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Abstract 
Automatic pattern segmentation of jacquard images is a challenging task due to the complexity of the 
images. Active contour models have become popular for finding the contours of a pattern with a complex 
shape. However, these models have many limitations on the pattern segmentation of jacquard images in 
the presence of noise. In this paper, a robust algorithm based on the Mumford-Shah model is proposed 
for the segmentation of noisy jacquard images. We discretize the Mumford-Shah model on piecewise lin-
ear finite element spaces to yield greater stability and higher accuracy. A novel iterative relaxation algo-
rithm for the numerical solving of the discrete version of the Mumford-Shah model is presented. During 
each iteration, we first refine and reorganize an adaptive triangular mesh to characterize the essential 
contour structure of a pattern. Then, we apply the quasi-Newton algorithm to find the absolute minimum 
of the discrete version of the model at the current iteration. Experimental results on synthetic and jac-
quard images have shown the effectiveness and robustness of the algorithm. 
 
Categories and Subject Descriptors (according to ACM CCS): I.4.6 [Segmentation]: Edge and feature de-
tection). 

 

1. Introduction 

Image segmentation plays an essential role in jacquard 
image analysis. An accurate extraction of pattern fea-
tures from jacquard images promises reliability for 
jacquard fabric CAD. Although, many algorithms have 
been proposed for the segmentation problem, they have 
difficulty in capturing the complex structure of the 
visual features, such as complex contours of a jacquard 
pattern. In practice, the strong variability of jacquard 
patterns, and the low and varying contrast of topologi-
cal curves in jacquard patterns make it quite difficult to 
obtain reliable performance with common segmentation 
methods.  

Lately, many active contour models (see, e.g., 
[CRB99] [KWT87], [MGR04], [MSV95]) are proposed 
to extract the contour of an object with a complex shape. 
However, in a jacquard image, consistently strong edge 
information is not always presented along the entire 
boundary of the contours to be segmented. Moreover, if 
the available jacquard image is heavily corrupted by 

noise, the performance of the active contour models is 
often inadequate. Recently, these active contour models 
have been further improved by incorporating statistical 
model and prior knowledge to provide more accurate 
segmentation results. Chesnaud et al. [CRB99] pro-
posed a probabilistic framework for image segmenta-
tion where different probability density functions from 
the exponential family are allowed. The parameters of 
the probability function are determined to deform the 
snake to detect the image regions. Zhuang et al. 
[ZHPZ96] proposed a robust statistical approach for the 
problem of Gaussian mixture density modeling and 
decomposition. The approach can be incorporated into 
the statistic snake framework to achieve a higher ro-
bustness for the shape detection from the noise data. 
Martin et al. [MGRG04] analyzed level set implemen-
tation of region snakes based on maximum likelihood 
estimation techniques for different noise models that 
belong to the exponential family. 

Mumford-Shah model (see, e.g., [MS89], [TYW01]) 
is another popular method for complex pattern segmen-
tation, which is more immune to noise than the active 
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contour models. It allows a construction of more effi-
cient strategies for detecting discontinuities in the pres-
ence of noise. In contrast to the active contour models, 
this method utilizes not only image information near 
the evolving contour but also image statistics inside and 
outside the contour, so it is more suitable for the seg-
mentation of noisy jacquard images. In this paper, we 
focus on the segmentation of noisy jacquard images 
using the Mumford-Shah model.  

However, the minimization of the Mumford-Shah 
model poses a difficult numerical problem, since it 
requires the computation of geometrical properties of 
the unknown set of discontinuity boundaries. There are 
many methods for the minimization of the Mumford-
Shah model (see, e.g., [AT90], [Cha95], [CV01], 
[Gob98]). In this paper, we propose an iterative relaxa-
tion algorithm to minimize the Mumford-Shah model 
on piecewise linear finite element spaces. Our algo-
rithm involves two coordinate steps during each itera-
tion: (1) refining and reorganizing an adaptive triangu-
lar mesh to characterize the essential contour structure 
of a pattern, and (2) minimizing the discrete version of 
the Mumford-Shah model by the quasi-Newton algo-
rithm. 

