
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2008)
M. Gross and D. James (Editors)

Fast Adaptive Shape Matching Deformations

Denis Steinemann1, Miguel A. Otaduy2 and Markus Gross1

1 Computer Graphics Laboratory, ETH Zürich, Switzerland
2 Grupo de Modelado y Realidad Virtual, URJC Madrid, Spain

Abstract

We present a new shape-matching deformation model that allows for efficient handling of topological changes

and dynamic adaptive selection of levels of detail. Similar to the recently presented Fast Lattice Shape Matching

(FLSM), we compute the position of simulation nodes by convolution of rigid shape matching operators on many

overlapping regions, but we rely instead on octree-based hierarchical sampling and an interval-based region

definition. Our approach enjoys the efficiency and robustness of shape-matching deformation models, and the same

algorithmic simplicity and linear cost as FLSM, but it eliminates its dense sampling requirements. Our method can

handle adaptive spatial discretizations, allowing the simulation of more degrees of freedom in arbitrary regions of

interest at little additional cost. The method is also versatile, as it can simulate elastic and plastic deformation, it

can handle cuts interactively, and it reuses the underlying data structures for efficient handling of (self-)collisions.

All this makes it especially useful for interactive applications such as videogames.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism: Animation.

1. Introduction

Simulation of deformable objects can greatly enhance the
level of engagement of many computer graphics applica-
tions, and this importance has lead to the development of
many and diverse deformation models over the last twenty
years. In computer animation for feature films, physical re-
alism is often the most important aspect. In interactive appli-
cations such as video games or surgery simulation, however,
computational efficiency and robustness are the dominant as-
pects, trading physical accuracy for plausibility.

Computer graphics has recently sought the rise of shape-
matching deformation models for robust and efficient com-
putation of large deformations, with application to video-
game-like settings. Müller et al. [MHTG05] presented a
meshless simulation technique that pulls deformable points
toward a globally consistent deformed shape, resulting in un-
conditionally stable and extremely fast deformation. Rivers
et. al [RJ07] have extended this technique to simulate many
more degrees of freedom (DOFs) using Fast Lattice Shape

Matching (FSLM). They overlap many (rigid) clusters of
points in a lattice, and exploit the regularity of the lattice
for designing an efficient algorithm. The use of a regular lat-
tice induces however unsolved limitations, such as lack of

flexibility for distributing DOFs, poor scalability in terms of
resolution, homogeneous mechanical stiffness, or large cost
for applying topological changes.

Our Contribution

In this paper, we present a novel dynamic deformation tech-
nique based on shape matching that solves many of the lim-
itations of previous methods and extends their applicability
to scenes and models exhibiting interactive complex topo-
logical changes (see Figure 3), inhomogeneous mechanical
behavior (Figure 4), independently deformed thin features
(Figure 1), and adaptive and dynamic LOD selection (Fig-
ure 6). Our simulation algorithm enjoys the same algorith-
mic simplicity as FLSM, and its runtime cost is also linear
in the number of deformation points. However, our adaptive
sampling framework enables in practice the simulation of
much thinner features than FLSM at a much lower cost, as
shown in Figure 1.

The technical contributions of our work may be listed as:

• A hierarchical fast summation algorithm for shape-
matching deformations with adaptive discretizations. It

c© The Eurographics Association 2008.

http://www.eg.org
http://diglib.eg.org

D. Steinemann, M. A. Otaduy & M. Gross / Fast Adaptive Shape Matching Deformations

is sustained on octree-based sampling and interval-based

definition of shape-matching regions.
• An algorithm for dynamic resampling of the octree repre-

sentation that allows interactive topological changes and
LOD selection.
• A fast method for computing distances on the octree set-

ting, which is used in the dynamic update of shape match-
ing regions.

We continue with a discussion of related work, focus-
ing on earlier shape matching algorithms in Section 3. In
Section 4 we present our octree shape matching algorithm.
In Section 5 we describe fast resampling under topological
changes and dynamic LOD selection, while in Section 6 we
introduce an efficient shortest path algorithm used for dy-
namic resampling. In Section 7 we present experiments and
results, and conclude with a discussion of future work.

