Gloss Editing in Light Fields Supplemental Materials

Yulia Gryaditskaya¹, Belen Masia², Piotr Didyk^{1,3}, Karol Myszkowski¹ and Hans-Peter Seidel¹

¹Max-Planck Institute for Informatics, Saarbrücken, Germany ²Universidad de Zaragoza, Zaragoza, Spain ³Saarland University, MMCI, Saarbrücken, Germany

Name	Content
LFIn.avi	the input light field
diffuse.avi	the estimate of a diffuse layer
specularIn.avi	the estimate of a specular layer
normals.avi	estimated normals
depth.avi	estimated depth values
specularFiltered_sigmaAngular0.0***_sigmaSpatial0.0***.avi	the filtered specular layer with specified parameter values
merged_sigmaAngular0.0***_sigmaSpatial0.0***.avi	contains the compositing results
compareToGT	contains the videos to the images in the Figure 9 in the paper

Table 1: Parameters

1. Band-Sifting Decomposition for Image Based Material Editing

We present here the results obtained with the technique [BBPA15] on one of our test light fields. We present only the results of modifying the positive coefficients, which according to [BBPA15] correlate with bright features such as highlights. Also following [BBPA15] we do not show the results of modifying all amplitudes/frequencies versus high, as they turn to produce similar results. As can be seen in the Fig. 1 variety of the effects can be obtained, though non of them corresponds to roughness editing. This can be as well observed on the results of the user study conducted by [BBPA15] in their supplemental materials.

In the subfolder 'BandSift' we provide the videos corresponding to Fig. 1c and Fig. 1l.

2. Videos for the result figures in the paper

Each subfolder contains the videos corresponding to the figure in the paper. The list of files with their interpretation is given in Table 1. The dragon folder additionally contains the subfolder "compare-ToGT", with the videos corresponding to the Figure 9 in the main paper.

References

[BBPA15] BOYADZHIEV I., BALA K., PARIS S., ADELSON E.: Bandsifting decomposition for image-based material editing. ACM Trans. Graph. 34, 5 (2015), 163. 1

© 2016 The Author(s)

Eurographics Proceedings © 2016 The Eurographics Association.

Figure 1: Band-sifting on the dragon scene.

(k) Boost 30: Freq.: low, Amp.: high, (l) Boost 30: Freq.: low, Amp.: low,

Sign: pos

Sign: pos