
High Quality Rendering Using the Talisman Architecture
Anthony C. Barkans

Microsoft

One Microsoft Way

Redmond, WA. 98052
tbarkans@?microsofLcom

Abstract

Currently graphics devices that offer both high
performance and high quality interactive
rendering have been priced at a level that
places them out of the reach of the broad
number of users that constitutes the mass-
market. Because of the cost constraints placed
on graphics devices designed for the mass-
market, they often trade off image quality in
order to get reasonable rendering rates with
minimum use of hardware. This approach is
not leading to a rapid adoption of true 3D
graphics technology for the broadest number
of users.

The goal of the Talisman initiative is to make
3D graphics truly ubiquitous. This requires
that both high performance and high quality
interactive rendering be made available at
mass-market price points. This means that
trading off image quality, as a means to obtain
high performance rendering is unacceptable.

In this paper it will be shown that high quality
rendering is a natural extension of the high-
performance rendering architecture embodied
in Talisman.

Introduction

TaZisntan [l] is the code name for a Microsoft
technology initiative in research and
deployment of advanced multimedia and 3D
technologies for the PC industry. In essence
the Talisman initiative is an effort to bring PC
multimedia to the next level. The elements

needed for the multimedia experience includes
both high performance and high quality
rendering. The goal is to provide technology
to the PC industry to allow truly compelling
content to be created. For this to occur,
hardware must be produced that allows very
complex scenes with antialiasing, and high
quality texture mapping, that can be updated at
the refresh rate of the monitor.

The fundamental issue that must be addressed
in order to achieve high performance rendering
is bandwidth. In traditional architectures this is
addressed in two ways. First the evolution of
silicon processing technology has allowed
designs with greater clock speeds to be used.
Simply re-implementing existing architectures
in a newer generation of logic will increase the
bandwidth of the system. The second way
traditional systems address the bandwidth
issue is to design wider buses for the graphics
memory system. This approach is often used
on high-end graphics devices. The technique
increases the memory bandwidth, but can
increase the system cost to the point where this
approach is not useful for mass-market
graphics devices.

It is important to note that over the years
several unique architectures [2,3,4] have been
proposed that address the memory bandwidth
problem in various ways. However, these
innovative architectures have typically been
targeted for implementation in high-end
devices rather than for mass-market devices

79

Addressing the Bandwidth problem

Talisman addresses the bandwidth issue with
three techniques:

l Capture bandwidth on chip where it is
affordable.

l Selective rendering.

l Aggressive use of compression.

Capturing bandwidth on chip:

Each image (represented by a DirectDraw
surface) is chunked into smaller pieces prior
to rendering. In the reference design [l] each
chunk was 32 X 32 pixels. Chunking is
accomplished in the DirectX driver by
subdividing the Dire&Draw surface into chunk
sized regions (i.e. 32 X 32 pixels). Then the
triangles within the Dire&Draw surface are
sorted so that each triangle is processed with
every chunk it touches. It is important to note
that chunking is completely hidden from the
application. However there is some overhead
associated with the chunking. The big
advantage is that chunking allows on-chip
color buffers, on-chip Z-buffers, and an on-
chip antialiasing engine. Having these units
on-chip makes it possible to replace the
external bandwidth requirements with on chip
data accesses where the bandwidth is more
affordable. It is interesting to note that other
than the fact the memory is on chip, and it
supports antialiasing, the Talisman rendering
engine performs like a typical rendering
engine.

Over the years, the cost per bit of DRAM has
fallen dramatically (about 40% per year).
Unfortunately this does not solve the DRAM
bandwidth problem. Although the cost per bit
of memory has dropped dramatically, the price
of DRAM bandwidth has been improving at
only about 12% per year. On the other hand
the price performance of logic devices has
been improving at about 42% per year. There
are two implications of this; first, designs

primarily based on exploiting the bandwidth to
external DRAM’s have note realized the full
potential that I.C. technology can offer.
Second, designs that continue to rely on
bandwidth to external memory for
performance will not keep pace with designs
based on exploiting on chip bandwidth,

The chart below illustrates how quickly the
relative performance of these two approaches
is diverging. There are significant benefits to
capturing bandwidth on-chip today. These
advantages will become even more
pronounced as time goes on and gate
performance and density continue to grow
dramatically, while bandwidth to external
memory continues to grow relatively slowly.