2. Related Work

Physically-based simulation of deformable materials was
introduced to computer graphics more than twenty years
ago [TPBF87]. Since then, many researchers have aimed
at obtaining robust deformation models with low compu-
tational cost. Some of their approaches include fast so-
lutions to implicit integration of FEM models [BNC96],
corotational FEM for large deformations with implicit in-
tegration [MDM∗02], boundary element methods focused
on the surface [JP99], or mass-spring models with addi-
tional volume conservation constraints [THMG04]. Modal
analysis methods also enable fast and robust computation
of global deformations on geometrically complex objects
by extracting the main deformation modes [PW89, JP02,
BJ05]. Another way of achieving fast simulations on com-
plex geometry is to compute the deformation on a lat-
tice or low-resolution mesh [CGC∗02a]. Meshless methods
feature other interesting properties such as robust simula-
tion of large deformations, state-transitions, or topological
changes [BLG94, MKN∗04, SOG06]. For a more extensive
discussion of physically-based deformation models, please
refer to surveys on the topic [GM97, NMK∗05].

As an alternative to physically-based methods, shape-
matching deformation models rest on purely geometric
grounds [MHTG05, RJ07]. They move deformation points
toward goal positions defined by the rest geometry, thus
guaranteeing stability of the simulation. Effectively, they
offer the robustness of implicit integration in physically-
based methods, with a cost comparable to explicit integra-
tion, making them a great candidate for plausible simula-
tion in interactive applications. Due to the strong connec-
tion between our work and that in [MHTG05,RJ07], we dis-
cuss these approaches in detail in the next section. Shape-
matching deformation models have also seen application in
geometric modeling. The prism-based deformation model of
Botsch et. al [BPGK06] aims at finding per-prism rigid trans-
formations that minimize a deformation energy. However,
the method solves a global optimization problem, hence it is

Figure 1: An object is deformed with our octree shape

matching approach. Notice the independent deformation of

a finger in the top-right. FLSM requires 35000 nodes to cor-

rectly represent thin fingers (bottom-left), while our adaptive

approach requires only 661 nodes (bottom-right), providing

88-time speed-up in the simulation.

not quite suited for interactive simulations with many DOFs.
This work was later extended to deal with adaptive sam-
pling [BPWG07]. The position-based dynamics technique
of Müller et al. [MHHR06] is somewhat kindred to shape-
matching models, as it moves points in a deformable model
toward goal positions defined by local constraints.

Two of the main applications of our technique are efficient
handling of adaptive simulation and topological changes.
There has been extensive work on adaptive simulation in
computer graphics [DDCB01,GKS02,CGC∗02b,OGRG06],
although orthogonal to ours. Regarding topological changes,
our work shares some of the problems of dynamic resam-
pling in meshless deformations [PKA∗05, SOG06].

3. Deformation through Shape Matching

In this section, we review the previous approaches by
[MHTG05] and [RJ07] and discuss limitations.

3.1. Meshless Shape Matching

Given a set Rr of simulation points, with x0
i and xi their

initial and deformed positions, the technique by Müller et.
al [MHTG05] computes a rigid rotation Rr and a translation
vector that transform the x0

i such that the distance between
initial and deformed configurations is minimal in the least-
squares sense. A linear transformation

A = (∑
i∈Rr

mipiq
T
i)Aqq = ArAqq (1)

is computed first, with pi = xi− cr and qi = x0
i − c0

r . cr and
c0

r are the centers of mass in the deformed and the initial set-
ting, and Aqq is a symmetric matrix containing only scaling.
Rr is extracted from Ar using polar decomposition such that
Ar = RrS. Next, the goal position of each node is computed
as gi = Rr(x

0
i − c0

r)+ cr = Trx0
i , Tr = [Rr tr] ∈ R

3x4. Goal

c© The Eurographics Association 2008.

88

D. Steinemann, M. A. Otaduy & M. Gross / Fast Adaptive Shape Matching Deformations

positions are then used in an unconditionally stable numeri-
cal integration scheme:

vi(t +h) = vi(t)+
gi(t)−xi(t)

h
+h

fext(t)

mi
, (2)

xi(t +h) = xi(t)+hvi(t +h). (3)

Müller et. al extended the basic definition to linear and
quadratic deformation modes. They also increased the num-
ber of DOFs in the deformation by clustering points into sev-
eral regions, but deformation artifacts may appear due to re-
gion discontinuities, and clustering itself is problematic.

3.2. Fast Lattice Shape Matching

Rivers et. al [RJ07] applied the technique of [MHTG05]
on cubic lattices and overlapped many clusters through a
region-based convolution of rigid shape-matching transfor-
mations, resulting in smooth deformation. The object’s sur-
face is embedded in the lattice and deformed using trilinear
interpolation of lattice vertices. In the FLSM of Rivers et al.,
each lattice point represents a simulation node i, and is as-
sociated to a shape matching region Ri composed of i and
all other nodes closer than a distance w (according to the
max-norm metric). FLSM computes per-region transforma-
tions Tr as described above, and per-node goal positions are
obtained by averaging the transformations of all influencing
regions. With a symmetric definition of regions, goal posi-
tions are defined as gi =< Trx0

i >r∈Ri
= Tix

0
i .

