simplified strategy suitable
for dynamic tree construction that uses two predefined con-
stants: the minimal depth of a node and minimal diagonal
size of the cell. If these two criteria are met for the node to
be subdivided, we first check if there is no other directional
node on the path to the root that covers the given query.

50 V. Havran, J. Bittner, R. Herzog, and H.-P. Seidel / Ray Maps for Global Illumination

(a)

(©

Figure 6: Lazy construction of the kD-tree driven by the queries. (a) The first query is depicted by the red disc. (b) The second
query does not require any subdivision. (c) The third query requires subdivision of the kD-tree by two new internal nodes.

reference
direction

covered query
normals

infeasible ray directions
/’ (front child)

ol o

feasible ray directions
(back child)

Figure 7: The subdivision of the ray directions according to
a directional node. Note that for the covered query normals
only the back child of the directional node is traversed and
all the infeasible rays are culled.

If we do not find such a node we introduce the directional
node and split the current set of rays according to the angles
between their directions and the reference direction as shown
in Figure 7. The reference direction for directional node cor-
responds to the normal of the first query, when the insertion
of directional node is decided. More complicated and effi-
cient strategies for determining the reference direction could
be used for offline processing of queries.

In scenes with directionally coherent queries, we have ob-
served that using o0 = 10 degrees, about 90% of the query
normals were within the o range. This means that we could
successfully cull the whole subtree maintaining rays within
the remaining 180 — 2o degrees.

6.3. Exploiting Query Coherence

Subsequent queries in the ray map are likely to be coher-
ent, if they are induced by the direct visualization of visible
surfaces for coherent pixel order on the image. We exploit
query coherence by reducing repeated traversals of the same
interior nodes of the kD-tree. The tests at the leaf nodes are

carried out as usual since for most applications we need to
evaluate the actual ray distances for each particular query.

Our design goal was to provide a mechanism that does not
require preprocessing of the queries but it allows us to use
the coherence between subsequent queries if there is some.
We only describe a modification to the K-nearest neighbor
algorithm. The modification of the intersection algorithm
works similarly.

For the first query we create a list of nodes corresponding
to the reached leaves and unprocessed nodes on the priority
stack that are within an e-distance from the K-th ray found.
The created list becomes a reference list for the subsequent
queries and the query center is a reference center. For the
next query we first check if the query center lies within the €
distance from the reference center. If this is the case, we push
all the nodes from the reference list to the priority queue us-
ing the actual priorities with respect to the new query cen-
ter. The query then proceeds as usual, but the reference list
and the reference center are not modified. If the query cen-
ter is not within the € distance from the reference center, we
start the traversal at the root node and create a new refer-
ence list that will possibly be used by subsequent queries.
In our tests this method provided performance gain typically
ranging from 1% to 30% for € = 0.5% of scene size.

6.4. Limiting Memory Usage

The number of rays stored in the ray map can be very large.
The ray map implementation should however be able to limit
the size of the indexing structure and so to balance the query
performance and memory costs. As we show later we can
successfully limit the memory used by the ray index to the
amount comparable to the actual ray representation with no
or only minor performance decrease.

Our ray map implementation stores multiple references to
aray in several leaves of the kD-tree. As the kD-tree is con-
structed lazily, the overall memory consumption grows with
the number of processed queries. The actual growth rate de-
pends on the distribution of the rays (mainly their length and

(© The Eurographics Association 2005.

V. Havran, J. Bittner, R. Herzog, and H.-P. Seidel / Ray Maps for Global Illumination 51

direction) and the spatial coverage of the queries. If the rays
are very short and the queries cover only a small fraction of
the scene, the memory growth is small. On the other hand,
for long rays and queries evenly filling the space there can
be many references to each ray in the cells of the constructed
subdivision. This increases the total memory cost consider-
ably.

