
3rd Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2006)
C. Mendoza, I. Navazo (Editors)

Partitioning Meshes into Strips using the Enhanced
Tunnelling Algorithm (ETA)

Massimiliano B. Porcu, and Riccardo Scateni

Dipartimento di Matematica e Informatica, University of Cagliari, Cagliari, Italy

Abstract
Triangle meshes are the most used representations for three-dimensional objects, and triangle strips are the or-
ganization of triangles mostly used for efficient rendering. Since the problem of optimal strip decomposition of
a given mesh is NP-complete, many different heuristics have been proposed; the quality of the stripification is
usually evaluated using standard indicators as the total number of strips, the number of isolated triangles, the
cache coherence, the number of swap vertices.
In this paper we present the Enhanced Tunnelling Algorithm (ETA), a stripification method working on the dual
graph of a mesh. The method uses a sophisticated mechanism of dynamical update of identifiers, guided by a
localization procedure. The algorithm adopts a modified search approach in the dual graph that accelerated the
convergence speed of the algorithm.
The ETA results efficient and robust, able to deal with datasets of any dimension. The quality of the stripification
is remarkable: very few strips (not seldom just one), no isolated triangles, good cache coherence (ACMR value),
good number of vertex per triangle.

1. Introduction

A strip of triangles is a set of connected triangles charac-
terized by the property that a new vertex in the list of ver-
tices inserts a new triangle in the structure. Triangle strips
are widely used for efficient rendering of solid objects rep-
resented by triangle meshes: in pre-processing, the mesh is
partitioned into a set of triangle strips (possibly composed
of one isolated triangle) and then each strip is passed to the
Graphics Processing Unit (GPU) for rendering. The two op-
posite results of the stripification process are: at worst, the
collection of all the isolated triangles defining the original
mesh needing 3n (where n is the number of triangles in the
mesh) vertices for rendering, at best, a single strip represent-
ing the whole mesh, with all the edges turning the right way
one after each other, needing just n + 2 vertices for render-
ing.

It is worth reminding that there are proofs [GJT76,
AHMS96] that a problem equivalent to searching a single
strip on the mesh (finding a Hamiltonian path on the dual
graph) is an NP-complete problem, thus the stripification
process is based on global or local heuristics.

The total number of strips and isolated triangles are not

the only parameters to measure the quality of a stripifica-
tion produced by a given heuristics. Another tight bound in
the process is represented by the hardware architecture of
current GPUs. Since they are capable of storing in a local
cache a number k of vertices sent down the pipeline (values
of k, even if steadily increasing are several order of mag-
nitude less than the number of vertices in a mesh), is far
more convenient, building the strip, to reference vertices in
the cache instead of sending them back down the pipeline.
Normally, each vertex is processed more than once, since
each vertex belongs to six triangles on average. Counting
how many vertices are not found in the cache is thus a cru-
cial parameter to evaluate the efficiency of the stripification.
This indicator of efficiency is called Average Cache Miss
Ratio (ACMR) [Hop99] and is the ratio between the number
of cache misses during rendering and the number of trian-
gles. This value can theoretically range from an upper bound
of 3.0 (corresponding to an empty cache) to a lower bound
of 0.5 when all the vertices are found in the cache (all the
vertices have to be sent at least once) [BG02].

For heuristics that produces generalized triangle strip
[Dee95], even the number of swaps per strip is an important
quality parameter. We can express it as vertices per triangle

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org


62 Porcu and Scateni / Partitioning Meshes into Strips using the Enhanced Tunnelling Algorithm (ETA)

ratio (number of vertices of the stripification divided by the
number of triangle in the mesh); the minimum value for this
ratio is (n+2)/n.