Naively multiplying and summing up vectors for each re-
gion as in (1) would yield a cost O(w3n), where n is the
number of nodes. Instead, FLSM exploits summation redun-
dancy in the lattice setting and yields a total cost linear in the
number of nodes. We refer to [RJ07] for the exact definition
of their fast-summation operator

Fi∈Rr
{vi} ≡ ∑

i∈Rr

vi, (4)

which indicates that a quantity vi is summed over a region
Rr. In essence, it requires three recursive passes along all
simulation nodes, and it is used for computing region trans-
formations and node goal positions. As we will show in sec-
tion 4.3, our algorithm follows the same steps as FLSM, but
replaces F with a new hierarchical fast-summation operator
that works on adaptive discretizations.

3.3. Limitations of the Lattice Setting

FLSM allows for more DOFs and smoother deformation
than the original method by [MHTG05], but the use of a
regular lattice yields several important limitations:

• Small features yield an explosion of the runtime cost. A
small surface feature may require fine sampling in order
to be deformed independently from non-adjacent mater-
ial, but this fine sampling must be applied to the whole
object. Figure 1 shows how our adaptive sampling cor-
rectly resolves thin features efficiently, while in FLSM the
simulation cost grows cubically with lattice resolution.

• Mechanical stiffness, related to region half-width w, is a
global parameter. A varying width w would break the reg-
ularity required by FLSM. Figure 4 shows material inho-
mogeneity in our octree setting.
• Dynamic restructuring due to topological changes is com-

putationally expensive. The fast-summation algorithm be-
comes particularly intricate in regions where the lattice is
not regular, e.g., near boundaries, as several sums must be
maintained per node. Although [RJ07] show the ability to
perform fracture, the definition of these sums is typically
handled as pre-processing, and is expensive at runtime.

4. Octree Shape Matching

In this section, we will introduce our new deformation
method based on octree shape matching.

4.1. Adaptive Octree Sampling

As opposed to the uniform lattice sampling of [RJ07], we
propose an octree-based sampling of the deformable objects.
Octree-based sampling lays a framework for adaptive dis-
cretization of the shape-matching deformation model. More-
over, as it will become clear later, the octree representation
will allow for a hierarchical definition of a fast summation
operator, where a high node in the octree stores the sum of
all its leaves. When appropriate, nodes will reuse high-level
sums without visiting subtrees.

We begin by creating a very coarse cubic lattice, referred
as base lattice, that embeds the object’s surface. The choice
of resolution for the base lattice is guided by the maximum
desired stiffness, and has 28 nodes in the example in Fig-
ure 1. We then do an octree subdivision of the lattice, follow-
ing some user-defined criterion. One possibility is to subdi-
vide until all surface features of a certain size are resolved,
as shown in Figure 1, but it is also possible to subdivide at
runtime based on, e.g., user interaction as in Figure 6, view-
dependent LOD selection, etc. We place a simulation node at
the center of each leaf cell, and a virtual node at the center of
each non-leaf cell. As mentioned earlier, virtual nodes will
store sums of all their descendant simulation nodes. Masses
of simulation nodes are set based on cell volume and density.

4.2. Interval-Based Shape Matching Regions

FLSM exploits lattice regularity for avoiding the region-
size-dependency of brute-force shape matching. Instead, we
propose an interval-based definition of regions that, together
with the octree representation, ensures that each summation
operation need only operate on O(1) summands.

Given a simulation node ni with tentative region width
wi, we define the region Ri of ni in the following way: if a
node n j is closer than wi from ni, then it belongs to Ri; and
if it is further than (1 + ε)wi, then it does not belong. As
a result, nodes in the distance interval [wi,(1+ ε)wi] may or

may not be included in Ri. This definition bears some resem-
blance with that of (1 + ε)-spanners [GGN06]. Recall that

c© The Eurographics Association 2008.

89

D. Steinemann, M. A. Otaduy & M. Gross / Fast Adaptive Shape Matching Deformations

i
w)1(ε+

a
n

i
w

b
n

c
n

i
n

i
n

Figure 2: Hierarchical sampling of an object. (a) Intervals

of ni and virtual nodes. The virtual node nb stores a distance

interval [0,1] (in max-norm metric) and is added as sum-

mation node of ni; na stores [2,3] and is discarded; and nc

stores [1,2] and is refined. (b) In red, the summation nodes

of region Ri associated with ni.

region width is related to local mechanical stiffness, and our
interval-based region definition effectively implies a small
variance in the actual mechanical stiffness.