We have developed a mechanism allowing to efficiently
balance the memory dedicated to the ray map and the com-
putational cost using the least-recently-used (LRU) caching
strategy. We set a limit on the memory usage for representa-
tion of the kD-tree, such as 100 MBytes. Before each subdi-
vision of a node in the kD-tree we check if the limit has not
been exceeded. If it has been exceeded, we find a subtree of
the kD-tree using a LRU strategy and collapse it to a single
node. The collapses are performed until the desired memory
bound is reached. Then a required subdivision of the node is
performed.

The described method maintains parts of the kD-tree
which were recently accessed. In this way we make sure
that the memory usage will not exceed a predefined mem-
ory limit, while we can still exploit coherence of subsequent
queries.

7. Results

In this section we summarize the results obtained using our
implementation of ray maps in the context of density esti-
mation. We compare the achieved results for the direct visu-
alization using ray maps with the direct visualization using
photon maps.

We have conducted four different tests. The first test com-
pares K-nearest neighbor queries using our ray map imple-
mentation and the ray-cache [LURMO02]. The second test il-
lustrates the dependence of the query performance on the
number of rays stored in the ray map. The third test eval-
uates the performance of the queries in dependence on the
number of desired nearest rays. The fourth test compares the
performance of density estimation from photon maps and
ray maps for the direct visualization.

The first test is the comparison of ray maps with the
method using the dynamic list of spheres. We conducted
tests on four different scenes: the Cornell Box, the Cognac,
the Office, and the Sala scenes (see Figure 8). We have used
K-nearest neighbor queries aiming at finding 100 nearest
rays. Additionally, we have restricted the search to the dis-
tance corresponding to 5% of the scene radius. For each test
we have measured the total number of rays, the number of
queries, the number of actually found rays, the percentage
of successfully tested rays, the peak memory usage for the
ray map, the number of tree collapses per query (forced by
the caching scheme), and the average query time. Note that
the memory usage counts the memory required for the ray
index not the rays themselves. For all tests we set an upper

(© The Eurographics Association 2005.

Rays Found | Succ. Tests | Query Time
103 [%] [ms]
189 100 27.0 0.16
378 100 277 0.22
944 100 26.0 0.42

1887 100 25.0 0.88

Table 2: Dependence of the query performance on the num-
ber of rays stored in the ray map for the Cornell box. The
results are averaged using 53,000 nearest neighbor queries.

memory limit for the ray map index to 128MB. The results
are summarized in Table 1.

We can see that the ray map method provides significant
speedup compared to the ray-cache. From the running statis-
tics we have identified two main reasons: (1) the ray-cache
using the dynamic list of spheres depends strongly on the
choice of the appropriate search radius. If this radius is larger
than that of the actual neighborhood, where the K-rays are
found, we have too many candidate rays that have to be
ranked. (2) If all subsequent queries are not coherent enough,
the dynamic list of spheres has to be reconstructed which is
relatively costly.

The second test shows the dependence of the query per-
formance on the total number of rays stored in the ray map.
This test was conducted for the Cornell Box using 53,000
nearest neighbor queries. The results are summarized in Ta-
ble 2.

We can observe that increasing the number of rays causes
only a sublinear increase of the average time per query. The
increase is however more than logarithmic which is due to
the fact that the average query time also includes the costs
for the lazy construction of the kD-tree.

The third test shows the search performance in the de-
pendence on the number of desired rays for the K-nearest
neighbor query. Again we have used the Cornell Box with
1.8 x 10° rays and 53,000 queries. The results are shown in
Table 3.

We see a sublinear increase of query time when increas-
ing the number of desired rays. The more rays we require
the farther we have to search from the query center. An im-
portant property of our ray map implementation is that due
to the priority queue based traversal it automatically estab-
lishes the neighborhood where the desired number of rays
are being found without significant performance loss.