The rest of this paper is organized as follows. In Sec-
tion 2, we describe the Mumford-Shah model for seg-
mentation. In Section 3, we give some notations and 
important results on this subject. In Section 4, we give a 
discrete version of the anisotropic Mumford-Shah 
model. Section 5 is devoted to the numerical implemen-
tation of our algorithm. In Section 6, some experimen-
tal results and evaluations are presented. Finally, we 
give a brief conclusion of this research. 

2. The Mumford-Shah model 

Let 2RΩ ⊂  be a bounded open set and g L ( )∞∈ Ω  
represent the image intensity. The function g has 
discontinuities that represent the contours of objects in 
the image. The image segmentation problem consists in 
the detection of such discontinuities with the 
simultaneous suppression of noise. Mumford and Shah 
[MS89] proposed a variational method for image 
segmentation which looks for a piecewise smooth 
approximation  of the function u g , with 

discontinuous across a closed set u K . The variational 
problem consists in the minimization of the following 
functional 

2 2

\ \
( , ) | | ( ) ( )

K K

1E u K u dx u g dx H Kα β
Ω Ω

= ∇ + − +∫ ∫  (1) 

over closed set K ⊂ Ω  and . Here, H  
is the 1-dimensional Hausdorff measure, and 

1( \ )u C K∈ Ω 1

α , β are 

positive weights. By the Mumford-Shah model, the 
image segmentation problem is then reduced to find a 
set K  of contours decomposing the image into regions 
and a function which is piecewise smooth on that 
decomposition. Here, the first term penalizes strong 
variations of , thus ensuring that is a smooth 
approximation of 

u

u u
g , the second term forces u  to be 

close to the given image g , and the last term prevents 
the edges from filling up the whole image.  

K∉

uS= u
u S∈

∈ Ω

∈ Ω

)u B

x

( )B xρ

{y
0
ρ

( )B x

m
ρ→

ρ

dy

|2R∈ ρ= ∈ <

jD u cD u
Du D

sD u
sD u

j

|s
SuD u

uS

a jD

D u =

u D+

u S∈ cD u

3. Weak formulation and Γ-convergence 

3.1 Weak formulation 

Heuristically, we expect solutions to Eq. (1) to be 
smooth and close to the image g  at places x , and 
K  constitutes edges of the image. To show existence 
of solutions to Eq. (1), a weak formulation was 
proposed by De Giorgi et al. [DCL90] by setting 
K  (the jumps set of ) and minimizing only over 

BV , the space of special functions of bounded 
variation. We recall some definitions and properties 
concerning functions with bounded variation. 

Definition 1. Let u L , we say that u  is a 
function with bounded variation in Ω , and we write 

, if the distributional derivative Du  of 
 is a vector-valued measure on Ω  with finite total 

variation.  

1( ; )R

2( ;V R∈ Ω
u

2

2Definition 2. Let u L , we denote by S  
the complement of the Lebesgue set of u , i.e., 

1( ; )R u

uS∉  

if and only if li  for some 

, where 

| ( )n u y− ∫
2 :|R y

| 0z− =

}xz −  

Definition 3. Let u B ( )V∈ Ω , we define the three 
measures ,aD u and as follows. By the Radon-
Nikodym Theorem we set where  
is the absolutely continuous part of Du , 

au u= + sD aD u
 is the 

singular part of Du .  can be further decomposed 
into the part supported on S (the jump part u D u ) and 

the rest (the Cantor part D u ): and 

. Thus, we can then write 

. 

c

cu

u

j = D

\|c su Ω

u= +

D

Du D

Definition 4. Let u B ( )V∈ Ω , we say that u  is a 
special function of bounded variation, and we write 

( )BV Ω , if 0= .  
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1

De Giorgi et al. [DCL90] gave the weak formulation 
of the original problem (1) as follows: 

2 2( , ) | | ( ) ( )uE u K u dx u g dx H Sα β
Ω Ω

= ∇ + − +∫ ∫        (2) 

.They also proved that minimizers of the weak problem 
(2) are minimizers of the original problem (1). However, 
from a numerical point of view, it is not easy to 
compute a minimizer for Eq. (2), due to the term 

, and to the fact that this functional is not 
lower-semicontinuous with respect to S . It is natural 
to try to approximate Eq. (2) by simpler functionals 
defined on SBV spaces.  Ambrosio and Tortorelli 
[AT90] showed that Eq. (2) can be approximated by a 
sequence of elliptic functionals which are numerically 
more tractable. The approximation takes place in the 
sense of the Γ-convergence.  