DRAM vs Logic Performance
Logic Gat0

P~iFbrtisnce

/

J _ . ..-
----- - /

1996 1997 1998 1999 2000 2001 2002 2003

Figure 1: On chip vs. External Bandwidth

Selective rendering:

In smoothly moving interactive sequences
most of the image is either the same or nearly
the same from frame to frame. In a game, the
characters may move around, but the
background remains nearly the same between
two frames. In fact, in the short time it takes to
display two frames the main action characters
may not have moved much. Even when the
camera is moving, many of the pixels will
have moved just a short distance fi-om their
last location.

In traditional graphics each frame is thrown
away and the next one built from the
beginning. It should be noted that there have
been some very innovative people that have

---_- ~-. _ ---._~

seen that this is a waste of rendering resources
and have written software that limits the
regions that need to be re-rendered for new
frames. However, hardware to exploit this
image coherence does not exist today.

The graph below shows that for a scene from a
typical interactive animation sequence that a
relatively small percentage of the fiarne is new
data.

Frame-to-Frame Change

Figure 2: Frame to Frame Image Coherence

In order to use selective rendering a scene is
broken into objects. Each object is then
rendered as its OWII DirectDraw surface
(called a sprite when stored in the graphics
hardware system memory). There may be
many of these surfaces in a scene. Each
surface would typically contain objects that are
spatially separated from other objects in the
scene. For example: an airplane may be
rendered to one surface and a mountain into
another surface. As the airplane flies past the
mountain, the mountain may never need to be
re-rendered. There are two possibilities for
handling the airplane. In one case the airplane
may be spinning around and so the display
surface that it uses may require re-rendering.
In the other case the airplane may have such
subtle changes that it could effectively be
pushed across the sky. Applying an affine

transformation to the display surface of the
airplane does this pushing.

The general idea is to reuse as many display
surfaces as possible for each frame. By reusing
previously rendered parts of the scene, the
rendering engine is freed to render more
objects, or to apply higher quality rendering to
the existing objects.

Aggressive use of compression:

Data transfers between chips require
bandwidth. A major usage of this bandwidth in
a traditional system involves reading and
writing color and depth information to the
frame buffer. Another major bandwidth use is
transferring texture data from texture memory
into the rendering engine. Compressed data
requires less inter-chip bandwidth. In
Talisman, most inter-chip data is passed in a
compressed format. This can include both
texture data and rendered images. This
compressed data not only reduces bandwidth
requirements; it also reduces storage
requirements.

The Talisman Rendering Pipeline:

The details of the reference design can be
found in the Siggraph paper in reference 1.
Instead of repeating that information here,
another way of looking at Talisman will be
given. This view is a conceptual model of the
Talisman graphics pipeline. There are seven
main stages. These are:

1. The application program. The Talisman
unique part of this stage is that the image is
broken into display surfaces. Each surface
contains an object that does not penetrate
another object. These surfaces could be as
complex as an entire frame or a single
object within the frame. As an example, an
entire object such as an airplane could
occupy a unique surface. The other
extreme is that independently moveable
parts of an object, such as the flap on the

81

---_-- __.---

wing of an airplane, may be placed in its
own surface.

2. The geometry and setup stage processes
one surface at a time. The processing
includes transformation, lighting,
chunking, clipping, and polygon
rasterization setup.

3. The rendering engine processes a chunk at
a time. This is the stage where pixel level
operations occur. These operations include
color and depth interpolation, texture
filtering, and antialiasing. There may be a
data compression unit at the back end of
the rendering block.