In order to construct shape-matching regions, we employ
the interval-based definition above and we follow a hierar-
chical algorithm. For each simulation node ni, we represent
its shape-matching region Ri through a set of summation

nodes, which may contain both simulation and virtual nodes.
Note again that a virtual node will store summed values of
all its descendant leaves, hence using a virtual node as sum-
mation node prevents us from visiting all its leaves. A shape-
matching region Ri is constructed in the following way:

1. For every node n j of the octree, compute an interval
[a j,b j] that captures the minimum and maximum dis-
tances from all descendant leaves of n j to ni.

2. Traverse the octree top-down, and for every node n j:
if a j > wi, discard n j and its subtree.
else if b j < (1+ ε)wi, insert n j in Ri.
else process the children of n j.

3. Enforce region symmetry, ni ∈ R j ⇐⇒ n j ∈ Ri.

Figure 2 shows an example situation with summation nodes
at two different levels. There exists a minimum value ε

such that the number of summation nodes in every region is
bounded by a desired constant. In practice, we use ε = 0.5,
which yields on average 6 summation nodes per region in
the adaptively sampled model in Figure 1.

Note that our definition of shape-matching regions is in-
dependent of the distance metric and the algorithm for com-
puting node distances. We describe the efficient computation
of distances in our implementation in Section 6.

4.3. Hierarchical Fast Summation

Given O(1) summation nodes per shape-matching region as
defined above, we can now define our linear-cost Hierarchi-

cal Fast-Summation operator

HF

i ∈ Rr

{

vi

}

≡ ∑
i∈Rr

vi. (5)

It consists of two steps:

1. Depth summation: For all octrees, compute sums of vi

in bottom-up fashion, such that virtual nodes contain the
sum of their children’s values.

2. Breadth summation: For each region, sum up the readily
available values of all its summation nodes.

For an object with n simulation nodes, the depth-summation
is O(n) if we assume that the octrees are roughly balanced.
The breadth summation is O(n) as outlined above, hence the
HF operator has linear cost.

Similarly to the F operator in FLSM, our novel hierar-
chical fast-summation operator HF is used for computing
the per-region transformations cr and Ar, as well as per-
node goal positions gi (See Section 3.1 for their definition).
The only difference w.r.t. FLSM is that we weight per-region
transformations by the mass mr of their associated node, and
we then normalize the sum by the summed mass Mi, which
can be precomputed.

Our octree shape matching algorithm is now summarized:

1. Compute per-region translations

cr =
1

Mr
HFi∈Rr

{mixi} . (6)

2. Compute per-region linear transformations

Ar = HFi∈Rr

{

mixix
0
i

T
}

−Mrcrc
0T

r . (7)

3. Extract rotations Rr using polar decomposition and com-
pose rigid transformations Tr.

4. Compute per-node goal positions

gi =
1

Mi
HFr∈Ri

{mrTr}x
0
i . (8)

5. Apply the integration scheme from (2) and (3).

It now becomes apparent that our octree shape matching
shares the same algorithmic structure and linear-cost as
FLSM, with the notable difference that it supports adap-
tive sampling, and thereby the possibility to simulate much
thinner features at a lower total cost. Damping, described
in [RJ07], is also directly applicable with our HF operator.

5. Dynamic Resampling

When topological changes are applied or when new LODs
are locally (de)activated, objects must be dynamically re-
sampled, and summation nodes of affected shape matching
regions must be recomputed. In this section, we describe a
general, robust, and efficient algorithm for dynamic resam-
pling under our octree-based setting. While describing the
algorithm, we assume the existence of a method for comput-
ing distances between pairs of nodes. Our particular method,
described in Section 6, uses a visibility graph, and here we
will also refer to updates to the graph during resampling.

c© The Eurographics Association 2008.

90

D. Steinemann, M. A. Otaduy & M. Gross / Fast Adaptive Shape Matching Deformations

Figure 3: A hanging liver model is interactively cut, while shape matching regions are efficiently recomputed, and self-collisions

are also interactively handled. The model starts with 500 nodes and ends with 1550.

5.1. Topological Changes

Let us define as Nupdate the nodes for which shape match-
ing regions must be updated or computed from scratch (i.e.,
summation nodes must be identified). A topological change
is detected when an edge e(ni,n j) of the visibility graph is
cut. In this case, Nupdate must include the simulation nodes
ni and n j, plus all other simulation nodes whose regions in-
clude either ni or n j .