Our approach to find a stripification encoding of a mesh,
operates on the dual graph (see sections 3 and 4) using a sin-
gle topological operator, known as the tunnelling operator,
introduced first by Stewart [Ste01] and subsequently deeply
improved by the authors [PS03]. Our improved version of
the algorithm relies on a single relevant parameter, the tunnel
length, which influences both the time spent to stripify the
mesh and the final set of strips obtained (number and mean
length). We already showed in [PS03] and [PSS05] how to
overcome the problem of the loops in the dual graph, intro-
ducing dynamic management of the node identifiers (ID).
Nevertheless, this enhancement led to increasing the execu-
tion time, especially using high tunnel length. This made
the method not completely feasible when applied to large
meshes.

In this paper, we present an Enhanced Tunnelling Algo-
rithm (ETA), that appears to be an effective, robust and ef-
ficient stripification method, able to deal with dataset of any
dimension and generating strips of good quality.

In this picture, the major contributions of this work are:

Dynamic ID management: we adopt a novel dynamic
ID management technique, introducing a localization proce-
dure; this drastically reduces the execution time of the al-
gorithm, in a way that is quantitatively dependent from the
mesh dimension and the tunnel length used. On the other
hand, given a fixed time, it is now possible to use longer
tunnel than in the previous version. This is particularly im-
portant for large datasets.

Seeking in the dual graph: we adopt a new search proce-
dure for tunnels in the dual graph, passing from breadth-first
to depth-first search. A breadth-first compared to a depth-
first approach, slow down the convergence of the algorithm.
Using this approach we are able to reach more quickly re-
sults near the global minimum (single strip).

Single strip encode: Running the algorithm with high
tunnel length and avoiding to get stuck in local min-
ima makes the production of a single strip possible for
the method. This is quite frequent for closed (watertight)
datasets, independently from the dimension and the genus.

Stripification quality: even if a single encode is not ob-
tained, the total number of strips is often really low, down
to few ones. Considering the built-in feature of the method,
that is able to produce strips with high cache coherence, it
appears that the quality of the encoding produced by the
method is remarkable, according to the standard benchmark-
ing tools.

The rest of this work is organized as follows: in section 2
we briefly go over the previous work done in stripification;
we then show, in section 3, the relations existing between the

triangle mesh and its dual graph and explain how the ETA
works; sections 4 and 5 are dedicated to show the details of
the algorithm and its implementation; in section 6 we show
the results obtained using our algorithm on several meshes
widely used in literature for benchmarking; finally, in section
7 we draw our conclusions and describe the future evolutions
of this work.

2. Previous Work

A mesh is usually stored as a quadruple M = (K,V,D,S)
where K is a simplicial complex describing the connectivity
of the mesh, V = v1, . . . ,vm is the set of positions defining
the mesh, D are the discrete and S the scalar attributes. Using
graphics API, like OpenGL of DirectX, K becomes implic-
itly defined by the order in which the vertices Vi are sent to
the GPU. This is why arranging well the triangles in strips
is important for efficient rendering. We can split the field of
research in two: stripification as pure pre-processing, stripi-
fication while rendering the mesh.

In the former field, Evans et al. [ESV96] were the first
to work on improving the SGI algorithm distributed with
the first implementation of OpenGL; Chow [Cho97] pro-
posed a stripification method working on a generalized tri-
angle mesh [Dee95] allowing thus to define strips of tri-
angles where the order of vertices inside the triangle can
change from one to another; Speckmann et al. [SS97] de-
fined a special stripification optimized for terrain models
(2.5D models); Xiang et al. [XHM99] work on the spanning
tree of the dual graph to obtain as few strips as possible;
Hoppe [Hop99] is the first to propose the usage of a simple
greedy algorithm to take advantage of the caching strategy
of the graphics boards; Isenburg [Ise01] relies on an exist-
ing stripification code for pointing out how much can be
saved using a compression scheme for strips; Estkowski et
al. [EMX02] instead produces theoretical results regarding
the optimal decomposition of a given mesh in strips.