4. Sprite data for each of the display surfaces
is stored, in compressed format, in a RAM
array. This is envisioned to consist of off
the shelf memory devices. Note that the
sprite data includes newly rendered chunks
from the rendering engine, along with
older data that was rendered for a previous
frame and can be reused in the current
frame. Also note that in addition to the
chunked data, compressed texture data is
stored here as well.

5. The per-frame operation starts in the
sprite-image-processing block. As each of
the compressed chtmks of image data is
needed for display, it is pulled into the
sprite-image-processing block. The data is
first decompressed. Next the affine
transformation is applied and an image
filtering step is performed. Note that this
filtering step is in addition to the texture
filtering that is done earlier in the pipeline.
The filtering step at this stage is required
only to improve the quality of the affine
transformation.

6. The data from the various display surfaces
are assembled in the compositing logic. At
this point the overlapping surfaces are
resolved at each pixel. The data is then sent
out in scan line order as typical RGB data.

7. The display is a typical device, such as a
CRT or LCD.

1
Sprite Data

(And Texture)
Storage

I II I L
Sprite-image Cornpositing

Processing w Logic

Figure 3 : The Talisman Pipeline

82

Using the Talisman Pipeline to Produce
High Quality Interactive Images:

The requirements of interactive image
generation place a large demand on the
rendering hardware. However, the
architectures used in current mass-market
graphics devices are severely limited in the
amount of work they can perform to produce
any single frame. Because of this limitation
most hardware uses fast approximations [S] to
render images. For example: typically
polygons are sampled once per pixel as
opposed to being sampled at multiple
locations. The use of this approximation
results in the well-known aliasing artifacts. In
addition if texture filtering is performed, it is
often done using a filter that does not account
for the space-variant, elliptically shaped
projection of the pixel back into the texture
map. The use of these texture filtering
approximations, such as the bilinear or trilinear
method, results in noticeable blurring in the
image. In addition there are other image
quality features, such as reflections, complex
shadowing and motion blur, that are so far
beyond the capabilities of today’s mass-market
graphics hardware, that they are not
approximated in real time.

Antialiasing

Perhaps the most noticeable artifacts in most
interactive systems are the aliasing artifacts.
This issue has been addressed in some of
today’s high-end graphics devices. The highest
quality interactive antialiasing hardware
available today is based on sampling each
pixel within a polygon at several sub-pixel
locations [6]. At each of these sub-pixel
sample locations the color and ‘2” information
is found. The rendering works in the normal
fashion, only with sub-pixel accuracy. After
the frame is rendered the color samples fi-om
each sub-sample location are added together
and divided by the number of sub-pixel sample
locations. This produces the final color at each

pixel. For example a polygon with an edge
passing half way through a pixel that is
sampled at 16 sub-pixel locations may
contribute 8 of the sub-samples used to
construct the final color. In this example the
final pixel color will be a mix of one half the
polygon color and one half the background
color. The effect on the screen is a smooth
antialiased edge. The problem with this
method is one of bandwidth. Using this
method with a traditional architecture, you
need up to 16 times the frame buffer storage
and it requires up to 16 times the number of
accesses to the frame buffer and depth buffer
memory. In high-end machines the cost of this
extra memory and controller logic is reflected
in the high cost of the machine.

The Talisman architecture uses a technique
called clunking to reduce the amount of
memory and off-chip bandwidth required to
perform antialiasing. In talisman an image is
rendered in small chunk regions, one at a time.
This allows the entire region, including the
color buffer, depth buffer, and antialiasing
fragment buffers to be contained on chip. The
primary benefit of this approach comes about
because very fast and wide buses can be used
to connect the on chip data path with the on
chip memory. By capturing the bandwidth on
chip, the bandwidth requirements for high
quality antialiasing can be met.