The fourth test compares the rendering using the direction
visualization with ray maps and photon maps. The time per-
formance results for this test are summarized in Table 4, the
images are shown in Figure 8 for photon maps and in Fig-
ure 9 for ray maps. Notice the clearly visible boundary bias
for photon maps. For comparison purposes we have also im-
plemented a boundary bias reduction technique for normal
photon maps using convex hulls [Jen01]. The timings were

52 V. Havran, J. Bittner, R. Herzog, and H.-P. Seidel / Ray Maps for Global Illumination

Scene Rays | Queries Method | Found | Succ. Tests | Memory | Collapses | Query Time | Speedup

[10°1] [10*] Rays [%] [MB] [%] [ms] []

ComeiBox | 1857 | 53|y | oo | aseo| umo| oor| oms| 2s3

Come | 61| 0 ey | ol sl 51| 0| om| e
- _

omee | 250) 0|ty | o] | ol o] om|

s | 20| 130) @y | e | weo| ol | o | as

Table 1: Comparison of the K-nearest neighbor query performance for the kD-tree based ray map(RM) implementation and
the dynamic list of spheres(SP). * For the last SP test we had to reduce the search radius to 0.5% of the scene size to obtain
reasonable timings. If the initial radius was larger, there were too many rays in the candidate list leading to running times of
more than two orders of magnitude greater than for the ray map method.

Found |[Succ. Tests | Query Time
[%] [ms]

20 11.5 0.70

50 19.2 0.75
100 25.0 0.88
200 334 1.02
500 44.0 1.49

Table 3: Dependence of the query performance on the num-
ber of desired nearest neighbors. The measurementwas con-
ducted for the Cornell Box using 1.8 X 10° rays and 53,000
queries.

Scene Time[s] Time[s] Time[s] Ratio [-]
ray map | photmap | photmap | phot.map

conv. hull | /ray map

Cornell Box 311 70 116 44
Cognac 293 63 103 4.7
Office 195 41 71 4.7
Sala 240 115 178 2.1

Table 4: Rendering times for density estimation with photon
maps, photon maps with convex hull, and ray maps without
final gathering for resolution 1000 x 1000 pixels. Only indi-
rect illumination was computed.

increased by factor 65-75% and the images still suffered
from artefacts on small surface areas, where the number of
photons is insufficient. We do not show the rendered images
here due to the lack of space.

The comparisons have shown that the ray map based den-
sity estimation successfully eliminates boundary bias. The
overhead of performing the ray map queries is moderate —
the density estimation with ray maps was 2.1 to 4.7 times
slower than the direct visualization from photon maps.

For all the tests, we have set the limit for the memory
usage for the ray maps as described in the Section 6.4 to
128 MBytes. For time measurements we have used a single
PC with a 2.4 GHz Pentium 4 and 1 MByte of L2 cache.

8. Discussion

The testing of different variants of ray map implementations
revealed several interesting features. For the discussion we
chose the splitting plane selection and a comparison to a dif-
ferent ray map implementation that uses dual space.

8.1. Splitting Plane Selection

Inspired by the rich literature on kD-trees for ray shoot-
ing [Kap87,Hav00] we have experimented with other meth-
ods for splitting plane selection such as the ray median or
query distribution heuristics. The ray median selects a split-
ting plane so that the number of rays in the left and right
subtrees of the split node is equal. The query distribution
heuristics is based on similar idea as the surface area heuris-
tics subdivision for ray shooting. We estimate the costs of
a splitting plane position by weighting the numbers of rays
in left and right children with the probability that the corre-
sponding child will be accessed by a query.

