EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2006)
Thomas Stahovich and Mario Costa Sousa (Editors)

Construction and Modification of 3D Geometry Using a
Sketch-based Interface

Levent Burak Kara'! and Kenji Shimadat!

'"Mechanical Engineering Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

Abstract

We present an interactive pen-based computer program for designing 3D objects through direct sketching. The
proposed techniques are tailored toward the creation of free-form curves and surfaces, and are therefore partic-
ulary useful for styling design purposes. In our approach, the design process consists of two main steps. In the
first step, the user designs a wireframe model by sketching its constituent curves in 3D. Using purely sketch-based
operations, the initial curves can then be modified as desired. In the second step, the user constructs interpolating
surfaces on the wireframe to obtain a solid model. Again, through sketch-based operations, the user can modify
the initial surfaces, and specify the boundary conditions if necessary. In addition to the main modeling operations,
a gesture-based command interface allows many of the frequently used commands to be input through pen strokes.
The utility of our system is demonstrated with various examples.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [User Interfaces]: Graphical User Interfaces
(GUI) Pen-based interaction; 1.3.5 [Computational Geometry and Object Modeling]: Curve, surface, solid, and

object representations, Physically based modeling.

1. Introduction

We describe a sketch-based design tool for the construction
and modification of 3D geometry. Users of our system can
design a variety of objects consisting of relatively complex
edge and surface geometries. A key advantage of our sys-
tem is that resulting geometry is directly dictated by input
strokes thus making our system suitable for product styling
design. This is in contrast to systems that use input strokes as
gestures to modify primitives in certain directions, or those
that use indirect manipulation methods based on handles or
control lattices.

Our system supports a variety of pen-based operations
both for modeling and command inputting. In a typical sce-
nario, the user begins by constructing the wireframe of the
design object. For this, the user simply sketches the con-
stituent curves. Input strokes are first beautified into smooth
curves in the image plane, and are then projected into 3D

T e-mail: lkara@andrew.cmu.edu
¥ e-mail: shimada@cmu.edu

(© The Eurographics Association 2006.

to form the wireframe. Initially created curves can be later
modified by simply sketching their new shapes. For curve
modification, our program uses a physically-based deforma-
tion technique that modifies the original curve until it best
conforms to the new shape dictated by input strokes. If de-
sired, connectivity constraints between different curves can
be set by simple pen operations. After the desired wire-
frame is obtained, the user constructs interpolating surfaces
that cover the wireframe. Guided by sketch input, initial
surfaces can then be smoothly modified to give them new
shapes. Boundary conditions across different surfaces can
also be specified through direct sketching of tangent planes.
At any point during the design cycle, a trainable, gesture-
based command interface allows frequently used commands
to be specified with simple pen gestures.

2. Related Work

While most 3D modeling software traditionally evolved
around a windows-mouse-menu-based interaction paradigm,
recent advances in stylus-enabled tablet technology has
made sketch-based interaction an appealing alternative. To

delivered by

www.eg.org

-G EUROGRAPHICS
: DIGITAL LIBRARY

diglib.eg.org



http://www.eg.org
http://diglib.eg.org

60 Levent Burak Kara & Kenji Shimada / Sketch-based Design of 3D Geometry

User's raw sketch

Curves beautified into B-splines
(a) (b}

Modifier strokes
O]

Resulting curve. Other cun:ii have also been lightly modified
(d)

Figure 1: lllustration of curve creation and modification in 2D. Curves are initially created by beautifying input strokes into
B-splines. Once created, a curve can be modified by simply sketching its new shape near the original curve.