Since the driver bins all of the triangles for
each chunk, the rendering engine can be
thought of as containing a chunk of a typical
frame buffer. The important point is that the
rendering is done on chip and thus requires no
external bandwidth. This means that various
antialiasing techniques could benefit from the
Talisman architecture. Thus various Talisman
implementations may use different antialiasing
algorithms. For example the reference design
uses a variation of the Carpenter A-buffer
algorithm [7] with the coverage mask idea
similar to the one described by Schilling [S]. In
addition the multi-sample algorithm could also
benefit from the on chip memory accesses.

83

Anisotropic Texture Filtering:

Traditional texture filtering methods (bilinear
and trilinear) produce blurred images when an
object is tilted with respect to the view plane.
This is because they rely on a round filter
kernel. Unfortunately as an image is tilted the
projection of the pixel on to the texture is no
longer round, but elliptical in shape. Talisman
accounts for this change in shape by
computing the appropriate filter kernel while

rendering. The result is that images produced
using anisotropic filtering contain more detail
and appear sharper than images produced
using the other, more traditional methods. An
example scene is shown below. The image on
the left side of the page is rendered using
traditional trilinear texture filtering. The image
on the right hand side is shown rendered using
anisotropic texture filtering.

Traditional Trilinear Filtering

Figure 4: Visual Result When Applying
Different Filtering Techniques to an Image

Talisman Anisotropic Filtering

84

“-. -.----.--- r i y::- :> -: -:z- - -----7 - I. ,5 . _, :p-. r - -.---- 7 . /;;I;-~~.,,
.:;u7:;:;;::‘-:- ..-._ ,-y ++z:.

-.- 7-Y. -- - ..~ . .__i r_-...-.,
.1 ‘-:., : .:.,: .~ ._ -:

q.,ys,

-- ,‘I. .3
~:. :,‘:

-yy.‘, -.~: -- ‘,,,
>...‘. ,d.‘_‘~‘I ,2’ .j,

Over the years there has been a great deal of
research on how to best map texture data onto
a pixel. For the most part analytical solutions
have produced very high quality images at a
large computational cost. These analytical
approaches account for the actual projection of
the screen pixel on to the texture map. For
example the shaded regions in Figure 5 shows
a screen pixel and it’s projection back into the
texture map.

The pixel projection onto the texture map can
give rise to complex geometrical shapes. In
hardware these complex shapes are often
approximated. One of the most common
approximations is T&linear MIP mapping.
The essence of this approach is to pre-compute
several filtered versions of the texture map. A
square region that best approximates the
projection of the screen pixel is then found.
Next a square of four texels fi-om the map that

Anisotropic Filtering Algorithm:

SCREEN TEXTURE MAP

Figure 5: The Projection of a Screen Pixel into the Texture Map

has more detail than the best fit square is
blended with the set of four texels from the
map level with less detail than the best fit
square. This works well in regions where the
projection of the screen pixel is nearly
isotropic in the texture map. However as the
projection changes to a more asymmetrical
shape, such as shown in Figure 5, the image
quality degrades. An example of the visual
results of using the trilinear method was shown
in Figure 4.

Note that hardware that uses better
approximations for the projection of the screen
pixel back into the texture map have been
proposed [9, 111. It is in this sprit that the
algorithm used in the reference design was
developed.

The hardware required for the anisotropic
texturing algorithm used in the Talisman
reference design is set up similar to hardware

85

used for traditional trilinear texture filtering.
This includes using the same pre-filtered MD?
map structure for storing the texture data. In
addition both algorithms use the texture
gradient information at each rasterized pixel in
order to filter the texel data. These gradients
are:

s/ x s/ Y

t/ x t/ Y
However, when performing anisotropic
filtering the gradient information is used
differently than in the traditional trilinear
filtering system. These differences are
explained using the geometry shown in Figure
6 below.

Figure 6: Geometry Used to Find Gradients

The long side of the rectangle is used to
determine the orientation and line of
anisotropy of the footprint. The shorter side is
used to determine the level of detail. In
addition the ratio of these two determines the
amount of anisotropy.