1( )uH S

u

3.2 Γ-convergence 

To approximate and compute solutions to Eq. (2), the 
most popular and successful approach is to use the 
theory of Γ-convergence. This theory, introduced by De 
Giorgi and Franzoni [Dal93], is designed to 
approximate a variational problem by a sequence of 
regularized variational problems which can be solved 
numerically by finite difference/finite element methods. 
Note that Γ-convergence is stable under continuous 
perturbations, and guarantees the convergence of 
minima and minimizers. 

Definition 5. Let X  be a metric space, let {  be a 
sequence of functions defined in 

}kF
X  with values in R . 

Let us set 

{ }-liminf ( ) : inf liminf ( ) :{ }
k

k k kk u u k
F u F u u u

→+∞ → →+∞
Γ = k → , 

{ }-limsup ( ) : inf limsup ( ) :{ }
k

k k ku uk k
F u F u u u

→→+∞ →+∞
Γ = k → . 

If  for all 

, we say that F  is the Γ-limit of { , and we 
write .  

- liminf ( ) -limsup ( ) ( )k kk k
F u F u F u

→+∞ →+∞
Γ = Γ =

X }kF
( ) - lim ( )kk

F u F u
→+∞

= Γ

u∈

De Giorgi et al. [Dal93] proved that  

Theorem 1. Assume F Γ-converges to F  and for 
every k , let u  be a minimizer of F  over 

k

k k X . If the 
sequence (or a subsequence) u  converges to some 

, then u  is a minimizer for F  and  
converges to . 

k

u∈ X ( )k kF u
(F u)

So, we can say that a family { }  of functions Γ-

converges to F  as 
0Fε ε >

0ε +→

}jε →

, if {  Γ-converges to 

 for every sequence { . 

}
j

Fε

0+F

4. Discrete functional of numerical approximation 

Now we consider the numerical approximation, in the 
sense of Γ-convergence, by a sequence of discrete 
functionals defined on finite elements spaces over 
structured and adaptive triangulation. Let 

(0,1) (0,1)Ω = × , let ( )ε ΩT  be the triangulations and 
let ε  denote the greatest length of the edges in the 
triangulations. Moreover let V  be the finite 
element space of piecewise affine functions on the 
mesh 

( )ε Ω

( )ε ΩT , let {  be a sequence of 

triangulations with 

}

0j

jε
T

ε → and let 

:[0, ) [0,f )+∞ → +∞  be a non-decreasing continuous 

function such that 
0

( )m f t
t

li
t→

1= and 
t

. lim
→+∞

( )f t f∞= < +∞

Negri [Neg99] proved that 
Theorem 2. For each sequence of triangulations 

 there exists a convex, 1-homogeneous function 

 such that the functional 

{ }
jε

T
2Rφ : [0,→ +∞)

2 21( , ) ( | | ) ( )
j j T T

j

F u T f u dx u g dxε ε
ε Ω Ω

= ∇ + −∫ ∫     (3) 

Γ-converges respect to strong 2 -L topology to the 
anisotropic Mumford-Shah model 

2 1( ) | | ( )
u

uS
F u u dx f v dHφ∞Ω

= ∇ +∫ ∫  

2( )u g dx
Ω

+ −∫                                             (4) 

We choose 2( ) arctan( )
2

xf x β π
π β

= , and define the 

minimizing discrete model as follows: 
2( , ) ( )

j TF u T u g dxε α
Ω

= −∫  

21 2 arctan( | | )
2

j
T

j

u d
πεβ

ε π βΩ
+ ∇∫ x              (5) 

By theorem 2, we know that Eq. (5) Γ-converges to 
2 2( ) | | | |F u u dx u g dxα

Ω Ω
= ∇ + −∫ ∫  

1( )
u

uS
v dHβ φ+ ∫                                           (6) 
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where  is a unit normal to S . Eq. (6) is an 
anisotropic version of Eq. (2), and the function 

uv u

φ  is 
applied to take into account the anisotropy introduced 
by the geometry of the triangulation T . 