Surprisingly, the conducted experiments have shown that
the best overall query performance was achieved by using
the simplest strategy for the spatial median split discussed
in Section 5.2. When using the more advanced ray median
split or query distribution heuristics we achieved about 10%-
30% worse performance per query. We explain this result as
follows:

e The computational cost of the splitting plane selection
for the advanced techniques is higher. Asymptotically this
means O(nlogn) versus O(n), but there is also an addi-
tional cost for evaluating the heuristics function hidden in
the O-notation. Since we construct the kD-tree lazily and
the number of queries is comparable or even lower than
the number of rays stored in the ray map this difference
becomes significant.

e The heuristics should provide a well balanced tree with
respect to the queries. However we deal with a more com-
plicated problem than for traditional kD-trees that store
only points in 3D. Any ray can be referenced in a number
of leaves and it is difficult to predict how many references

(© The Eurographics Association 2005.

V. Havran, J. Bittner, R. Herzog, and H.-P. Seidel / Ray Maps for Global Illumination 53

will occur at each subtree when performing a split near the
root of the tree. This is emphasized by the fact that long
diagonal rays can span across the whole scene, although
after the subdivision they end up only in a few nodes in
proximity of the ray.

8.2. Ray Maps in Line Space

A natural candidate for ray map representation is line space.
Rays on a given line in primary space are represented by a
point in line space. By representing all rays as line space
points we can cluster these points and use classical range
searching methods to find points that intersect the line space
mapping of the query domain [Pel04]. In fact this technique
was used in our first ray map implementation. We have used
Pliicker coordinates to map supporting lines of the rays to
6D points (points in 5D projective space embedded in 6D).
Then we have clustered the resulting points using a bounding
box decomposition tree (BBD-tree) [AMN*98]. The query
domain (disc) was mapped to a line space convex polyhe-
dron forming a set of 6D hyperplanes [Tel92]. We have then
found all points of the BBD-tree that were contained in the
polyhedron. To reflect the fact that we actually deal with
line segments instead of lines we have interleaved the search
with testing intersections of the query domain with the spa-
tial bounding boxes of ray clusters.

Unfortunately, the resulting technique exhibits rather
small performance gain compared to the naive implemen-
tation of the search. The major problem is performing a
computationally efficient intersection of the line space map-
ping of the query domain (6D unbounded convex polyhe-
dron) and the 6D bounding boxes corresponding to clus-
ters of rays. The query domain is compact in primal space
(e.g. disc), but after mapping to line space we typically ob-
tain an unbounded thin polyhedron. The BBD-tree was al-
ways traversed almost to the bottom providing only a ten-
fold speedup compared to the naive implementation of the
searching algorithm.

This approach however devotes further investigation: per-
haps a combination of primal/dual space data structure could
share the benefits of both: compactness of the query domain
(primal space) and elegance of the ray representation (dual
space).

9. Conclusion

We have presented a data structure for representing light
transport called ray map. The ray map extends the concept of
the photon map: it provides a general mechanism for storing
light path samples as well as retrieving the samples using
ray proximity queries. We have discussed the intersection
queries, nearest neighbor queries, and their combinations.
The ray map not only allows to determine rays in proxim-
ity, but it also allows to use new distance metrics unavailable
for the photon map. In particular we can detect nearest rays

(© The Eurographics Association 2005.

based on the minimal distance of the ray itself from the cen-
ter of the query instead of using the point of intersection of
the ray with scene objects.

We have presented an efficient implementation of the ray
map based on a kD-tree. We proposed a number of tech-
niques to achieve searching performance approaching the
performance of the photon map: the kD-tree is constructed
lazily based on the actual queries, it is extended by direc-
tional nodes for efficient culling of infeasible rays, and we
exploit query coherence by avoiding repeated traversal of the
upper part of the tree. We also described a method limiting
the memory usage by caching only the part of the tree that
was recently accessed.

We have used the ray maps in density estimation for direct
visualization. We have shown that by using our hemisphere-
disc method we can avoid boundary bias inherent to pho-
ton maps and also reduce the topological bias. These results
were achieved at the cost of moderate increase of computa-
tional time compared to photon maps.

