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Abstract 
This paper presents a new approach to classify, index and retrieve technical drawings by content. Our work uses 
spatial relationships, visual elements and high-dimensional indexing mechanisms to retrieve complex drawings 
from CAD databases. This contrasts with conventional approaches which use mostly textual metadata for the sarne 
purpose. 
Creative designers and draftspeople often re-use data from previous projects, publications and libraries of ready 
to use components. Usually, retrieving these drawings is a slow, complex and error-prone endeavor; requiring 
either exhaustive visual examination, a solid memory, or both. Unfortunately, the widespread use of CAD systems, 
while making it easier to create and edit drawings, exacerbates this problem, insofar as the number of projects 
and drawings grows enormously, without providing adequate retrieval mechanisms to support retrieving these 
documents. 
ln this paper we describe an approach that supports automatic indexation of technical drawing databases through 
drawing simplification techniques based on geometric features and efficient algorithms to index large amounts of 
data. We describe in detail the indexing structure (NB-Tree) we have developed within the context of a more general 
approach. Experimental evaluation reveals that our approach outperforms some of the best indexing structures 
published, enabling us to search very large drawing databases. 
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1. INTRODUCTION 

Recent studies [ 13) refor that the use of libraries with old 
cases is important to help designers identifying relevant 
features to include or problems to avoid. Additionally, 
in some design firms, designers often work by making or 
copying diagrams from their design team colleagues for 
further development [12). Furthermore, in some informal 
conversations with designers, we found out that they re-use 
old drawings during the creation phase of a new project, to 
get some ideas or solutions already achieved. Eventhough, 
the re-use of drawings save time, the searching process is 
usually slow and problematic. 

Unfortunately, the widespread use of CAD systems, while 
making the creation and edition of new drawings easier, 
exacerbates this problem, because the number of projects 
and drawings grows enormously, without providing ad­
equate retrieval mechanisms to support retrieving docu­
ments. Present-day CAD systems rely on conventional 
database queries and direct-manipulation to achieve this. 

Some of the solutions [ 1, 10) to this problem use textual 
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databases to organize the information. Drawings are clas­
sified by keywords and additional information, such as, 
designer name, style, date and a textual description. How­
ever, solutions based on textual queries are not satisfactory, 
because they force the designers to knowing in detail the 
meta-information used to characterize drawings and they 
require humans to produce it Opposed to the textual orga­
nization, we propose a visual classification based on shape 
and spatial relationships, which we consider more suited to 
this problem, because it uses the visual memory owned by 
designers and explore their ability on sketching as a query 
mechanism. 

Additionally, recent studies [16, 13) show that design­
ers use a small set of common graphical elements to de­
scribe the sarne drawings, validating our approach of using 
sketches to specify queries to a database of technical draw­
ings. 

The rest of the paper is organized as follows: ln section 2 
we give an overview of the related work in sketch-based 
retrieval. ln section 3 we describe the system architecture 
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Figure 1. System architecture. 

and ali its components. Section 4 explains the basic idea 
of the indexing structure, the NB-Tree, and presents a per­
formance comparison with other indexing structures. We 
conclude the paper by discussing the results and present 
further work directions for our system and related areas. 

2. RELATED WORK 

Recently there has been considerable interest in query­
ing Multimedia databases by content. However, most of 
this work has focused on image databases as surveyed by 
Shi-Kuo Chang [9] . Moreover, in [23], the author anal­
yses severa) image retrieval systems that use color and 
texture as main features to describe image content. On 
the other hand, drawings in electronic format (CAD) store 
data in structured form (vector graphics) requiring differ­
ent approaches from image-based (color, texture) meth­
ods. Some initial work [1, 10] attempted to index technical 
drawings through textual databases. However, this fails to 
use the rich visual association mechanisms and designer 's 
use of sketches to recover information. 

Although, the three systems described below address the 
problem of content-based retrieval of drawings, they fol­
low different principies and different algorithms to achieve 
their goals. 

The first, developed by Mark Gross and Ellen Do, in the 
context ofthe Electronic Cocktail Napkin [16, 12, 15] ad­
dressed a visual retrieval scheme based on diagrams, to 
indexing databases of architectural drawings. Users draw 
sketches of buildings, which are compared with annota­
tions (diagrams), stored in a database and manually pro­
duce by users. Eventhough, this system works well for 
small sets of drawings, the Jack of automatic indexation 
and classification makes it impossible to use for large col­
lections of drawings. 