5.2. Dynamic LOD Updates

To refine an existing simulation node ni, its associated cell is
subdivided according to user-defined criteria, and nodes are
created for each new cell. All new leaf nodes become sim-
ulation nodes, while ni becomes virtual and its associated
region is removed. To coarsen (sibling) simulation nodes
{ni}, they are removed from the tree, while their parent is set
as new simulation node. Both when refining or coarsening,
Nupdate consists of the newly created simulation nodes and
those nodes n j whose region R j includes a removed node.
The visibility graph must be updated by deleting the edges
incident on removed nodes, and setting visibility edges for
the newly added nodes (See Section 6.1 for more details).

5.3. Updating Shape Matching Regions

Once Nupdate is determined, either after dynamic LOD up-
dates or topological changes, we can recompute summation
nodes. For all nodes ni ∈ Nupdate we do the following:

1. Recompute the distance to other simulation nodes. Note
that distances do not need to be computed for nodes fur-
ther than (1 + ε)wi. Distance recomputation amounts to
more than 80% of the computation time when recomput-
ing summation nodes.

2. For virtual nodes, compute distance intervals in a bottom-
up manner.

3. Traverse the octrees in a top-down manner, determin-
ing summation nodes by checking the distance intervals.
Under topological changes, distances in the undeformed
configuration cannot grow, hence it is sufficient to start
the top-down traversal at the old summation nodes of ni.

4. Once summation nodes are determined, recompute the
constant quantities c0

r and Mr .

6. Efficient Distance Computation

In this section we describe our algorithm for efficiently
computing distances between simulation nodes. We connect
nodes using a visibility graph and define distances as short-
est paths along the graph, similar to [SOG06]. We first de-
scribe the initialization of the graph, and then a novel bucket-
based version of Moore’s algorithm for shortest path compu-
tation [Moo59].

6.1. Graph Initialization

After sampling an object as described in Section 4.1, we cre-
ate a visibility graph in a way similar to [SOG06]. Given a
simulation node ni at an octree level where the distance be-
tween nodes is di, we set edges to all other simulation nodes
closer than or equal to di. Then, we remove duplicate edges,
as well as edges that cross the surface at concave regions, in
order to account for material discontinuities. In our imple-
mentation, we use the ℓ∞ distance metric, i.e., max-norm.
Please refer to Figure 1-d, where edges of the visibility graph
are visualized.

6.2. Bucket-Moore Algorithm

Once the visibility graph is initialized, it remains to com-
pute shortest distances along the graph, which are used for
defining summation nodes as described in Section 4.2. We
have found maximum efficiency by adapting Moore’s algo-
rithm [Moo59] for distance computations on a regular grid
where all edges have unit length, instead of using general-
purpose shortest path algorithms such as Dijkstra or Floyd-
Warshall [CLR90] or adapted versions [SOG06]. Moore’s
original algorithm resembles breadth-first search (BFS) and
computes shortest distances from a node n0 to all other nodes
in the graph. It maintains two buckets, B0 storing the cur-
rent front of BFS, and B1 storing the next front. It visits the
nodes in B0 and places their unvisited neighbors in B1. Once
B0 is emptied, B1 is shifted to B0 and the integer distance
is incremented. A node’s distance is set upon removal from
B0. Moore’s algorithm can compute all pairwise distances
shorter than Dmax in time O(mn), where n is the number
of nodes and m is the average number of nodes closer than
Dmax.

c© The Eurographics Association 2008.

91

D. Steinemann, M. A. Otaduy & M. Gross / Fast Adaptive Shape Matching Deformations

Figure 4: Deformation of a hand with varying mechani-

cal stiffness (The pinky is soft, while the thumb is hard).

Our framework efficiently handles shape-matching regions

of varying width.