The ray map concept opens a number of topics for future
work. We work on methods detecting or reducing occlusion
bias via simple statistical means over the rays in query. We
also envision an efficient hybrid rendering algorithm com-
bining seamlessly the results for the indirect illumination
computed by density estimation from photon maps, from ray
maps, and from the final gathering across the image plane.
The ray maps are a good candidate for rendering of volumet-
ric effects. Finally, we want to use ray maps in the context
of animation in order to detect and update only the modified
light paths.

Acknowledgment

We would like to thank Jaroslav Kfivanek for providing us
with implementation of photon maps that we used for di-
rect visualization of photon maps. Further, we would like to
thank Karol Myszkowski and also to all anonymous review-
ers for their comments on the previous version of the paper.
This work was partially supported by the European Union
within the scope of project IST-2001-34744, “Realtime Vi-
sualization of Complex Reflectance Behaviour in Virtual
Prototyping” (RealReflect), the GameTools IST project no.
IST-2-004363, and the Kontakt OE/CZ grant no. 2004-20.

References

[AMN*98] ARYA S., MOUNT D. M., NETANYAHU
N. S., SILVERMAN R., WU A. Y.: An Optimal Al-
gorithm for Approximate Nearest Neighbor Searching in
Fixed Dimensions. Journal of the ACM 45, 6 (1998), 891—
923.

[AMTO02] AR S., MONTAG G., TAL A.: Deferred, Self-
Organizing BSP Trees. Computer Graphics Journal (Eu-
rographics '02) 21, 3 (2002), C269-C278.

54 V. Havran, J. Bittner, R. Herzog, and H.-P. Seidel / Ray Maps for Global Illumination

[CJ02] CAMMARANO M., JENSEN H. W.: Time Depen-
dent Photon Mapping. In Rendering Techniques 2002
(June 2002), pp. 135-144.

[CZS96] CHIU K., ZIMMERMANN K., SHIRLEY P.: The
Light Volume: An Aid to Rendering Complex Environ-
ments. In Rendering Techniques 96 (1996), Pueyo X.,
Schroder P., (Eds.), Eurographics, Springer-Verlag Wien
New York, pp. 1-10.

[DS97] DRETTAKIS G., SILLION F. X.: Interactive Up-
date of Global Illumination Using a Line-Space Hierar-
chy. In Computer Graphics (ACM SIGGRAPH ’97 Pro-
ceedings) (1997), vol. 31, pp. 57-64.

[GSHGY98] GREGER G., SHIRLEY P., HUBBARD P. M.,
GREENBERG D. P.: The Irradiance Volume. IEEE Com-
put. Graph. Appl. 18,2 (1998), 32-43.

[Hav00] HAVRAN V.. Heuristic Ray Shooting Algo-
rithms. Phd thesis, Czech Technical University in Prague,
November 2000.

[Hec90] HECKBERT P.: Adaptive Radiosity Textures for
Bidirectional Ray Tracing. In Computer Graphics (ACM
SIGGRAPH 90 Proceedings) (August 1990), vol. 24,
pp. 145-154.

[HPO1] HEY H., PURGATHOFER W.: Global lllumination
with Photon Mapping Compensation. Tech. Rep. TR-186-
2-01-04, Vienna University of Technology, January 2001.

[Jen96] JENSEN H. W.: Global [llumination using Photon
Maps. In Rendering Techniques *96 (June 1996), pp. 21—
30.

[Jen01] JENSEN H. W.: Realistic Image Synthesis using
Photon Mapping. A. K. Peters, Ltd., 2001.

[Jen02] JENSEN H. W.: A Practical Guide to Global
Tlumination Using Photon Mapping. In SIGGRAPH
2002 Course Notes CD-ROM (July 2002), Association for
Computing Machinery, ACM SIGGRAPH. Course 43.

[Kap87] KAPLAN M. R.: The Use of Spatial Coherence
in Ray Tracing. In Techniques for Computer Graphics.
1987, pp. 173-193.