In the latter field, Hoppe [Hop97] determines the trian-
gle strips on-the-fly after the identification of the visible
triangles extracted from a progressive mesh; El-Sana et al.
[ESAV99, ESEK∗00] uses a special data structure, called
skip-strip to allow efficient selection of triangles and con-
struction of strips while changing the view-point; Stewart
[Ste01] first proposes the usage of the tunneling operator
on CLOD (Continuous Level Of detail) suggesting to use it
whenever the level of detail changes; Shaefe et al. [SP03] in-
troduces a data structure called DStrips with algorithms able
to preserve pre-computed triangle strips through changes in
a CLOD mesh; Ramos et al. [RCBR04] suggest the usage
of a data structure called LodStrips to keep information on
which strips use at different level of details; [PSS05] propose
a mixed approach for strip repairing while changing level of
detail in a CLOD based on pure topological consideration
and the use of tunnelling.

In this context, it is worth mentioning the work reported

c© The Eurographics Association 2006.



Porcu and Scateni / Partitioning Meshes into Strips using the Enhanced Tunnelling Algorithm (ETA) 63

Figure 1: An image of the triangle mesh representation of
the Dea Madre, a statue exposed at the National Archeolog-
ical Museum of Cagliari; the mesh has 571,806 triangles,
the rendering shown here used three strips obtained in 6,217
sec.

in [GE04] and [DGBGP06], since it follows an approach
similar to ours. The goal is building a Hamiltonian path on
the dual graph of the mesh, thus resulting in a single strip in
the triangulation. To do so, they first build a perfect match-
ing in the graph, and then use topological operations on the
graph inserting, if needed, new triangles. Their results are
in a way more complete, ensuring always a single strip; on
the other hand, our approach shows that, in several cases, is
possible to obtain a single strip encode without changing M,
that is, with no extra ad-hoc triangles addition.

3. Operating on the Dual Graph

The usage of the tunnelling operator requires that we refer
to the mesh explicitly in term of its adjacency graph, usually
called its dual graph. Each node of the graph is associated
with a triangle of the mesh and an edge represents an adja-
cency relation. Each node has, at most, three incident arcs.
Moreover, if the original mesh is closed (i.e.: it has no bor-

ders) each node has exactly three incident arcs (see figure
2).

Figure 2: From left to right, an unfolded triangulated cube
and an unfolded octahedron, both with the dual graph of the
triangle mesh.

3.1. The Tunnelling operator

The tunnelling algorithm [Ste01, PS03, PSS05] stripifies the
mesh using just a single operation on its dual graph.

To explain how it works we need to define how a graph
edge can be colored. An edge in the graph has two possible
colors (see figure 3):

black linking nodes associated to triangles in the same strip;
red linking nodes associated to triangles not belonging to

the same strip.

In every node there are, at most, two incident black edges.
The nodes with only one incident black edge are terminal
nodes (they correspond to the initial and final triangle of the
strip). Nodes with three incident red nodes are associated to
isolated triangles.

c© The Eurographics Association 2006.



64 Porcu and Scateni / Partitioning Meshes into Strips using the Enhanced Tunnelling Algorithm (ETA)

Figure 3: The mesh of figure 2 represented as a single strip
and its dual graph colored accordingly.

The only operation performed on the mesh is searching
a path in the graph called tunnel. A tunnel is an alternating
sequence of black and red edges, starting and ending with a
red edge, connecting two terminal nodes. Its length is always
odd and we denote by k-tunnel a tunnel of length k.

Finding tunnels in the graph, is possible to increase the
length of the strips while reducing their number. When a tun-
nel is found, in fact, we complement the path, that is, chang-
ing each black edge in a red one and vice-versa. With every
complement operation we decrease by a unit the number of
black paths (strips in the triangulation) on the graph. See fig-
ure 4 for an example.

The main weakness of the original version of the algo-
rithm [Ste01], is the creation of loops in dual graph during
tunnel search. The set of no-loop rules proposed by the au-
thor is not enough to avoid this problem. In [PS03] we ex-
tended this set of rules, avoiding the generation of loops for
any graph topology. The price to pay for imposing these ex-
tended no-loop rules is keeping track of every different strip
in the graph. This is done tagging each node of the graph
(triangle) with an identifier (ID) corresponding to the strip it
belongs to. During the tunnel search is necessary to operate a
run-time update of these identifiers, taking into account that
each time a red edge is switched to a black one, two strips
are merged and have to be retagged accordingly.