With the use of the max-norm distance metric, we can
quantize edge lengths with integer values, assigning a length
of one to an edge between two adjacent nodes at the max-
imum octree resolution. We similarly approximate the re-
gion widths wi and (1 + ε)wi with integer values. In this
setting, we propose a bucket-based version of Moores’s al-
gorithm that computes shortest paths when all edge lengths
are integers in a small range [1,dmax]. It also runs in O(mn),
although the constants are somewhat larger. The algorithm
maintains dmax + 1 buckets, and operates by visiting the
nodes on bucket B0. When a node ni is removed from B0, a
node n j adjacent to ni at distance d may be added to bucket
Bd . Once bucket B0 is empty, buckets are shifted Bd←Bd+1.
Nodes that are visited store a temporary minimum distance,
which may be later reduced. Our proposed Bucket-Moore Al-

gorithm for finding shortest distances from a node n0 to all
other nodes closer than Dmax may be summarized as follows:

1. Initialization:
k = 0.
For all nodes, unmark and set dmin =∞.
Put n0 in B0.

2. While B0 is not empty
Remove the first node ni from B0.
If ni is marked, discard it.
Else: mark ni; for each neighbor n j of ni:

Compute d = k +d(ni,n j).
If (d ≥ n j.dmin or d ≥ Dmax), discard n j.
Else: n j.dmin← d; add n j to Bd(ni,n j).

3. k← k +1; shift buckets Bd ← Bd+1; Bdmax
= {}.

4. If k < Dmax and some bucket is non-empty, repeat 2.

7. Implementation and Results

All our experiments were carried out on a 3.4 GHz Pentium-
4 PC with 1 GB of memory. Next we describe several of the
effects that can be achieved with our approach, we discuss
implementation details for several features, and compare
performance and features with the FLSM algorithm [RJ07].

Surface animation: We animate the surface by interpo-
lating the deformation fields defined by nearby simulation

Figure 5: Block undergoing collisions and plastic deforma-

tions, efficiently incorporated to our hierarchical fast sum-

mation.

nodes, similar to [MKN∗04]. We have implemented the sur-
face animation on the CPU, but it would be possible to do
it directly on the GPU as described by [RJ07]. In order to
efficiently detect nearby nodes after topological changes, we
augment the visibility graph as described in [SOG06].

Comparison with FLSM - Performance, adaptivity,

and inhomogeneity: Figure 1 shows an example where we
compare FLSM and our octree shape matching. Using a reg-
ular lattice, 35000 nodes are needed for correctly capturing
the fingers. FLSM runs then at an average 2.5 fps, while our
approach (with regular sampling, no octree) runs at 4.6 fps.
Fast summation / shape matching, polar decompositions, and
damping each consume roughly one third of overall compu-
tation time in our approach, and the other simulation exam-
ples have a similar distribution. In both FLSM and our ap-
proach, we have measured timings without low-level code
optimizations, while the timings reported in [RJ07] include
such optimizations (as reported by the authors in personal
communication), and with these FLSM would run at about
10 fps.

But the power of our approach lies in its ability to accomo-
date adaptive sampling. Figure 1 also shows the same model
with adaptive sampling. The resolution on the surface is as
high as before when needed, but the resolution in the interior
is much coarser. The model consists of 661 nodes, and runs
at 222 fps with our method, almost two orders of magnitude
faster than required by FLSM for resolving surface features.
Note that in this example adaptive sampling is done once as a
preprocess, and our algorithms for dynamic resampling and
efficient distance computation are not required. One could
use any other method for computing distances and determin-
ing summation nodes.

Figure 4 shows a hand model with different stiffness at
each finger (Please watch the accompanying video). Such
material inhomogeneity is achieved by varying the width
w of shape matching regions. Our octree shape matching
framework naturally allows this feature, which would how-
ever break the regularity required by FLSM.

Plasticity: Figure 5 shows plastic behavior of a deforming
block under collisions. We achieve this behavior by adapting
the plasticity model of [MHTG05] to our setting. In their
model, each cluster stored a plasticity transformation matrix

c© The Eurographics Association 2008.

92

D. Steinemann, M. A. Otaduy & M. Gross / Fast Adaptive Shape Matching Deformations

Figure 6: Complex scene with 40 deforming flowers. We employ a coarse sampling when the flowers are moved by the wind,

for a total of 5680 nodes in the scene. But we dynamically refine the models when touched by the user, as shown in the left

image. Our (dynamic) adaptive sampling framework allows interactivity (20 fps) at the feature level in this complex scene.

Sr , which can be adopted in our model by modifying the
computation of the per-region transformations Ar and Aqq

(See Sections 3.1 and 4.3 for more details):

Ar =
(

HFi∈Rr

{

mixix
0
i

T
}

−Mrcrc
0T

r

)

S
T
r , (9)

Aqq =
[

Sr

(

HFi∈Rr
{mix

0
i x

0
i

T
}
)

S
T
r −Sr

(

Mrc
0
r c

0
r

T
)

S
T
r

]−1
.(10)

Note that Aqq must be recomputed when Sr or the region
itself changes. Finally, Sr is included in the region transform
such that Tr = [RrSr (cr−RrSrc0

r)].

