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Appendix A: Inner Points Labeling for Point Cloud with
Normals.

Figure 1: Inner points labeling for an oriented point cloud in
2D. b is labelled as an inner candidate since the dot products of

= — —
bo' -7 (0'), bq' -7 (q') and br' -7 (') are all positive, while a is
labeled as an outside point because ap’ - 1 (p'),aq - 7 (¢') and

%

ar’ - 7(;’/) are negative. The Voronoi diagram and its dual graph
Delaunay triangulation are denoted by blue lines and dashed lines
respectively. Surface samples are in blue.

Our point selection strategy does not rely on mesh connection; it is
able to handle more generalized inputs such as polygon soups, point
clouds as long as candidate inner points can be identified inside
the volume. Given a point cloud input, in this paper, we generate
and label candidate inner points by utilizing normal vectors of the
point cloud. Recall that we first compute its Delaunay triangulation
which is the dual of the Voronoi diagram w.r.t. the input point cloud.
Consider a Voronoi vertex p and the vertices of its dual tetrahedron
p6, p’1 , p'2 and p’3. The candidate p is considered as an inner point

only if we have pp!- 7 (p}) > 0, Vi =0,1,2,3. Here 7 (p!) is the
input normal of p! and - is dot product. A detailed 2D example is
given in Figure 1.
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Figure 2: Inner points labeling with filtering by clustering. (a) and
(b) indicate the results after applying filtering by clustering (red
points) and before applying filtering by clustering (purple points).
The input point cloud is in blue. We provide both normal view (first
row) and side view (second row).

Figure 3: Inner point candidates generated from point clouds with
normals.

After the initial labeling, we further apply filtering by clustering
to those labeled inner points. For each inner point, we count the
number of its neighbors within 0.02 among the top 100 nearest
neighbors by K-neighbor searching [TF21]. If the result is less than
20, the point is considered an outlier and is discarded. A result of
the UFO model as an example is shown in Figure 2. Some labeling
results are given in Figure 3.

Besides, we also conduct an experiment
taking inside poles [ACKO1] (the inside
Voronoi vertex with the furthest distance to
the seed of the cell) instead of all Voronoi
vertices enclosed by the surface as candi-
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dates. We find there is no significant differ-
ence in point selection results.

Appendix B: Details of Connection Establishment.
Mesh Input

Recall that for a mesh input, we take the whole subset of Voronoi
structure inside the model generated by 4000 surface samples
(|C| = 4000) as the original inner point candidates P. After select-
ing inner points based on set coverage, we build up the connection
structure. For the Voronoi initialization style, all selected points are
embedded on the Voronoi diagram. We further remove all redun-
dant points and edges to achieve the simplification by edge collapse
using quadric error metric (QEM) [FTB13] same as [LWS™15].

After that, we adopt LOP [DLRS10] algorithm to adjust the
mesh tessellations as long as the increase of the local approxima-
tion error caused by the flipping operation is less than 5%. The
local approximation error is measured by the Hausdorff distance
from the covered surface to candidate local reconstructed surfaces
(the envelope of two candidate triangulation.), a.k.a., one-sided
Hausdorff distance. Note that we first unstitch each face patch
based on non-manifold edges before performing LOP.

Point Cloud Input

In order to suppress over-connection, we up-sample on the point
cloud with normals following [HWG™13], leading to 30000 surface
samples. These points are treated as surface points in RT during
connection establishment. The effect of point cloud up-sampling is
demonstrated in Figure 4.

Figure 4: Over-connection suppression by up-sampling. The over-
connected structures (red edges) are suppressed after up-sampling.
We visualize the original surface for illustration purposes.

Appendix C: Parameter Analysis on Surface points and
Candidate Inner Points.

We conduct comprehensive experiments on the number of surface
points |S| and candidate inner points |P| (note it is determined by
|C|, which is the number of samples to compute the Voronoi di-
agram) for the algorithm performance. Detailed results including
approximation error are summarized in Table 1 and Table 2, re-
spectively. In Table 1, we fix |C| = 4000 and in Table 2, we always
set |S| = 1500. Same as the main paper, we use |V| to denote the
number of skeletal points, € to denote the HD from surface to re-
construction, ? to denote the HD from reconstruction to surface,

Table 1: Effect of different surface point numbers |S| on selected
points and time efficiency.

IS| | V| | Times)| € 3 €
500 | 47 | 025 | 2.062% | 1.981% | 2.062%
1500 | 49 | 029 | 1.843% | 1.884% | 1.884%
2500 | 49 | 034 | 1.761% | 1.799% | 1.799%
3500 | 49 | 073 | 2.031% | 1.937% | 2.031%
4500 | 49 | 098 | 1.750% | 1.762% | 1.762%
5500 | 49 | 1.33 | 1.883% | 1.862% | 1.883%
6500 | 49 | 244 | 1.701% | 1.747% | 1.747%
7500 | 49 | 3.24 | 1.810% | 1.894% | 1.894%
8500 | 49 | 422 | 1.624% | 1.670% | 1.670%

Table 2: Effect of different numbers of inner point candidates |P|
on selected points and time efficiency. C denotes surface samples
used for generating candidate inner points.

c| 1Pl | V] | Time(s)| & ‘e e
1000 | 2964 | 48 | 0.08 | 1.982% | 2.196% | 2.196%
2000 | 6894 | 49 | 0.8 | 1.843% | 1.811% | 1.843%
3000 | 10776 | 49 | 028 | 1.905% | 1.952% | 1.952%
4000 | 13432 | 49 | 031 | 1.855% | 1.894% | 1.894%
5000 | 16749 | 49 | 049 | 1.674% | 1.744% | 1.744%
6000 | 22301 | 49 | 082 | 1.675% | 1.735% | 1.735%
7000 | 26161 | 49 | 123 | 1.765% | 1.807% | 1.807%
8000 | 29859 | 49 | 143 | 1.754% | 1.916% | 1.916%
9000 | 33651 | 49 | 1.65 | 1.936% | 1.948% | 1.948%

and ‘€’ to represent two-sided HD. We find both |S| and |P| do not
show a large influence on the selected point number as well as the
approximation error. However, as we mentioned in the main paper,
the two factors, especially the number of surface samples |S|, have
more effect on the time efficiency.

Appendix D: Comparison with Q-MAT for Highly Decimated
MAT Computation.

Table 3: Evaluations on approximation accuracy for highly dec-
imated medial surfaces between Q-MAT and Coverage Axis. We
adopt the FEMUR model for evaluation.

Q-MAT Coverage Axis
Offset &, |V‘ —8> (E ? ? (E ?
0.01 47 11.015% 1.114% 1.114% | 0.947% 1.104% 1.104%
0.02 24 | 1.545% 1.281% 1.545% | 1.535% 1.593% 1.593%
0.05 13 [ 1.779% 1.783% 1.783% | 2.576% 2.534% 2.576%
0.1 7 2.679% 2.480% 2.679% | 6.086% 4.218% 6.086%
0.2 3 7.565% 4.099% 7.565% (12.434% 4.271% 12.434%
0.5 2 |29.855% 5.743% 29.855%|32.993% 2.919% 32.993%

The quantitative comparison of surface reconstruction by highly
decimated medial surfaces between Q-MAT and Coverage Axis is
shown in Table 3.
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