3.2. Tunnelling on CLOD

The tunnelling technique as exposed here can be easily used
to keep a mesh stripified while changing level of detail nav-
igating in a CLOD structure. A comprehensive explanation
on how this can be accomplished is in [PSS05].

These results can be compared to the ones described in
[DGGP05]. The difference between the two approaches is
mainly in the initial strategy adopted to find the stripifica-
tion.

4. The Enhanced Tunnelling Algorithm (ETA)

Dynamical update of IDs is the main complication for the
implementation of the algorithm. When switching a black
edge into a red one, a strip is split in two parts; those parts
can be merged to different strips, switching edges from red
to black. This mechanism can also affect portion of the same
strip, several times, in deep nested way [PS03]. Moreover,
changes have to be discarded if the search does not reach the
goal.

The simplest way to perform this task is to follow the strip,
updating its ID node by node; it is also possible to use some
advanced data structure, but in our experience this is a fur-
ther complication of the code, that does not correspond to a
substantial improvement in time performance.

Updating ID node by node, the efficiency of the operation
obviously decreases as the average strip length grows. This
kind of approach gives to the method some kind of non local
behaviour. This is definitively a problem since much of the
propagations attempts are unfruitful and then discarded. In
fact, as the strips get longer, the probability that searching for
tunnels ends in finding loops increases and then the dynamic
changes of IDs are discarded.

The original tunnelling method [Ste01] was inherently lo-
cal: the operator was limited, in traversing the graph, by
the length of the searched tunnels. Nevertheless, the intro-
duction of dynamic ID management dramatically increased
the overall performance of the algorithm, since the discard-
backtrack procedure was far more efficient and the maxi-
mum tunnel length drastically decreased on average to reach
comparable results.

In this paper, we propose a solution to the problem, the
ETA, that keeps the tunnelling operation local.

4.1. Localization

Our solution relies on a mechanism that fixes an upper bound
for the propagation. In other words we don’t change the IDs
of the edges external to the k-star of the terminal node from
which the search starts from. We call k-star the boundary
of the set of triangles k steps away from the initial one (see
figure 5)

The localized algorithm performs the following steps:

1. Fix k, the maximal tunnel length;
2. Select a terminal node in the graph, where to start the

tunnel search from;
3. Find its k-star;

c© The Eurographics Association 2006.



Porcu and Scateni / Partitioning Meshes into Strips using the Enhanced Tunnelling Algorithm (ETA) 65

Figure 4: An example of tunnelling. On the left we can see all the black edges dropped by the first stripification phase, notice
that, at this stage, all the red edges are 1-tunnels. On the right we evidence the complemented edges: since each complement
operation decreases by one the number of strips, after five such operations we pass from the initial six strips to one, and thus
complete the stripification.

Figure 5: The first three k-star of the triangle marked dark
grey: the 0-star is the triangle itself, the 1-star is marked
light red, the 2-star light green and the 3-star light blue.
Notice that k-tunnels are completely inside the k-star where
also longer tunnels can be found.

4. For any strip crossing the boundary of the k-star count
the number of intersection, say n and, while n > 1, take a
consecutive pair of edges of the strip crossing the bound-

Figure 6: The dark node is the selected terminal, the dark
boundary is its k-star; the edges crossing the boundary are
temporarily removed from the graph and the new, dashed
ones, replace them.

ary, create a temporary fake edge connecting them and
decrease n by 2 (see figure 6);

5. Launch the tunnelling;
6. Eliminate the temporary edges and restore the strips mod-

ified at step 4. changing their IDs only if a tunnel was
found;

7. Change terminal node and restart from step 2.

This procedure is guided from the value of k that is the
only parameter the user is asked to set.

c© The Eurographics Association 2006.