date, researchers have developed a variety of sketch-based
3D modeling systems in various domains [ZHH96, IMT99,
KHRO02, TBSR04, BCCD04,DDGGO05, MKLO5]. In gesture-
based approaches such as [ZHH96, EBE9S, HQO3, DEO3],
designers’ strokes are used primarily for geometric opera-
tions such as extrusion, bending, and primitive modification.
Silhouette-based approaches [IMT99, KHR02, BCCD04,
SWSJ05, CSSJ05] enable free-form surface generation. In
these methods, users’ strokes are used to form a 2D silhou-
ette representing an outline or a cross-section, which is then
extruded, inflated or swept to give 3D form. Systems such
as [KG05,CCP*04,NSACOO05] allow users to directly oper-
ate on existing surfaces to deform or add features lines using
a digital pen. The key difference of these systems compared
to gesture-based interfaces is that users’ strokes are directly
replicated in the resulting shape. However, these systems are
most useful during later design stages where the main ge-
ometry is already available. Optimization-based algorithms
such as [MKLO05] produce the most plausible 3D shape from
a 2D sketch of its wireframe. Line-labeling techniques have
also been explored for 3D shape construction from 2D in-
put. While many previous systems were limited to straight-
edge models with planar surfaces, recent systems such as
[PYJHO4] have begun to extend these techniques to curved
edges. Template based methods such as [MSKO00, KDS06]
allow the desired 3D form to be obtained by deforming an
underlying 3D template.

3. Wireframe Creation and Modification

In the first step of the design process, the user creates a
wireframe model by sketching the constituent curves in 3D.
Users are allowed to sketch each curve using an arbitrary
number of strokes, drawn in arbitrary directions and order.
During curve construction, input strokes are first beautified
into B-splines in the image plane using a curve fitting al-
gorithm. The curves obtained in the image plane are then
projected back into 3D to yield the final wireframe model.
Once the initial curves are laid out, the user may modify each
curve using a physically-based deformation algorithm. If de-
sired, the user can specify connectivity constraints between

individual curves. To facilitate discussion, we first describe
our techniques in a 2D environment. We then describe how
we extend the fundamental principles to 3D.

3.1. An Illustrative Example in 2D

Our curve creation and modification techniques are both
purely sketch-based. Figure 1 illustrates the main steps in-
volved in a typical design scenario. To begin, the user first
sketches a rough outline of the design object. When creating
a curve, users are free to use an arbitrary number of strokes,
drawn in arbitrary directions and order. However, the user is
asked to indicate the separation between the stroke groups
that make up different curves. In Figure 1a, for instance, the
user may draw the front hood using as many strokes as de-
sired, but must inform the program (currently by tapping a
button) when moving onto, say the wheel well.

Our program beautifies each stroke group into a cubic
B-spline using a minimum least-squares curve fitting algo-
rithm described in [PT97]. As shown in Figure 1b, resulting
curves closely approximate the input strokes. After creating
the initial curves, the user can set the system in ‘modifica-
tion’ mode and modify each curve by simply sketching the
curve’s new shape. Figure 1c shows an example where the
user has sketched several strokes above the hood. We call
these strokes as modifiers as their purpose is to modify ex-
isting curves rather than to create new ones. After drawing
the modifiers, the user invokes the ‘process’ command by
gesturing a checkmark . With this, our program first deter-
mines the curve that the user is intending to modify. This is
done by identifying the curve that is closest to the modifiers,
e.g., the hood in Figure 1. Next, our program uses an energy
minimization algorithm based on active contours [KWT8§]
to deform the original curve until it best conforms to the
modifiers. In this formulation, the original curve is treated
as a physical spline that works to minimize both an inter-
nal energy term arising from stretching and bending, and an

T A detailed description of our gesture interface is given in Section
5.

(© The Eurographics Association 2006.



Levent Burak Kara & Kenji Shimada / Sketch-based Design of 3D Geometry 61

Figure 2: Joining curves. (a-b) A counter clockwise ‘0’ ges-
ture joins curves whose ends lie inside the gesture. (c-d)
Once connected, subsequent modifications to one curve in-
duce complying modifications in others in the group to pre-
serve connectedness.

external energy term arising from the modifiers’ presence.
The internal energy forces the curve to evolve as a smooth
curve. The external energy can be thought of a driving po-
tential which decreases as the original curve approaches the
modifiers. The balance between smoothness versus compli-
ance of the final curve can be conveniently controlled by ad-
justing the corresponding weights in the energy functional.
Figure 1d shows the hood modified in this way.

When desired, two or more curves can be joined at their
ends with a counter clockwise ‘0’ gesture as shown in Fig-
ure 2. This operation applies a set of rotations and scalings
to the curves until their ends meet at the same point. It also
establishes the connectivity between the curves in that sub-
sequent modifications to one curve induces modifications on
the other curves to keep the group connected. When neces-
sary the curves can be detached by a clockwise ‘0’ gesture.