The actual filtering is now a two step process.
These steps are:

0 Perform tri-linear interpolation in the MIP
map for texture values along the line of
anisotropy. Note that when using
traditional tri-linear texture mapping
hardware, the selection of which MlP
levels to access is based on the largest
gradient (s/ y in Figure 6). In this
algorithm the selection is based on the
smaller gradient (t/ x in Figure 6). This
results in using texels Corn MIP levels
with more detail.

l The values that are found by stepping
along the line of anisotropy are then
filtered. Note if the anisotropic ratio is 1 -
to - 1, then the single value that is
calculated by performing one t&linear
filtering operation is used as the texel
value. If the ratio is between 1 - to - 1, up
to 2 - to - 1 then two IA-linear filtering
operations are performed and the resulting
texel value is found by linear interpolation
between the two t&linear values. If the
ratio is greater than 2 - to - 1 then a
trapezoidal shaped reconstruction filter is
used. In this case the two end points get
less weight than the samples in the middle.

To view this process we will examine the
texels being accessed in one level of the MIP
map. Figure 7 shows the texture map. It is
assumed that the texel values read by the
hardware are shown at the intersections of the
grid lines in the figure. In addition it is
assumed that the anisotropy is about 2: 1.

In this example the top four sample values
read from the texture map are combined in
proportion to the geometric location of the top
reconstructed value. Note that the color values
obtained for this reconstructed value will be
the same as if this point were chosen for a
single tri-linear filtering operation. However,
we will also obtain a set of color data based on
the geometric location of the lower
reconstruction value. Note that these two
reconstruction values lie along the line of
anisotropy. The final step of the process is to

86

_ __ - _-~~ --__---_ _ ~~~~-~ ^~_. --- - -- --_ --

linearly interpolate between these two
reconstruction values to the projection of the
screen space pixel’s center on the texture map.
Note that at higher ratios of anisotropy
additional trilinear filtering steps would be
preformed.

p Recorstiucted value

Reconstructid

Note: C rcles at-E where be MIP nap is SC mpled

Figure 7: Reconstruction Use the MD? MAP

Fitting Into the Talisman Architecture:

The most striking thing about the
implementation of the anisotropic texture
filtering algorithm is that it requires more data
to be read from the texture map. This apparent
bottleneck is overcome in three ways by the
Talisman architecture. First the aggressive use
of compression. In Talisman the texture data is
stored in a compressed format in the “sprite
data and texture storage” block shown in
Figure 3. This means that the extra bandwidth
required for reading this extra data is
significantly reduced from the requirements of
a non-compressed texture. Second, there are
data caches for the texture data. This is similar
to most current texture mapping hardware in
that recently used texel values are saved on
chip. Third, a large amount of the bandwidth is
captured on chip. Note that once a block of
texels is decompressed, the entire block is
stored in a decompressed format on chip. As

an example the reference design called for
storage for sixteen 8 X 8 blocks of
decompressed texture data. Iu addition to the
large cache of data, there is high speed
accesses to that data over on chip data buses.
In the reference design texture filtering with
anisotropic ratios of 2:l could be performed at
the full rasterization rate.

Other Quality Features:

Other quality features such as reflections and
shadowing are made possible by the unified
sprite and texture storage.

For example: to produce a reflection on a
surface the scene is rendered using a view-port
that is Zooking at the scene through the object
that the reflection is to appear on. Next this
rendered image is used as a texture map that is
placed on the object as the scene is being
rendered from the desired view-port. The
effect is that the scene appears to be reflected
off of the object. The most difficult part of this
process for most hardware is to move the
rendered image into the texture storage space.
Iu Talisman the unified memory, shown as the
“sprite data and texture storage” block in
Figure 3, simplifies this process. In this
example the data is rendered into the memory
on the first pass. On the second rendering pass
it is read as texture data from the memory.
Note that in Talisman the texture data and
sprite data are stored in the same format.