66 Porcu and Scateni / Partitioning Meshes into Strips using the Enhanced Tunnelling Algorithm (ETA)

4.2. Forecast

Another enhancement, allowing to further improve the per-
formance, is the introduction of an access threshold in per-
forming the tunnelling operation. Searching operation from
a terminal node stops when a tunnel is found (positive result)
or when all possible paths up to a fixed maximum length k
has been analyzed (negative result). What we found in our
experiments is that the most part of the time spent by the
program is due to a small subset of searches. For high val-
ues of k, the proportion is around 90− 10 (90% of the ex-
ecution time used in 10% of the searches) with peaks up to
95−5. Moreover, a high fraction of the expensive researches
has negative result. Using an appropriate time threshold for
a search task from a single seed, we have high probability
to avoid expensive + negative researches. The threshold, de-
pendent from the data set, is practically fixed limiting the
maximum number of accesses to the nodes that the search-
ing algorithm can perform.

5. Searching approach

The overall performance of ETA, in terms of total number
of strips, is strictly related to the searching approach in the
dual graph. In [Ste01,PS03], a breadth-first approach is pro-
posed: starting from length k = 1, search all k-tunnels and
increase k only if no k-tunnels are any longer present. A dif-
ferent result is obtainable using a depth-first approach, that
is set a maximum value of k and accept every tunnel found,
independently from its length.

Our results show that the convergence of the search is
much faster when using the latter approach. As one can see
in Fig. 7 where we show data obtained with two datasets
over which we measured the behavior using the alternative
searching strategies, the difference is quite relevant. We can
notice that to reach comparable stripifications using the two
different approaches it is necessary to set a tunnel length
much longer in the breadth-first approach. Since the time
needed to perform the two different search is comparable,
we can conclude that the overall performance of the algo-
rithm benefit very much from this choice.

6. Results and Discussion

We applied our method to a large variety of meshes, ranging
in size and with different characteristics. In table 2 we list
the features of each mesh and the time used to obtain the
results listed in table 3.

The last three datasets are very irregular, composed by
several unconnected portions; the number of portions is thus
the lower limit for the obtainable number of strips. More-
over, some of these portions consist of a single triangle (e.g.:
in the Stanford Dragon dataset there are 88 isolated trian-
gles, and 22 two-triangles components) and this influences
also another parameter we list in table 3, the number of iso-
lated triangles.

Hand

0

200

400

600

800

1000

1200

1400

1600

1800

2000

14 19 24 29 34 39

Tunnel Length

N
u
m
b
e
r
o
f
S
t
r
i
p
s

Armadillo

0

100

200

300

400

500

600

700

18 23 28 33 38 43 48

Tunnel Length

N
u
m
b
e
r
o
f
S
t
r
i
p
s

Figure 7: The blue line shows the convergence of the
breadth-first approach, the red line the convergence of the
depth-first approach.

We obtained all the reported results on a PC with an AMD
Athlon 1.6 GHz CPU, with 1 GB of RAM.

6.1. Time Performance

The features of the ETA induce us to switch the focus from
execution time concept to time budget concept. The algo-
rithm perform a systematic search on the dual graph, taking
into account every path of length less or equal a fixed value
k. The number of possible paths grows exponentially with
the value of k; thus, it is practically impossible to test every
possibility. In this situation, we can not say that the program
terminates its own task or exhausts its seeks. If the mesh has
not being encoded in a single strip, it will be always possible
to try to improve the result, searching for other tunnels with
higher value of k. The quality of the final result, in terms
of number of strips, depends on the maximum tunnel length
and the amount of time the user accepts to wait.

The enhancements we described in section 4, substan-
tially increases the efficiency of the algorithm, allow us to
operate on very big meshes with high tunnel length: this
was not possible with the previous version of the algorithm
[PSS05]. This means practically that we are able to obtain
better results from the “total number of strips” point of view.

c© The Eurographics Association 2006.