Topology changes: Figure 3 shows a liver model being
cut interactively. The model starts with 500 nodes and ends
with 1550. During cutting, we update the visibility graph, re-
sample simulation nodes, and recompute summation nodes,
as described in Section 5. Cutting also involves synthesizing
new surfaces, and we follow the approach of [SOG06] for
this purpose. The simulation, including collision handling,
takes between 3.7 and 15.5 ms per frame. Resampling takes
between 62 and 124ms.

(Self-)collision handling: The same Figure 3 also depicts
interactive handling of self-collisions between cut surfaces.
We reuse the shortest-path information (see Section 6) for
processing collisions and self-collisions very efficiently. We
approximate a distance field inside an object through a sim-
ple flooding algorithm that is seeded at the simulation nodes
near the object’s surface. We transform octree leaf cells with
the transformations of corresponding simulation nodes, and
we then test them for intersection with other nodes using
the spatial hashing algorithm of [THM∗03]. The penetration
depth is given by the approximate distance field and is used
for computing repulsive forces.

Dynamic LOD selection: Figure 6 shows a complex
scene with 40 deformable flowers moving in the wind. When
viewed from far away, each flower is discretized with 142
simulation nodes, and the total simulation runs at 20 fps.

When the user interacts with a flower, we dynamically re-
fine the sampling to capture the complexity of surface fea-
tures and allow them to move independently. With the FLSM
approach, the resolution required to resolve the thin petals
would produce an explosion of the number of nodes. With
our octree shape matching algorithm and dynamic LOD se-
lection, however, the total number of nodes increases only
by 6%, allowing full interactivity. Dynamic LOD updates
are efficiently executed, and 3 simultaneous levels of refine-
ment near the petals (352 new nodes) took only 121 ms.
These timings do not include surface animation and render-
ing, which took 4 ms per flower.

8. Limitations and Future Work

We have presented a novel shape matching deformation al-
gorithm that allows (dynamic) adaptive sampling. It enjoys
the robustness and efficiency of other shape matching de-
formation models, but it also enables features like interac-
tive topological changes or dynamic LOD selection. It is ap-
plicable in settings that favor plausibility, robustness, and ef-
ficiency, such as video games or surgical simulation.

Our method also presents some limitations. One of them,
common to other geometric deformation methods, is the
lack of physical fidelity and the difficulty to tune mechani-
cal behavior based on measurable parameters. However, our
method efficiently supports local control of mechanical stiff-
ness, unlike previous shape matching methods.

Topological changes are much more efficient with our
method than with previous shape matching approaches, but
there is a practical bound on the number of regions that can
be updated in an interactive manner. The same is true for dy-
namic LOD selection, and very drastic LOD changes could
stall the method. These are, however, known limitations for
all techniques that support dynamic adaptivity.

Our shape matching deformation model relies on the exis-
tence of a volumetric sampling, and cannot be directly used

c© The Eurographics Association 2008.

93

D. Steinemann, M. A. Otaduy & M. Gross / Fast Adaptive Shape Matching Deformations

for simulating shells or rods. It would be interesting to define
shape matching deformation models for such objects.

Acknowledgements

We would like to thank the anonymous reviewers, members
of the Computer Graphics Lab in Zurich and Alec Rivers and
Doug James for their helpful comments. This research was
supported in part by the NCCR Co-Me of the Swiss National
Science Foundation.

References

[BJ05] BARBIČ J., JAMES D. L.: Real-time subspace
integration for St. Venant-Kirchhoff deformable models.
Proc. of ACM SIGGRAPH (2005).

[BLG94] BELYTSCHKO T., LU Y. Y., GU L.: Element-
free Galerkin methods. International Journal of Numeri-

cal Methods in Engineering 37 (1994).

[BNC96] BRO-NIELSEN M., COTIN S.: Real-time vol-
umetric deformable models for surgery simulation using
finite elements and condensation. Computer Graphics Fo-

rum 15, 3 (1996).

[BPGK06] BOTSCH M., PAULY M., GROSS M.,
KOBBELT L.: PriMo: Coupled prisms for intuitive
surface modeling. Proc. of Eurographics Symposium on

Geometry Processing (2006).

[BPWG07] BOTSCH M., PAULY M., WICKE M., GROSS

M.: Adaptive space deformations based on rigid cells.
Proc. of Eurographics (2007).

[CGC∗02a] CAPELL S., GREEN S., CURLESS B.,
DUCHAMP T., POPOVIC Z.: Interactive skeleton-driven
dynamic deformations. Proc. of ACM SIGGRAPH

(2002).