5. Numerical implementation 

In order to arrive at the joint minimum (  of Eq. (5), 
we propose an iterative relaxation algorithm to 
implement the numerical solving of Eq. (5). Fig.1 
illustrates the outline of the proposed algorithm. 

, )u T

 

Figure 1: Outline of the proposed algorithm. 

The main idea of the proposed algorithm is as 
follows: alternating back and forth between minimizing 
Eq. (5) holding T  constant and adapting triangulation 

 holding  constant. The intuitive idea behind the 
algorithm is that if the triangulation T  were known 
and held constantly, it would be straightforward to 
calculate the variable u , and if the variable u  were 
known, it would be straightforward to calculate the 
triangulation T . During each iteration, a scheme for 
the mesh adaptation is first enforced to refine and 
reorganize a triangular mesh to characterize the 
essential contour structure. Then, the quasi-Newton 
algorithm is applied to find the absolute minimum of 
the discrete version of the functional at the current 
iteration. 

T u

5.1 Mesh adaptation algorithm 

There are several approaches to refine and reorganize 
an existing triangulation. Delaunay triangulation 
algorithms have been used successfully for unstructured 
mesh generation. In this paper, we use the Delaunay 
type mesh generator BL2D [BL96] to make the 
triangular mesh accurately characterize the essential 
contour structure. BL2D is a bidimensional, adaptive 
and anisotropic mesh generator. It uses the Delaunay’s 
method to generate a triangular mesh. In BL2D, the 
background mesh is an existing mesh applied to 
generate an adaptive foreground mesh. The foreground 
mesh is built from the background mesh by an 
estimator which consists in giving a metric at each 
point of the background mesh. The metric is 
represented by a symmetric positive definite matrix 
with three coefficients ( . By a rotation at an 
angle 

, , )a b c
θ  making a reference line parallel to one of the 

two axes of the ellipse, the metric ( is easily 
obtained by the relation 

, , )a b c

2
1

2
2

1 0
cos sin cos sin
sin cos 1 sin cos0

ha b
b c

h

θ θ θ θ
θ θ θ

 
 

     −    =       −     
  
 

θ




                      (7) 

where the values h  and  represent the desired sizes 
along two orthogonal directions. As the three quantities 

1 2h

1 2( , , )h hθ  are related to the orientation and anisotropy 
factor of the elements in the adapted triangulation, we 
can enforce an adaptation of the triangular mesh as 
follows: (1) setting three quantities according to the 
function u  obtained from the minimizing component at 
the previous iteration, and (2) building the foreground 
mesh as a Delaunay triangulation with respect to the 
metric which is given at each point of the background 
triangulation, according to above three quantities. 
Interested reader can refer to [GB98] for detailed 
description of the building of adaptive mesh. 

5.2 The minimizing algorithm 

Once a triangulation T  is given, we need to minimize 
 with respect to u , which is piecewise linear on 

each element of T  and continuous on Ω . In general, 
standard minimizing techniques may fail due both to 
the lack of convexity and to the presence of many local 
minima. In order to ensure that the energy decreases 
after each iteration, we apply the quasi-Newton 
algorithm to minimize F u . The quasi-Newton 
algorithm is the most popular algorithms in nonlinear 
optimization, with a reputation for fast convergence. 
The most widely used quasi-Newton formula is BFGS. 
BFGS preserves symmetry and positive definiteness of 

( )F uε

( )ε
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the approximation of Hessian matrix, which may be 
satisfied with a line search using the Wolfe condition. 
In this paper, we use BFGS formula to approximate the 
Hessian matrix. Fig.2 shows a flowchart of the 
minimizing algorithm for the functional . ( )F uε

 
Figure 2: The minimizing algorithm. 