The S3 system [7] supports the management and retrieval 
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of industrial CAD parts, described using polygons and the­
matic attributes. It retrieves parts using bi-dimensional 
contours drawn using a graphical editor or sample parts 
stored in a database. Although, this system presents good 
results in retrieving industrial CAD parts, it relies exclu­
sively on matching contours, ignoring spâtial relationships 
and shape information, making it unsuitable for retrieving 
complex multi-shape drawings . 

ln [22], Park describes an approach to retrieve mechani­
cal parts based on the dominant shape. Objects are de­
scribed by recursively decomposing its shape into a dom­
inant shape, auxiliary components and their spatial rela­
tionships. The small set of geometric primitives and the 
not so efficient matching algorithm makes it hard to use 
with large databases of drawings. 

ln general, our approach improves on Berchtold [7] and 
Park [22] systems, since we aim to retrieve technical CAD 
drawings and privilege the use of spatial relationships and 
dominant shapes. Indeed, our method is more ambitious 
in the sense that we plan to do automatic simplification, 
classification and indexation of existing drawings, to make 
retrieval process more effective and accurate. 

3. SYSTEM ARCHITECTURE 

Our approach solves these problems by developing a 
mechanism for retrieving technical drawings, in electronic 
formal, through hand-sketched queries, taking advantage 
of designer's natural ability at sketching and drawing. 

Figure 1 illustrates the main components of our approach, 
which we describe below. 

3.1. Classification 

Most technical drawings contain detailed descriptions of 
objects, which are not necessary for a visual search and 
in fact, increase the cost of searching. We include in our 
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approach a process to remove visual details (i.e. small­
scale features) while retaining the perceptually dominant 
elements and shapes in a drawing. Our method divides 
the technical drawing in severa) dominant blocks, that )ater 
will also be divided in other blocks, and extract the spatial 
relationships between them. We only use two spatial rela­
tionships, lnclusion and Adjacency. These relationships 
are weakly discriminating, however they are invariant with 
rotation and translation. 

We then combine shape information with the spatial re­
lationships into a topological graph and store it into a 
database for )ater use in matching candidate graphs. Fig­
ures 2, 3 and 4 illustrate the different steps of the classifi­
cation process: technical drawing, block and spatial rela­
tionship extraction and topological graph creation, respec­
tively. 

Since graph matching is a NP problem, we try to overcome 
this using spectral information on the graph. For each 
graph we compute a descriptor based on their spectrum 
[11, 25). To support sub-graph matching, we also compute 
descriptors for sub-graphs of the main graph. The compu­
tation of the graph spectrum is based on the calculation of 
the eigenvalues of the adjacency matrix of the graph. The 
resulting descriptor is a multidimensional point, whose di­
mension depends on graph complexity. Additionally, it 
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Figure 2. Technical Drawing. 
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Figure 3. Block division for part of the plant. 
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Figure 4. Topology graph. 

captures local topology, is invariant to sub-graph re-order 
and is stable, since small changes in the graph produce lit­
tle changes in the descriptor. However, the resulting de­
scriptor is not unique. More than one graph can have the 
sarne descriptor, which gives rise to collisions. ln [25] the 
authors argue that this collision frequency is small. 

Since we need to índex most sub-graphs of a given graph 
to allow for sub-graph matching, we end up with a large 
database comprising tens of thousands or potentially hun­
dreds of thousands of descriptors, even to índex hundreds 
to thousands of technical drawings. Thus, at the core of our 
approach, we need to have an efficient indexing structure 
for storing descriptors. This will be detailed in section 4. 

3.2. Query 

Our system includes a Calligraphic Interface to support 
the definition of hand-sketched queries, to supplement and 
overcome the Iimitations of textual queries. The query 
component performs the sarne steps of the classification 
process, with an additional recognition step to identify 
sketched shapes [14]. After identification of ali shapes, 
the system extracts the spatial relationships, construct the 
topological graph and compute the corresponding descrip­
tor. This multidimensional descriptor will be used as query 
to the indexing structure. 

3.3. Matching 

The results returned by the indexing structure are a set of 
descriptors similar (near in the space) to the query descrip­
tor. Each returned descriptor correspond to a specific graph 
stored in the topology database, which will be used in the 
matching process to perform a deeper comparison. 

Our classification and query process perform a first filter­
ing based mainly on topology. This step reduces drastically 

• the number of graphs to compare, selecting only graphs 
with a high probability of being isomorphic to the query 
graph. 

Since the number of graphs to compare is reduced from 
thousands to dozens, a simple graph matching algorithm 
can be used, without any loss of efficiency. The isomorphic 
graphs will then correspond to candidate drawings stored 
in the database. 