Porcu and Scateni / Partitioning Meshes into Strips using the Enhanced Tunnelling Algorithm (ETA) 67

Table 1: Number of strips obtained using different time bud-
gets on the same dataset.

200 400 1000 2500
Secs Secs Secs Secs

Horse 66 13 8 6
Dea Madre 172 78 29 7
Hand 86 51 33 23
Buddha 373 161 115 49

Nevertheless, it is not easy to exactly quantify the amount of
the benefit; it is strictly dependent from the mesh size and
the depth of the search. For instance: to obtain 17 strips on
the Happy Buddha mesh, we operate with tunnel length 200
and used almost 10 hours of CPU; with the same parameters,
the previous version did not terminate after 1 week of CPU!

In table 1 we summarize the results obtained for four large
data sets: Hand, Armadillo, Dea Madre and Happy Buddha,
allocating different time budget. As we can see, it is possible
to obtain good results with small time budgets; moreover,
the result is always subject to improvement (unless we get
to the minimal number of strips as stated before) when we
decide to use larger budgets. It is worth to point out that the
stripification is obtained in a pre-processing step, so it is in
general possible to use large (but reasonable) time budgets.

In table 3 we listed our best results, obtained allocating a
time budget up to a maximum of ∼ 10 hours. That was nec-
essary especially for big meshes as Hand, Armadillo, Dea
Madre or Happy Buddha. Because of the method character-
istics, we are confident that the results for these four meshes
could still be improved, searching for longer tunnels and thus
using more time.

6.2. Single strip encode

Using the ETA is possible, in many cases, to find a single
strip encoding of a mesh. This result has a double impor-
tance, because it shows two different facts completely new:
several meshes admit a single strip encoding and is possi-
ble to find it. For what we known, no other methods can
produce the same result. Also in the approach of Gopi and
Eppstein [GE04], to obtain a single strip encoding is often
necessary to modify the base mesh, adding extra triangles
selected ad-hoc.

In table 3 are listed the number of strips and isolated
triangles obtained for each dataset. We produced a single
strip encode for Goblet, Heart, Fandisk, Oilpump, Horse,
Sculpture (Goblet, Fandisk, Horse and Sculpture appear also
in [GE04]). Dataset Cessna is composed of 11 unconnected
parts; we obtained 13 strips: 9 parts are single strip encoded.

All the above mentioned meshes are closed meshes. This
seems to be the crucial feature to obtain a single strip encod-

Table 2: Time in hour:minute:seconds to obtain the best
stripification we got from the listed datasets; each dataset is
defined by the number of vertices and triangles of the mesh,
and the number of components not connected, resulting in
not connected graphs.

Data Set Triangles Vertices Parts Time
Goblet 1,000 520 1 0.08
Heart 1,717 861 1 0.78
Fandisk 12,946 6,475 1 1.08
Cessna 13,546 6,795 11 54
Oilpump 20,544 10,274 1 1:46
Sculpture 57,780 25,386 1 1:14:01
Bunny 69,451 35,947 1 17:12
Horse 96,966 48,485 1 9:03:03
Shoe 156,474 78,239 1 36:43
Armadillo 345,944 172,974 1 1:52:22
Dea Madre 571,806 290,449 1 1:43:37
Hand 654,666 327,323 1 47:46
Buddha 1,087,716 543,652 1 9:53:04
David 99,995 51,601 26 55:24
Dragon 871,414 437,645 151 2:00:35
Guyver 1,394,874 701,392 65 1:54:25

ing. Other characteristics, as dimension or genus, appear less
important; dataset Sculpture, for instance, has genus three.

For open meshes, the algorithm is not in general able
to obtain a single strip encoding. The number of strips
grows with the number of border triangles; in very irregu-
lar meshes with a high fraction of border triangles, as David,
Dragon and Guyver, the final number of strips can be quite
distant from one.