6. Experimental results 

In this section, we carry out some experiments 
respectively on a synthetic image (256×256 pixels), and 
three jacquard images (256×256 pixels) with different 
types of contours and shapes. The results have been 
obtained using software written in C programming 
language on the UNIX operating system running on a 
IPC SUN workstation. In our numerical experiments, 
we choose the parameters as follows: α =0.1, β = 
0.001, γ =2.5×10-2, µ =3.125×10-4, ε =1/256≈0.004. 
As in practice it is difficult to exactly determine the 
noise in real images, here we examine the performance 
of our algorithm by adding “salt and pepper” noise to 
all the tested images. Fig. 3 illustrates the segmentation 
result of a synthetic image using our algorithm. Fig. 3 
(a) gives a synthetic image with 40% noise. Fig. 3 (b) 
gives the initial background mesh generated by BL2D. 
After 8 mesh adaptation processes, the final foreground 
mesh is shown in Fig. 3 (c). The segmented image and 
its edge set are shown in Fig. 3 (d) and 3 (e).

         
(a)                                  (b)                                   (c)                                (d)                                 (e) 

Figure 3:  Segmentation of a synthetic image with 40% noise. (a) Noisy synthetic image. (b) Initial background 
mesh. (c) Final foreground mesh. (d) Segmented image. (e) Edge set. 

We measure the order of accuracy for the mesh 
adaptation algorithm by comparing the length and area 
error of the triangular-shape in Fig.3 (a) between the 
analytical solution and numerical solution. Table 1 
provides detailed accuracy measurements and shows 

how the length and area error depends on the mesh size 
ε . As the mesh size decreases, the adaptive triangular 
mesh will be more and more approaching the boundary 
of the triangular-shape. 
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Mesh size Length error Area error 

ε = 0.004 0.0549 0.00735 

ε = 0.002 0.0287 0.00361 

ε = 0.001 0.00878 0.000945 

ε = 0. 0005 0.00453 0.000455 

ε = 0.00025 0.00186 0.000269 

ε = 0.000125 0.000944 0.000162 

ε = 0.0000625 0.000344 0.0000833 

ε = 0.00003125 0.000182 0.0000453 

Table 1: Number of length and area error changes during the mesh adaptation processes.( ε  is the greatest length 
of the edges in the triangulation) 

We also conduct experiments to compare our 
algorithm with a traditional active contours algorithm, 
the geometric active contours algorithm (GAC) 
[MSV95] under different noise environments. Fig. 4 
and Fig. 5 illustrate the segmentation results of three 
jacquard images using the GAC algorithm and our 
algorithm, respectively. We select three images with 
different shapes of petals from our jacquard image 
database. The shapes of petals in Fig. 4 (a)-(c) are 
roundish, cuspidate and irregular, respectively. Fig. 5 
(a)-(c) show the segmentation results of jacquard 
images in Fig. 4 using the GAC algorithm. Fig. 5 (d)-(f) 
shows the segmentation results of jacquard images in 
Fig. 4 using our algorithm after 10 mesh adaptation 
processes. Comparing with Fig. 5 (a)-(c), sharp 
boundaries are accurately detected and strengthened in 

Fig. 5 (d)-(f). They clearly demonstrate the sturdiness 
of our algorithm when subject to noise. The analysis of 
the experiment results finds that false detected or 
missed boundaries are mainly caused by noise 
occurring on the boundaries, which confuses the 
detection of boundaries by the GAC algorithm. By this 
experiment, we also show how our algorithm can be 
applied to detect edges or other features in contours 
without gradients, while it is impossible for the GAC 
algorithm based on the gradient information. Here, we 
can see that our algorithm is more robust than the GAC 
algorithm for the segmentation of noise-corrupted 
jacquard images. Fig. 6 shows the triangular meshes of 
the pedals in Fig. 5 (d)-(f) which are generated by 
BL2D. 
 