To support approximate matches, our indexing struc­
ture needs to provide the means for a fast and reli­
able K nearest-neighbors scheme, since most interesting 
candidates will probably yield approximate matches to 
the query. However, nearest neighbor search in high-
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Figure 6. R-Tree evolution and organization. 

dimensional data spaces is a difficult problem. In what 
follows, we will present an algorithm to solve this . 

4. INDEXING STRUCTURE 

To support processing on large amounts of high­
dimensional data, a variety of indexing structures have 
been proposed in the past few years. Some of them are 
structures for low--dimensional data that were adapted to 
high-dimensional data spaces. However, such structures, 
which provide good results on low--dimensional data, do 
not perfonn sufficiently well on high-dimensional vec­
tor spaces. Recent studies [26] show that the majority 
of indexing techniques are less efficient than sequential 
search, if we consider dimensions greater than 10. Other 
indexing structures are incremental evolutions from exist­
ing ones, where, sometimes, the increase in complexity 
is not matched by corresponding enhancements in perfor­
mance. Finally, there are other indexing techniques that 
result from the combination of severa! approaches, making 
their algorithms very complex and hard to code. 

The indexing techniques developed so far can be classified 
into three categories. One that aggregates ali structures de­
rived from the K-D-Tree [21], such as the VAM-Split K­
D-Tree [27], the LSD-Tree [19] , the LSDh-Tree [18] and 
more recently the Hybrid-Tree [8]. Figure 5 illustrates the 
evolution of the indexing structures derived from the K-D­
Tree. 

A second class of structures is composed by trees derived 
from the R-Tree [17], such as the R*-Tree [2], the SS­
Tree [28] , the SR-Tree [20] , the VAMSplit R-Tree [27], 
the X-Tree [6] and more recently the A-Tree [24] . Figure 6 
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Figure 7. Dimension Reduction for 20 points . 

presents the severa! structures based on the R-Tree. 

The third category of structures combines severa( method­
ologies to improve the performance of the final structure. 
In this class we can find structures like the VA-File [26], 
the Pyramid Technique [3], a Voronoi based structure [5] 
and more recently the IQ-Tree [4]. 

The main difference between the first two categories is the 
route they use to divide the data space. Structures in the 
first category are classified as space-parti!ioning methods 
that divide the data space along predefined Iines (hyper­
planes) regardless of data distribution. The resulting re­
gions are mutually disjoint, with their union being the com­
plete space. Structures from the second class are classified 
as data-partitioning structures, which divide the data space 
according to the data distribution. In this category regions 
can overlap. 

The increasingly complex data structures and specialized 
approaches to high-dimensional indexing make it difficult 
to ascertain if there might be a reasonably fast and general 
approach to address many of these problems. We believe 
there might be some merit in taking a step back and looking 
at simpler approaches to indexing these data. Motivated by 
these ideas, we developed the NB-Tree, an indexing tech­
nique based on a simple, yet efficient algorithm to search 
points in high-dimensional spaces, using dimension reduc­
tion. Multidimensional points are mapped to a ID line by 
computing their Euclidean Norm. In a second step we sort 
these using a B + -Tree on which we perform ali subsequent 
operations. 

4.1. The NB-Tree Algorithm 

The NB-Tree provides a simple and compact means to in­
dexing high-dimensional data points. We use an efficient 
lD data structure the B + -Tree to index the points sorted by 
their Euclidean norm (Nonn + n +-Tree = NB-Tree). 

To achieve ftexibility we use dimension reduction: mul­
tidimensional points are mapped to a straight 1 D line by 
computing their Euclidean Norm. The second step is to 

sort them by Euclidean nonn, using a B + -Tree. This way, 



SIACG 2002 - lst lbero-American Symposium on Computer Graphics 
1-5 July 2002, Guimarães - Portugal 

insertPointinNB-Tree(point) 
{ 

norm = computeEuclideanNorm(point); 
insertPointinB+-Tree(point, norm); 

Figure 8. lnsertion algorithm pseudo-code. 

ali operations are performed on the s+ -Tree. Since this 
is the most efficient !-dimensional structure, the NB-Tree 
inherit its good performance, specifically for point queries. 

4.1.1. Creating an NB-Tree 

To create an NB-Tree we start by computing the Euclidean 
norm of each N-dimensional point from the dataset, using 
the Formula: 

l/Pll = VPÕ +PI+ ... + P2rv-1 (1) 

where P = (po,P1, · · · ,PN-d· 

The resulting norm and the N-dimensional point are then 
inserted in a s+ -Tree, using the norm as key. After in­
sertion of ali points we get a set of N-dimensional points 
order by their norm value. 