6.3. Stripification Quality

Even in situations where we are not able to produce a single
strip encode, the total number of strips is very low, up to few
units for regular meshes. This is true also for big datasets as
for instance, Dea Madre (570k triangles, 3 strips) or Hand
(650k triangles, 14 strips).

In addition of number of strips and isolated triangles, the
quality of a stripification is evaluated considering cache co-
herence and total number of swaps. As already stated in sec-
tion 1, the ACMR is widely used to measure how the triangle
strips are compliant with modern GPU architecture. In table
3, we list the ACMR value computed for caches of 32 en-
tries; as we can see, the value is almost independent from the
characteristics of the dataset we start from; moreover, cache
coherence is a built-in feature of the method: strips are pro-
duced with a good ACMR value automatically, and do not
require to be processed in any way for that.

The average ACMR value for a 32 entries cache is ∼ 0.70;
this is a good, and is in general obtained after a preprocess-

c© The Eurographics Association 2006.



68 Porcu and Scateni / Partitioning Meshes into Strips using the Enhanced Tunnelling Algorithm (ETA)

Table 3: For each dataset present in table 2 we list: in col-
umn (a) the number of strips, in column (b) the number of
isolated triangles, in column (c) the ACMR for a cache of
size 32 and in column (d) the vertices per triangle ratio.

Dataset (a) (b) (c) (d)
Goblet 1 0 0.91 1.18
Heart 1 0 0.74 1.32
Fandisk 1 0 0.71 1.44
Cessna 13 0 0.65 1.56
Oilpump 1 0 0.70 1.52
Sculpture 1 0 0.69 1.46
Bunny 14 0 0.72 1.47
Horse 1 0 0.70 1.46
Shoe 5 0 0.70 1.51
Armadillo 18 0 0.70 1.46
Dea Madre 3 0 0.70 1.46
Hand 14 0 0.70 1.46
Buddha 17 0 0.69 1.45
David 242 17 0.71 1.45
Dragon 477 96 0.70 1.46
Guyver 725 18 0.71 1.45

ing algorithmic step, as in [BG02], or imposing some con-
strain in strip generation as in [GE04]. For instance, our re-
sults for Fandisk, Horse and Buddha are practically coinci-
dent with the result listed in table 1 of [DGBGP05], respec-
tively ACMR = {0.71, 0.71, 0.68}.

Furthermore, our studies show that, for caches with 64
entries, the average ACMR value is 0.65.

To take into account the number of swaps (remind we are
generating a generalized strip), we list in table 3 the number
of vertices per triangle ratio. Our results can be considered
in full agreement to the values obtained with standard real
space methods, as the various SGI implementations [Van02].

For irregular datasets as David, Dragon and Guyver, even
if the number of strips remains high, the cache coherence is
good, with an ACMR value of ∼ 0.70, as well as the vertex
per triangle ratio.

7. Conclusions and Future Work

We described a stripification algorithm based on a simple
topological operation on the dual graph of the triangle mesh
that is robust and easy to use. The only two parameters
needed to drive its execution are the maximal tunnel length
and the predictor time budget. The localization strategy im-
posed to the tunnelling brings to a major performance and
quality improvement over the previous non-localized ver-
sion. The results we presented are a demonstration of the
good quality of the stripification the algorithm can produce,
evaluated using ACMR and vertices per triangle ratio.

We plan to investigate the limits of the stripification algo-

rithm when applied to huge meshes, elaborating subdivision
strategy allowing to stripify every single portion of the mesh
in-core. This would result in an application of the algorithm
to meshes of any size.

Acknowledgements

The Dea madre dataset was obtained from tridimensional
scans of manufacts exposed at the Museo Archeologico
Nazionale in Cagliari. We are indebted to its director, Carlo
Tronchetti, for letting us use these digital data and to the
VCG of the ISTI-CNR in Pisa for the hardware and software
used in the acquisition and re-construction.

We thank Daniele Vacca for his work on the visualization
tool.