3.2. Wireframe Creation in 3D

We use the same principles described above for 3D model-
ing. Users begin the design by sketching the curves of the
wireframe. The main difference, however, is that we facili-
tate 3D modeling through the use of an underlying template
model. This template acts as a platform that helps anchor
users’ initial strokes in 3D space, and is typically a very sim-
plified model of the design object in question. For instance
a thin rectangular prism serves as a suitable template for the
design of a laptop computer as shown in Figure 3a.

With the presence of the template, the curves originally
constructed in the image plane using B-spline fitting are
uniquely projected into 3D using a standard ray intersection

(© The Eurographics Association 2006.

Figure 3: Curve creation and modification in 3D. (a) An
initial 3D template helps anchor input strokes in 3D. (b) A
curve can modified by simply sketching its new shape. The
optimal 3D configuration is determined by minimizing the
deviation from the original curve in 3D, while closely ap-
proximating input strokes in 2D. (c) Final wireframe model.

algorithm. At the end, a set of 3D curves is obtained whose
projections to the image plane match the input strokes. Since
the curves obtained this way lie directly on the template, the
initial wireframe constructed at the end of this step will usu-
ally possess a roughly correct geometry and relative propor-
tions. This greatly lessens the work involved in the subse-
quent step of wireframe modification. Additionally the use
of a template helps circumvent the well-known challenge of
one-to-many mapping in 3D interpretation from 2D input.

3.3. Modification in 3D

Once the initial curves comprising the wireframe are con-
structed, the base 3D template is removed, leaving the user
with a set of 3D curves. Next, through direct sketching, the
user modifies the initially created curves to give them the
precise desired shape. To modify a curve, the user simply
sketches the modifier strokes that specify the new shape of
the curve as it would occur from the current viewpoint. With
this, our system modifies the curve in three steps. In the first
step, the target curve is identified by projecting the existing
3D curves to the image plane, and determining the curve that
lies spatially nearest to the modifiers. In the second step, our
system uses the active-contour-based energy minimization
algorithm described earlier to deform the projected curve in
the image plane until it conforms to the modifiers. Finally,
the newly obtained 2D curve is projected back into 3D re-
sulting in the new 3D curve. Figure 3b shows an example.
A key challenge here is that there are infinitely many such



62 Levent Burak Kara & Kenji Shimada / Sketch-based Design of 3D Geometry

back-projections into 3D. We must therefore determine the
best 3D configuration by constraining the problem. In our
approach we use the following constraints:

e The 3D curve should appear right under the modifiers.

e If the modifier strokes appear precisely over the original
target curve, i.e., the strokes do not alter the curve’s 2D
projection, the target curve should preserve its original 3D
shape.

e If the curve is to change shape, it must maintain a reason-
able 3D form. By “reasonable,” we mean a solution that
the designer would accept in many cases, while anticipat-
ing it in the worst case.

Based on these premises, we choose the optimal 3D con-
figuration as the one that minimizes the spatial deviation
from the original 3D curve. That is, among the 3D curves
whose projections match the newly designed 2D curve, we
choose the one that lies nearest to the original target curve.
For this, a surface that originates from the current eye posi-
tion, passes through the modifiers, and extends into the page,
is first computed. Theoretically, all candidate solutions lie on
this surface. The optimal 3D curve is then found by comput-
ing the minimum distance projection of the original curve
onto this surface. Further details of our algorithm can be
found in [KDSO06].

By remaining proximate to the original curve, the new
curve can be thought to be “least surprising” when viewed
from a different viewpoint. One advantage of this is that
curves can be modified incrementally, with predictable out-
comes in each step. That is, as the curve desirably conforms
to the input strokes in the current view, it still preserves most
of its shape established in earlier steps as it deviates mini-
mally from its previous configuration. This allows geometri-
cally complex curves to be obtained by only a few successive
modifications from different viewpoints.

4. Surface Creation and Modification

Once a wireframe model is obtained, the user constructs in-
terpolating surfaces to obtain a solid model. Initially created
surfaces can later be modified to the desired shape. The fol-
lowing paragraphs detail these processes.