Just as reflections can be produced, so can
other multi-pass rendering effects [lo], such as
shadows.

Complex Scenes:

One item that is often over looked as a metric
of image quality is scene complexity. The
highest visual quality often times requires the
greatest scene complexity. In Talisman the
sprite data that is stored in the memory array
can often be used for many frames. In order to
make this reuse possible the “sprite image
processing block”, shown in Figure 3, contains

87

I

logic to perform affine transformations on the
sprite data.

The idea is to use high quality rendering to
produce each sprite. Then as subsequent
frames are rendered a test can be performed to
determine how much the objects have changed
since the sprite was last rendered. If it is
determined that the objects in the sprite have
not changed significantly, then apply an affine
transformation to the sprite and reuse it in the
current frame.

Note that there will be an affine library that
will accompany DirectX. This library will aid
applications by finding the best afIine
transformation to apply to a sprite. In addition
it will return error terms that characterize the
distortion and color errors that would result
from using the affine transformation, instead
of re-rendering the object. The application can
then use these error terms to balance reuse
with re-rendering for the various objects in a
scene. The result of using this process is that
the rendering engine’s effective pixel
production rate is multiplied by the amount of
reuse that is possible. This allows high quality,
complex scenes to be created that can not
currently be produced using mass-market
graphics devices.

Conclusion

The three primary techniques used in the
Talisman architecture to address the memory
bandwidth issues can be exploited to improve
image quality. Using the Talisman architecture
allows unprecedented levels of performance
and image quality to be made available at the
price point needed for mass-market graphics
device. The goal is to bring these
unprecedented levels of performance and
quality to the broadest number of users.

Permission to make digitalhard topics of all or part of this mnterinl for
personnl or clnssroom USC is granted without fee provided that the copies
are not mndc or distributed for prolit or commercinl advnntnge, the copy-
right notice, the title ofthe publication and its date appear, and notice is
given that copyright is by pemksion of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute IO lists, requires specitic
permission and/or fee

I99 7 SIGGRA PH/Eurogrophics Workshop
Copyright 1997 ACM 0-S9791-961-0/97/8..$3.50

88

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

Torborg, J., Kajiya, J., “Talisman:
Commodity Realtime 3D Graphics for the
PC”, Proceedings of SIGGRAPH ‘96

Deering, M., et al. “The Triangle Processor
and Normal Vector Shader: A VLSI
System for High Performance Graphics”,
Proceedings of SIGGRAPH ‘88

Fuchs, H. , et al. “Pixel Planes 5: A
Heterogenous Graphics System Using
Processor-Enhanced Memories”,
Proceedings of SIGGRAPH ‘89

Molnar, S., et al. ‘PixelFlow: High Speed
Rendering Using Image Composition”,
Proceedings of SIGGRAPH ‘90

Barkans, A., “Hardware-Assited Polygon
Antialiasing” IEEE Computer Graphics
and Applications Vol 11 Number 1 Jan. 91

Akeley, K., “RealityEngine Graphics”,
Proceedings of SIGGRAPH 93

Carpenter, L., “The A-Buffer, an Anti-
Aliased Hidden Surface Method”,
Proceedings of SIGGRAPH 84

Schilling, A., “A New Simple and Efficient
Anti-aliasing with Subpixel Masks”,
Proceedings of SIGGRAPH 91

Knittel, G., et al. “Hardware for Superior
Texture Performance” Proceedings of
Eurographics Workshop on Graphics
Hardware 95 ISSN 1024-0861

10. Segal, M., et al. “Fast Shadows and
Lighting Effects using Texture Mapping”,
Proceedings of SIGGRAPH 92

11. Schilling, A., Knittel, G. and Strasser, W.
“Texram: Smart Memory for Texturing”,
IEEE Computer Graphics and
Applications Vol16 Number 3 May 96