Figure 7 shows an example of the dimension reduction for 
2D points, while Figure 8 presents the pseudo-code to im­
plement the insertion algorithm. 

4.1.2. Searching 

The searching process in the NB-Tree started by comput­
ing the norm of the query point. Then we perform a search 
in the !-dimensional B + -Tree. The next search steps will 
depend of the query type. Current indexing structures 
usually support three types of queries. The first is Point 
Query, which checks if a specific point belongs or not to 
lhe database. The second type of query, Range Query, re­
turns the points inside a specific range of values. ln our 
case that range will be specified by an hyper-ball. Finally, 
the KNN Query (K Nearest Neighbors) returns the K near­
est neighbors of the query point. This is the most often­
used query in content-based retrieval and is the one we 
describe with more detail in this paper, because it is used 
intensively by our matching component. 

We start the KNN search by doing a bali query (small bali 
in Figure 9). After this ball query we check if we have 
enough points inside the ball to satisfy the query. If not, 
we start an iterative process, where the size of the ball in­
creases gradually until we get all the points specified by 
the query. Figure 9 illustrates lhe KNN search (in 2D), 
while Figure 10 presents the pseudo-code for the KNN al­
gorilhm. 

To improve lhe performance of our algorithm we assume 
that the nearest neighbors will be no far than a given dis­
tance from the query point (largest bali in Figure 9). This 
way we store less intermediate results, speeding up the 
searching process. The distance used to prune the interme-
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list* knnQuery(query, knn) 

qNorm = computeEuclideanNorm(query); 
bRadius = compinitialRadius(); 
pointList = ballQuery(query, bRadius); 
if (enoughPoints(pointList, knn)) 
return pointList; 

else { 
llgrow the ball by going up and 
li down on the B+-Tree 
do { 
point = btree->search(higherLimit); 
higherLimit += delta; 
while (pointNorm <= higherLimit) { 
dist = dist2Query(point, query); 
if (dist <= pruneDist) 
pointList->addPoint(point); 

point = btree->nextPoint(); 
} 

point = btree->search(lowerLimit); 
lowerLimit -= delta; 
while (pointNorm >= lowerLimit) { 
dist = dist2Query(point, query); 
if (dist <= pruneDist) 
pointList->addPoint(point); 

point = btree->prevPoint(); 
} 

}while(!enoughPoints(pointList,knn)); 
} 

return pointList; 

Figure 1 O. KNN Query pseudo-code. 

diate results depends on the number of points in the struc­
ture and grows logarithmically with data points dimension. 

4.2. Performance Evaluation 

While our approach seems to yield commensurable times 
to other structures tested, we had difficulties comparing it 
to other approaches namely the IQ-Tree. lndeed the im-
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Figure 11. Creation time. Dataset size con­
stant (100,000 points) and variable dimen­
sion. 

plementations available did not provide the correct results 
and thus it is difficult to compare run-times which seem 
to be commensurable. Implementations of other popular 
approaches were available but some of them crashed on 
datasets of significant size, preventing comparison. We 
chose the SR-Tree and the Pyramid Technique as a bench­
mark because there are reliable and stable implementa­
tions, which provide correct results and scale up to our 
intended test data sizes. 

ln this section we describe the experimental evaluation per­
formed to compare our NB-Tree with the SR-Tree and the 
Pyramid Technique. We conducted a set of experiments to 
analyze creation and query times as a function of dataset 
dimension and size. Ali experiments were performed on a 
PC Pentium II @ 233 MHz running Linux 2.4.8, with 384 
MB of RAM and 15GB of disk. 

We evaluated the three structures using datasets of ran­
domly generated uniform distributed data points of fixed 
size (100,000) and variable dimension (10, 20, 30, 40, 60, 
80 and 100). We also created datasets with fixed dimen­
sion (20) and variable size (250,000, 500,000, 750,000 and 
1,000,000). Additionally, we randomly generated a set of 
100 queries for each dimension, which we !ater used to 
evaluate the searching performance of each approach. We 
selected the number of nearest neighbors to search for to 
be always ten. 

However, these data sets as they are generated from uni­
formly distributed coordinates, do not seem to be accu­
rately representative of "real problem" data. We plan to 
perform another experimental evaluation as soon as we 
have access to sets of real data. However, we can con­
sider that the uniform distribution of points is a worst case 
than real data, because "real data" tend to concentrate in 
clusters, thus requiring smaller balis to capture the nearest 
neighbors. 