[LH96] LEVOY M., HANRAHAN P.: Light Field Render-
ing. In SIGGRAPH ’96: Proceedings of the 23rd annual
conference on Computer graphics and interactive tech-
niques (New York, NY, USA, 1996), vol. 30, ACM Press,
pp. 31-42.

[LPO2] LAVIGNOTTE F., PAULIN M.: A New Approach
of Density Estimation for Global Illumination. In Pro-
ceedings of WSCG 2002 (2002), pp. 263-270.

[LURMO2] LASTRA M., URENA C., REVELLES J.,
MONTES R.: A Particle-Path Based Method for Monte
Carlo Density Estimation. In Poster Papers Proceeding
of the 13th Eurographics Workshop on Rendering (June
2002), pp. 33-40.

[Pel04] PELLEGRINI M.: Ray Shooting and Lines in

Space. In Handbook of Discrete and Computational Ge-
ometry - second edition. Chapman & Hall/CRC Press,
2004, pp. 839-856.

[PP98] PETER I., PIETREK G.: Importance Driven Con-
struction of Photon Maps. In Rendering Techniques 98
(1998), Drettakis G., Max N., (Eds.), pp. 269-280.

[Sam89] SAMET H.: Design and Analysis of Spatial Data
Structures: Quadtrees, Octrees, and other Hierarchical
Methods. Addison—Wesley, Redding, Mass., 1989.

[Sch03] SCHREGLE R.: Bias Compensation for Photon
Maps. Computer Graphics Forum 22, 4 (2003), C792—
C742.

[Sil86] SILVERMAN B. W.: Density Estimation for Statis-
tics and Data Analysis. London: Chapman and Hall,
1986.

[Suy02] SUYKENSF.: On Robust Monte Carlo Algorithms
for Multi-Pass Global Illumination. PhD thesis, Depart-
ment of Computer Science, Katholieke Universiteit Leu-
ven, Leuven, Belgium, September 2002.

[SW00] SUYKENSF., WILLEMS Y. D.: Density Control
for Photon Maps. In Rendering Techniques 2000 (2000),
Peroche B., Rushmeier H., (Eds.), pp. 23-34.

[Tel92] TELLER S. J.: Computing the Antipenumbra of
an Area Light Source. In SIGGRAPH ’92: Proceedings
of the 19th annual conference on Computer graphics and
interactive techniques (New York, NY, USA, July 1992),
vol. 26, ACM Press, pp. 139-148.

[WGS04] WALD I., GUNTHER J., SLUSALLEK P.: Bal-
ancing Considered Harmful — Faster Photon Mapping us-
ing the Voxel Volume Heuristic. In Computer Graphics
Forum (2004), vol. 22, pp. 595-603. (Proceedings of Eu-
rographics 2004).

[WH92] WARD G. J., HECKBERT P.: Irradiance Gra-
dients. In Third Eurographics Workshop on Rendering
(May 1992), pp. 85-98.

[WI95] WAND M., JONES M.: Kernel Smoothing. Lon-
don: Chapman and Hall., 1995.

[WRC88] WARD G. J., RUBINSTEIN F. M., CLEAR
R. D.: A Ray Tracing Solution for Diffuse Interreflection.
In SIGGRAPH ’88: Proceedings of the 15th annual con-
ference on Computer graphics and interactive techniques
(New York, NY, USA, Aug. 1988), vol. 22, ACM Press,
pp. 85-92.

[WTP0O] WILKIE A., TOBLER R. F., PURGATHOFER

W.: Orientation Lightmaps for Photon Radiosity in Com-
plex Environments. In Proceedings of CGI 2000 (2000).

[ZSP98] ZANINETTIJ., SERPAGGI X., PEROCHE B.: A
Vector Approach for Global [llumination in Ray Tracing.
In Computer Graphics Forum (1998), vol. 17(3), pp. 149—
158. (Proceedings of Eurographics 98).

(© The Eurographics Association 2005.