4.1. Initial Surface Creation

Given the wireframe model, the goal in surfacing is to con-
struct a surface geometry for each of the closed face loops
of the wireframe. Figure 4 illustrates the process. For each
surface to be created, the user first identifies the associated
face loop by highlighting the constituent wireframe curves
involved in that face loop (Figure 4a). With this, our system
creates an interpolating surface in three steps. First, a ver-
tex is created at the centroid of the boundary vertices. A set
of initial triangles are then created that use the new vertex as
the common apex, and have their bases at the boundary (Fig-
ure 4b). Finally, a series of edge swapping, face subdivision

O]

3

0@

Figure 4: Surface creation on a face loop. (a) Highlighted
boundary curves, (b) Centroid vertex and associated initial
triangulation, (c) An intermediate state during edge swap-
ping, (d) Resulting surface after edge swapping, face subdi-
vision and Laplacian smoothing.

and Laplacian smoothing is applied until a sufficient number
of uniformly distributed triangles are obtained (Figure 4d).
The result is a smooth polygonal surface consisting of purely
triangular elements. For a given face loop geometry, the re-
sulting surface has the unique property of having the mini-
mum surface area due to the nature of Laplacian smoothing.

4.2. Specifying Surface Deformations

Initially created surfaces can be modified to give them the
desired shape. To deform a surface, the user first sketches a
reference curve on it as shown in Figure 5a. This curve de-
fines a region of interest in which the surface vertices closest
to the reference curve are selected for subsequent deforma-
tion. Next, the user sketches a new curve that specifies the
desired shape of the reference curve in 3D (Figure 5b). The
3D configuration of this new curve is computed by mod-
ifying the reference curve using the methods described in
Section 3.3. Given the initially selected surface vertices and
the new curve, our system invokes an optimization algorithm
that deforms the surface until the selected surface vertices lie
close to the target shape (Figure 5c). During deformation,
the objective function we minimize is the Hausdorff dis-
tance [Ruc96] between the surface vertices, and the points
comprising the target curve. The Hausdorff distance pro-
vides a convenient metric that reveals the spatial proximity
between two point sets in the form of an upper bound: If the
Hausdorff distance is d, all points in the first point set are
at most distance d away from the other point set (and vice
versa).

At the heart of our deformation mechanism is an intuitive
method that simulates the effect of a pressure force on a
thin membrane (see [KDSO06] for details). This tool allows
surfaces to be inflated or flattened in a predictable way. A
key advantage of this technique is that surfaces can be de-
formed wholistically in a smooth way without generating

(© The Eurographics Association 2006.



Levent Burak Kara & Kenji Shimada / Sketch-based Design of 3D Geometry 63

gl 2

by

—~

Figure 5: Surface deformation. (a) A sketched reference
curve and selected surface vertices, (b) The user sketches
the new desired shape, (c) The surface is inflated using a
pressure force until the surface closely approximates the new
shape.

unintended creases. The extent of the deformation depends
on the magnitude of the pressure, whose optimal value is de-
termined by our optimization algorithm. In other words, our
algorithm seeks for the optimal pressure value which pro-
duces a deformation that minimizes the Hausdorff distance
mentioned above. Figure 5¢ shows the result of a surface de-
formed using this technique.

4.3. Specifying Boundary Conditions

If desired, the user can also specify the boundary conditions
along surface edges. Normally, it is assumed that the user
wishes the surface boundaries to interpolate the wireframe
edges, and hence position constraints are already implicit
in the wireframe model. Since created surfaces automati-
cally interpolate the boundary curves, position constraints
are readily satisfied. The user, however, can specify tangent
directions along various parts of the boundary by sketch-
ing the silhouettes of the tangent planes at desired points.
Figure 6 shows an example. For this, the user first marks a
boundary vertex, across which the tangent will be specified
(Figure 6a). Next, after transforming to a suitable viewpoint,
the user sketches the tangent plane as it would be seen from
the side(Figure 6b). This defines a plane in 3D that passes
through the input strokes, and extends into the page along the
current viewpoint. The normal vector of this virtual plane is
then set as the normal of the vertex under consideration (Fig-
ure 6¢). Note that the normal of a vertex provides precisely
the same information as the tangent plane through the vertex.