[CGC∗02b] CAPELL S., GREEN S., CURLESS B.,
DUCHAMP T., POPOVIC Z.: A multiresolution frame-
work for dynamic deformations. Proc. of ACM SIG-

GRAPH SCA (2002).

[CLR90] CORMEN T., LEISERSON C., RIVEST R.: Intro-

duction to Algorithms, 2nd Ed. MIT Press, 1990.

[DDCB01] DEBUNNE G., DESBRUN M., CANI M. P.,
BARR A. H.: Dynamic real-time deformations using
space and time adaptive sampling. Proc. of ACM SIG-

GRAPH (2001).

[GGN06] GAO J., GUIBAS L. J., NGUYEN A.: De-
formable spanners and its applications. Computational

Geometry: Theory and Applications 35, 1 (2006).

[GKS02] GRINSPUN E., KRYSL P., SCHRÖDER P.:
CHARMS: A simple framework for adaptive simulation.
Proc. of ACM SIGGRAPH (2002).

[GM97] GIBSON S. F., MIRTICH B. V.: A Survey of De-

formable Modeling in Computer Graphics. Tech. rep.,
Mitsubishi Electric Research Laboratory, 1997.

[JP99] JAMES D. L., PAI D. K.: ArtDefo: Accurate
real-time deformable objects. Proc. of ACM SIGGRAPH

(1999).

[JP02] JAMES D. L., PAI D. K.: DyRT: Dynamic re-
sponse textures for real-time deformation simulation with
graphics hardware. Proc. of ACM SIGGRAPH (2002).

[MDM∗02] MÜLLER M., DORSEY J., MCMILLAN L.,
JAGNOW R., CUTLER B.: Stable real-time deformations.
Proc. of ACM SIGGRAPH Symposium on Computer Ani-

mation (2002).

[MHHR06] MÜLLER M., HEIDELBERGER B., HENNIX

M., RATCLIFF J.: Position based dynamics. Proc. of

VRIPhys (2006).

[MHTG05] MÜLLER M., HEIDELBERGER B.,
TESCHNER M., GROSS M.: Meshless deformations
based on shape matching. Proc. of ACM SIGGRAPH

(2005).

[MKN∗04] MÜLLER M., KEISER R., NEALEN A.,
PAULY M., GROSS M., ALEXA M.: Point-based anima-
tion of elastic, plastic, and melting objects. Proc. of ACM

SIGGRAPH / Eurographics Symposium on Computer An-

imation (2004).

[Moo59] MOORE E. F.: The shortest path through a
maze. Annals of the Harvard Computation Laboratory

30 (1959), 285–292.

[NMK∗05] NEALEN A., MÜLLER M., KEISER R., BOX-
ERMANN E., CARLSON M.: Physically based de-
formable models in computer graphics. Eurographics

STAR (2005).

[OGRG06] OTADUY M. A., GERMANN D., REDON S.,
GROSS M.: Adaptive deformations with fast tight bounds.
In Proc. of SCA (2006).

[PKA∗05] PAULY M., KEISER R., ADAMS B., DUTRE

P., GROSS M., GUIBAS L. J.: Meshless animation of
fracturing solids. Proc. of ACM SIGGRAPH (2005).

[PW89] PENTLAND A., WILLIAMS J.: Good vibrations:
Modal dynamics for graphics and animation. Proc. of

ACM SIGGRAPH (1989).

[RJ07] RIVERS A. R., JAMES D. L.: FastLSM: Fast
lattice shape matching for robust real-time deformation.
Proc. of ACM SIGGRAPH (2007).

[SOG06] STEINEMANN D., OTADUY M. A., GROSS M.:
Fast arbitrary splitting of deforming objects. Proc. of

ACM SIGGRAPH/Eurographics Symposium on Computer

Animation (2006).

[THM∗03] TESCHNER M., HEIDELBERGER B.,
MÜLLER M., POMERANETS D., GROSS M.: Optimized
spatial hashing for collision detection of deformable
objects. Proc. of VMV (2003).

[THMG04] TESCHNER M., HEIDELBERGER B.,
MÜLLER M., GROSS M.: A versatile and robust model
for geometrically complex deformable solids. Proc. of

Computer Graphics International (2004).

[TPBF87] TERZOPOULOS D., PLATT J., BARR A.,
FLEISCHER K.: Elastically deformable models. Proc.

of ACM SIGGRAPH (1987).

c© The Eurographics Association 2008.

94