  
(a) (b) (c) 

Figure 4: Three shapes of petals with 40% noise. (a) roundish. (b) cuspidate. (c) irregular. 
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(a) (b) (c) 

  
(d) (e) (f) 

Figure 5: Segmentation results of jacquard images using two different algorithms. (a) - (c) and (d) - (f) are 
segmentation results using GAC algorithm and our algorithm, respectively. 

  

Figure 6: Triangular mesh generated by BL2D 

In Fig. 7, we give 3-dimenstion plots of the 
segmented petals in Fig. 4 using two different 
algorithms. In Fig.8 we give the irregular petals in Fig. 
4 (c) with different noise levels from 40% to 80%. In 
Fig.9, we show some comparisons of topological shape 

variations of the segmented irregular petals in Fig. 8 
using two different algorithms. It can be seen clearly 
that our algorithm is more suitable for the preservation 
of topological shapes of petals in each of the three noise 
levels.
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(a) (b) (c) 

 
(d) (e) (f) 

Figure 7: Comparison of segmentation results with 40% noise.(a) - (c) GAC algorithm. (d) - (f) our algorithm. 

  
(a) (b) (c) 

Figure 8: The irregular petals with different noise levels. (a) 40% noise. (b) 60% noise. (c) 80% noise 

 
          (a)          (b)              (c) 
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(d)   (e) (f) 

Figure 9: Comparison of topological shape variations.(a) GAC algorithm, 40% noise. (b) GAC algorithm, 60% 
noise. (c) GAC algorithm, 80% noise. (d) Our algorithm, 40% noise. (e) Our algorithm, 60% noise.  (f) Our algorithm, 
80% noise. 

The following experiments are designed for 
comparing the accuracy and efficiency of our algorithm 
with another popular minimizing method for the 
Mumford-Shah model [CV01]. We adopt two indirect 
measures to evaluate the objective performance of fine 
image segmentation: the number of segmented regions, 
and the mean square error (MSE) between the original 
and the segmented images. Since MSE represents the 
degree of segmented region homogeneity for a given 
number of regions, it can be used as an indirect measure 
of segmentation efficiency if we consider the number of 
regions simultaneously. The segmentation results in 
Table 2 demonstrate that the proposed algorithm 
improves the fine segmentation performance since it 
produces better objective segmentation quality in terms 
of MSE even with a smaller number of regions 
compared with the algorithm proposed by Chan et al.  

 Chan et al.’s 
algorithm 

Proposed algorithm

 Number MSE Number MSE
 of regions  of regions  

Fig.4 (a) 460 49.65 405 36.87
Fig.4 (b) 540 43.22 470 37.58
Fig.4 (c) 490 40.35 420 30.26

Table 2: Number of regions and MSE comparison 
between the Chan et al.’s algorithm and the proposed 
algorithm 

Table 3 shows the comparison of computational time 
between the Chan et al.’s algorithm and the proposed 
algorithm. We can see that the two models spend the 
same iteration time to accomplish the segmentation 
process, but the proposed algorithm consumes much 
less time than the algorithm proposed by Chan et al. in 
each iteration. 

 

 Chan et al.’s 
algorithm 

Proposed algorithm

 Iteration 
times 

Average 
time of 
iteration 

Iteration 
times 

Average 
time of 
iteration

Fig.4 (a) 40 0.557 40 0.432 
Fig.4 (b) 50 0.578 50 0.480 
Fig.4 (c) 70 0.515 70 0.418 

Table 3: Computational time comparison between 
the Chan et al.’s algorithm and the proposed algorithm 

7. Conclusions 

In summary, we have presented a novel algorithm for 
jacquard image segmentation based on the Mumford-
Shah model. For solving the corresponding 
minimization problem, an iterative relaxation algorithm 
is proposed. The proposed algorithm is applied to 
segment noisy jacquard images and shows its capability 
of accurate segmentation. Experimental results show 
that the proposed algorithm enhances its resistance to 
noise, so that the drawback of the active contour 
methods being easily affected by noise is greatly 
improved. Future work would look into learning 
patterns of variability from a training set and exploiting 
prior knowledge to provide more robust and accurate 
results. 
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