We only require the user to specify the normal directions
(in the form of tangent planes) at a handful of discrete ver-
tices. The normal directions at intermediate vertices along

(© The Eurographics Association 2006.

the boundary are identified using a weighted linear averag-
ing function. For instance, the normal vector at an interme-
diate vertex ¢ is computed as the weighted average of two
surrounding vertices p and r as:

ng = (w)np + (1 —w)n,

where w is distance (along the boundary) between vertices ¢
and r divided by the distance (along the boundary) between
vertices p and r . With this formulation, normals at inter-
mediate vertices will change smoothly between the normals
of p and ¢. Figure 6d shows an example. If necessary, more
control on the normal directions can be achieved by increas-
ing the number of vertices for which the normals are explic-
itly specified. Once specified, these constraints are taken into
account by both the surface creation and deformation tools
described above, resulting in surfaces that conform to the
constraints. Note that specification of the boundary normals
naturally results in our surfaces to be G' continuous across
the boundary edges.

5. Command Gestures

Besides the main modeling operations described so far, our
system also provides a gesture-based command interface for
inputting frequently used commands. The command inter-
face is extensible and customizable in that new gestures can
be trained, or existing gestures can be linked to different
commands. Figure 7 shows the currently used gestures and
their associated commands. Each gesture is a single stroke
entity that is sensitive to orientation and drawing direction.
Due to variation in drawing speeds, input raw strokes fre-
quently consist of data points spaced non-uniformly along
the stroke’s trajectory (low pen speeds cause dense point
clouds while high pen speeds cause large gaps between
points), which adversely affect their recognition. To alleviate
this difficulty, input strokes are first resampled using a linear
interpolation function to obtain data points equally spaced
along the stroke’s trajectory.

P L O O

beautify strokes madify curve delete curve attach curves detach curves
creale /dé smooth Z00m in Z700m out Resel
surface surface surface viewpoint

Figure 7: Currently used gestures and their associated com-
mands. Red dots indicate the starting points of the gestures.

Our gesture recognizer employs neural networks to learn
and classify gestures. For each gesture, a separate network
is constructed. The networks in our approach use the angles



64 Levent Burak Kara & Kenji Shimada / Sketch-based Design of 3D Geometry

(b)

Figure 6: Specifying boundary normals. (a) A selected boundary vertex and its default normal. (b) User sketches the tangent
plane across this vertex from a suitable viewpoint. (c) New vertex normal. Notice that the new normal is the normal of the
virtual plane generated in b. (d) The user has specified the normals of two vertices. The normals of intermediate vertices are

interpolated smoothly between the two vertex normals.

formed by the horizontal line, and the line segments connect-
ing consecutive points as the input feature vector. Figure 8
shows these angles. The entries in this vector suitably range
between [—m,+mt], thereby providing a congruent range to
the input layer of the networks in all cases. The nature of this
feature vector makes gesture recognition sensitive to orien-
tation and drawing direction, but insensitive to scale. While
additional geometric features could be considered to charac-
terize a stroke more specifically, we have found the proposed
angle information to be sufficiently discriminatory for our
purposes.

Figure 8: The angles between the line segments in a gesture
and the horizontal line form the feature vector for the neural
network during gesture recognition.

Each network in our command interface is designed as a
fully-connected, feed-forward back propagation neural net-
work with 18 inputs, 16 neurons in the first hidden layer, 6
neurons in the second hidden layer, and 1 output neuron. The
inputs to the network are the entries of the feature vector de-
scribed above?. In each neuron, a tangent sigmoid (‘tansig’)
function is used as the activation function. The output of the
network is a single neuron which outputs a real number in
the range [0,1]. For each gesture, the network is trained us-
ing around 200 positive and 200 negative examples. During
training, a target value of 1.0 and 0.0 is assigned to positive

i Input strokes are thus resampled to 19 data points, which results
in 18 angles that form the input vector.

and negative examples respectively. During recognition, an
unknown stroke is evaluated by each of the neural networks.
The stroke is classified as the gesture whose network pro-
duces the highest real value at the output neuron. In actual
use, the classification of a stroke by the ensemble of net-
works is almost instantaneous.

A key issue in gesture recognition however is that, prior
to deciding which gesture a stroke represents, it is neces-
sary to decide if the stroke is a gesture in the first place.
This issue is discussed in detail in [SLO3] on modeless input.
The free-form sketching nature of our modeling operations
makes this initial distinction a much challenging task, as the
strokes used during modeling operations can be easily mis-
taken for a gesture and vice-versa. To avert this difficulty,
we ask the user to hold a modifier button on the tablet or the
keyboard when gesturing.