Below we present the results of our experimental evalu­
ation for uniform data, organized by creation and KNN 
search times. 
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4.2.1. Creation 

Most published work tends to ignore insertion times. This 
is because conventional scenarios focus on Iarge static 
databases which are far more often queried upon than up­
dated. However, there are many applications requiring fre­
quent updating of datasets. For these, low insertion times 
are an important usability factor. 

We have compared the creation times to these of the SR­
Tree and of the Pyramid Technique. Figure 11 shows the 
time spent to create each structure when the dimension of 
the data changes. As we can see, the NB-Tree Iargely out­
performs the SR-Tree and the Pyramid Technique outper­
forms both. While the Pyramid Technique takes 6 sec­
onds to insert 100,000 points of dimension 10, the NB­
Tree takes 24 seconds and the SR-Tree takes 23 minutes. 
If we now consider higher dimensions, such as 80, the dif­
ference increases even more with the Pyramid Technique 
taking 31 seconds, the NB-Tree taking 2 minutes and the 
SR-Tree taking 40 minutes. 

ln Figure 12 we can see the time for the sarne action, but 
now with dataset size changing. Although, ali structures 
present a linear growing with the dataset size, the SR-Tree 
creation times grow faster than those of the other struc­
tures. While the Pyramid Technique requires no more than 
2 minutes to create a tree with one million of data points, 
the NB-Tree requires 15 minutes and the SR-Tree takes 
around six hours. From this observation it is clear that the 
NB-Tree and the Pyramid Technique are more suited to 

Iarge datasets than the SR-Tree. 

ln summary, and Iooking at Figures 11 and 12, we can say 
that the Pyramid Technique and the NB-Tree have very 
similar creation times while they largely outperform the 
SR-TRee. 

We were not able to create the SR-Tree for the dataset of di­
mension 100, in our system, dueto memory requirements. 
Thus, in the following performance charts we do not dis­
play the values for dimension 100 corresponding to the SR­
Tree. 
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dimension. 

4.2.2. KNN Search 

Nearest-neighbor queries are useful when we want to look 
at the point in the dataset which most closely matches the 
query. 

Figure 13 depicts the performance of nearest neighbor 
searches when the dimension increases. We can see that 
the NB-Tree outperforms the Pyramid Technique and the 
SR-Tree for any dimension of the dataset. Our approach 
computes the ten nearest neighbors in less than one sec­
ond for dimensions up to 40 and less than two seconds 
for dimensions up to l 00. Moreover, we can notice that 
the NB-Tree seems to present an asymptotic behavior with 
the dimension while the SR-tree seems to exhibit at least a 
quadratic growth. 

As we can see in Figure 14 our approach also outperforms 
both the Pyramid Technique and the SR-Tree for a varying 
dataset size. The NB-Tree exhibits a linear growth with the 
dataset size, while the other structures grow faster when the 
dataset size increases. 

ln short, the NB-Tree presents a good tradeoff between 
creation and searching times, clearly outperforming some 
of the best indexing structures available, for uniformly dis­
tributed data. It can be argued that these represent a worse 
case than, say, (hyper)normally distributed data, in that we 
need to use larger balis to statistically guarantee that we 
capture enough points to satisfy the initial KNN query. 

5. CONCLUSIONS and FUTURE WORK 

We have presented a multidimensional indexing approach 
suitable for content-based retrieval of structured graph­
ics and drawings. The approach is centered on recasting 
the general graphical matching problem as an instance of 
graph matching. To this end we index drawings using a 
topology graph which describes adjacency and contain­
ment relations for drawing blocks. We then transform these 
graphs to descriptor vectors in a way similar to hashing 
to obviate the need to perform costly graph-isomorphism 
computations over large databases, using a stable method. 
Finally a k-NN search over large databases provides the 
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means to efficiently retrieve sub-drawings that match a 
given query in terms of its topology. To optimize this 
stage we have developed a fast yet simple method to in­
dex large databases which is ftexible and scales better than 
other well-known methods. Through a suitable filtering 
procedure we feel confident that we will be able to sieve 
out a few meaningful samples from large structured graphi­
cal document databases using graphical information atone. 
Although work remains to be done at the initial stages, 
of the query and classification pipeline, we are confident 
on the ability to extend this approach to other classes of 
graphical data, such as surfaces, other than structured vec­
tor drawings. 
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