6. Examples

Figure 9 shows several models designed using our system.
In each case, the user starts the design on a simple template.
In the case of the laptop computer and the shaver, starting
templates are simply rectangular prisms. For the mouse, it
is a half-egg shape. Normally our system is only loosely de-
pendent on the underlying template. Indeed, the template is
only necessary to lay out a rough wireframe model contain-
ing a handful of characteristic curves. Once such a wire-
frame is obtained, its curves can be quickly modified re-
sulting a simple but geometrically accurate wireframe. Next,
this wireframe can be surfaced to obtain a set of initial sur-
faces that define the main style of the design object. Further
curves and surfaces can thus be added later using this ini-
tial model as a convenient base platform. This is especially
useful for adding small details such as buttons or impres-
sions. In the examples shown above this strategy has been
used extensively, and has proven to be quite effective. To fur-
ther facilitate design, our program provides the option to pre-
serve symmetry across one of the three principal Cartesian
planes. This way, work performed on one side of the symme-
try plane is automatically duplicated on the other side. The
above examples take advantage of this feature.

All processes described in earlier sections are performed

(© The Eurographics Association 2006.



Levent Burak Kara & Kenji Shimada / Sketch-based Design of 3D Geometry 65

Figure 9: Example models created by our system.

at interactive speeds on a consumer level PC (2.0GHz with
IMB of RAM), except for the optimization-based surface
modification process. In this case, our experiments have
shown that it takes anywhere between 5 to 30 seconds to
determine the optimal surface deformation.

7. Conclusions and Future Work

We have described a new approach to computer aided de-
sign of 3D geometry using a sketch-based interface. Our
techniques are particularly useful for styling design, where
a fully sketch-based interaction is an appealing natural alter-
native to traditional menu-and-mouse-based interaction. Our
system supports a wide range of sketch-based 3D modeling
operations including wireframe construction through curve
creation, wireframe modification, surface creation, surface
deformation, and boundary condition specification. Besides
these main modeling operations, a trainable gesture-based
command interface allows many of the frequently used com-
mands to be invoked via a set of stroke gestures. With the

(© The Eurographics Association 2006.

proposed techniques, users of our system can design a wide
variety of 3D models exclusively through the use of a digital
pen. We believe the proposed techniques demonstrate that
a sketch-based interaction is a viable alternative to the tra-
ditional interaction mechanisms found in existing software.
Moreover, it is particularly advantageous for styling design
purposes where typical tasks would be tedious, if not com-
plicated, using conventional interaction techniques.

While our current system is an effective tool, there are
several directions for future improvements. Currently our
curve modification algorithm requires curves to be modified
individually, and each curve must be modified in its entirety.
This means local modifications to a curve are currently not
permitted. We plan to extend our curve modification tech-
niques to allow local curve modifications. Also, our current
surface deformation tool uses a uniform pressure field to de-
form a surface. We are currently exploring other means, such
as non-unform pressure fields, for a more flexible control of
the deformed surfaces. Also, while our techniques are tai-
lored toward the creation of curvy edges and surfaces, we
plan to incorporate options for creating more standard ge-
ometry such as straight lines, arcs, fillets etc. Finally, we are
planning to conduct field studies with real industrial design-
ers to better assess our system, and to see how it can be im-
proved.

References

[BCCD04] BOURGUIGNON D., CHAINE R., CANI M.-
P., DRETTAKIS G.: Relief: A modeling by drawing tool.
In EUROGRAPHICS Workshop on Sketch-Based Inter-
faces and Modeling (2004).

[CCP*04] CHEUTET V., CATALANO C., PERNOT J.,
FALCIDIENO B., GIANNINI F.: 3d sketching with fully
free form deformation features (d-f4) for aesthetic design.
In EUROGRAPHICS Workshop on Sketch-Based Inter-
faces and Modeling (2004).

[CSSJO5] CHERLIN J. J., SAMAVATI F., Sousa M. C.,
JORGE J. A.: Sketch-based modeling with few strokes.
In SCCG ’05: Proceedings of the 21st spring conference
on Computer graphics (2005), ACM Press, pp. 137-145.

[DDGGO5] DAs K., DIAzZ-GUTIERREZ P., GoPI M.:
Sketching free-form surfaces using network of curves. In
EUROGRAPHICS Workshop on Sketch-Based Interfaces
and Modeling (2005).

[DEO3] DRAPER G., EGBERT P.: A gestural interface
to free-form deformation. In Graphics Interface 2003
(2003), pp. 113-120.

[EBE95] EGGLI L., BRUDERLIN B. D., ELBER G.:
Sketching as a solid modeling tool. In SMA ’95: Pro-
ceedings of the third ACM symposium on Solid modeling
and applications (1995), ACM Press, pp. 313-322.

[HQO3] HUA J., QIN H.: Free-form deformations via



66 Levent Burak Kara & Kenji Shimada / Sketch-based Design of 3D Geometry

sketching and manipulating scalar fields. In SM ’03: Pro-
ceedings of the eighth ACM symposium on Solid modeling
and applications (2003), ACM Press, pp. 328-333.

[IMT99] IGARASHI T., MATSUOKA S., TANAKA H.:
Teddy: a sketching interface for 3d freeform design. In
SIGGRAPH ’99: Proceedings of the 26th annual confer-
ence on Computer graphics and interactive techniques
(1999), pp. 409-416.

[KDS06] KARA L. B., D’ERAMO C., SHIMADA K.:
Pen-based styling design of 3d geometry using concept
sketches and template models. In ACM Solid and Physi-
cal Modeling Conference (2006).

[KGO5] KHO Y., GARLAND M.: Sketching mesh defor-
mations. In SI3D ’05: Proceedings of the 2005 sympo-
sium on Interactive 3D graphics and games (2005), ACM
Press, pp. 147-154.

[KHR02] KARPENKO O., HUGHES J. F., RASKAR R.:
Free-form sketching with variational implicit surfaces. In
Eurographics (2002).

[KWT88] KAAS M., WITKINS A., TERZOPOLUS D.:
Snakes: active contour models. International Journal of
Computer Vision 1, 4 (1988), 312-330.

[MKLO5] MASRY M., KANG D. J., LIPSON H.: A free-
hand sketching interface for progressive construction of
3d objects. Computers and Graphics 29, 4 (2005), 563—
575.

[MSKO00] MITANIJ., SUZUKI H., KIMURA F.: 3d sketch:
Sketch-based model reconstruction and rendering. In
Workshop on Geometric Modeling 2000 (2000), pp. 85—
98.

[NSACO05] NEALEN A., SORKINE O., ALEXA M.,
COHEN-OR D.: A sketch-based interface for detail-
preserving mesh editing. ACM Transactions on Graphics
24,3 (2005), 1142-1147.

[PT97] PIEGL L., TILLER W.: The NURBS Book. 1997.

[PYJHO4] P.A.C.VARLEY, Y.TAKAHASHI, J.MITANI,
H.SuzUKI: A two-stage approach for interpreting line
drawings of curved objects. In EUROGRAPHICS Work-
shop on Sketch-Based Interfaces and Modeling (2004).

[Ruc96] RUCKLIDGE W. J.: Efficient Visual Recogni-
tion Using the Hausdorff Distance. Number 1173 Lec-
ture Notes in computer Science,. Springer-Verlag, Berlin,
1996.

[SLO3] SAuUND E., LANK E.: Stylus input and editing
without prior selection of mode. In UIST ’03: Proceed-
ings of the 16th annual ACM symposium on User inter-
Jace software (2003), ACM Press, pp. 213-216.

[SWSJ05] ScHMIDT R., WYVILL B., SousAa M. C.,
JORGE J. A.: Shapeshop: Sketch-based solid model-
ing with blobtrees. In EUROGRAPHICS Workshop on
Sketch-Based Interfaces and Modeling (2005).

[TBSR04] TSANG S., BALAKRISHNAN R., SINGH K.,
RANJAN A.: A suggestive interface for image guided 3d
sketching. In CHI ’'04: Proceedings of the SIGCHI con-
ference on Human factors in computing systems (2004),

pp. 591-598.

[ZHH96] ZELEZNIK R. C., HERNDON K. P., HUGHES
J. F.: Sketch: an interface for sketching 3d scenes. In SIG-
GRAPH ’96: Proceedings of the 23rd annual conference
on Computer graphics and interactive techniques (1996),

pp. 163-170.

(© The Eurographics Association 2006.