References

[AHMS96] ARKIN E. M., HELD M., MITCHELL J.
S. B., SKIENA S. S.: Hamiltonian triangulations for fast
rendering. The Visual Computer 12, 9 (1996), 429–444.
61

[BG02] BOGOMJAKOV A., GOTSMAN C.: Universal ren-
dering sequences for transparent vertex caching of pro-
gressive meshes. Computer Graphics Forum 21, 2 (2002),
137–148. 61, 68

[Cho97] CHOW M. M.: Optimized geometry compression
for real-time rendering. In IEEE Visualization ’97 (Nov.
1997), pp. 346–354. 62

[Dee95] DEERING M. F.: Geometry compression. In
Proceedings of SIGGRAPH 95 (Aug. 1995), Computer
Graphics Proceedings, Annual Conference Series, pp. 13–
20. 61, 62

[DGBGP05] DIAZ-GUTIERREZ P., BHUSHAN A., GOPI

M., PAJAROLA R.: Constrained strip generation and man-
agement for efficient interactive 3d rendering. In Pro-
ceedings of Computer Graphics International 2005 (June
2005), pp. 115–121. 68

[DGBGP06] DIAZ-GUTIERREZ P., BHUSHAN A., GOPI

M., PAJAROLA R.: Single strips for fast interactive ren-
dering. The Visual Computer 22, 6 (June 2006), 372–386.
63

[DGGP05] DIAZ-GUTIERREZ P., GOPI M., PAJAROLA

R.: Hierarchyless simplification, stripification and com-
pression of triangulated two-manifolds. Computer Graph-
ics Forum 24, 3 (Sept. 2005), 457–467. 64

[EMX02] ESTKOWSKI R., MITCHELL J. S. B., XIANG

X.: Optimal decomposition of polygonal models into tri-
angle strips. In Proceedings of the eighteenth annual sym-
posium on Computational geometry (2002), ACM Press,
pp. 254–263. 62

[ESAV99] EL-SANA J. A., AZANLI E., VARSHNEY

c© The Eurographics Association 2006.



Porcu and Scateni / Partitioning Meshes into Strips using the Enhanced Tunnelling Algorithm (ETA) 69

A.: Skip strips: Maintaining triangle strips for view-
dependent rendering. In IEEE Visualization ’99 (Oct.
1999), pp. 131–138. 62

[ESEK∗00] EL-SANA J., EVANS F., KALAIAH A.,
VARSHNEY A., SKIENA S., AZANLI E.: Efficiently com-
puting and updating triangle strips for real-time rendering.
Computer-Aided Design 32, 13 (Oct. 2000), 753–772. 62

[ESV96] EVANS F., SKIENA S. S., VARSHNEY A.: Opti-
mizing triangle strips for fast rendering. In IEEE Visual-
ization ’96 (Oct. 1996), pp. 319–326. 62

[GE04] GOPI M., EPPSTEIN D.: Single-strip triangu-
lation of manifolds with arbitrary topology. Computer
Graphics Forum 23, 3 (Sept. 2004), 371–379. 63, 67,
68

[GJT76] GAREY M. R., JOHNSON D. S., TARJAN R. E.:
The planar hamiltonian circuit problem is NP-complete.
SIAM Journal of Computing 5, 4 (Dec 1976), 704–714.
61

[Hop97] HOPPE H.: View-dependent refinement of pro-
gressive meshes. In Proceedings of SIGGRAPH 97 (Aug.
1997), Computer Graphics Proceedings, Annual Confer-
ence Series, pp. 189–198. 62

[Hop99] HOPPE H.: Optimization of mesh locality for
transparent vertex caching. In Proceedings of SIGGRAPH
99 (Aug. 1999), Computer Graphics Proceedings, Annual
Conference Series, pp. 269–276. 61, 62

[Ise01] ISENBURG M.: Triangle strip compression. Com-
puter Graphics Forum 20, 2 (2001), 91–101. 62

[PS03] PORCU M. B., SCATENI R.: An iterative strip-
ification algorithm based on dual graph operations. In
Proceedings of the EuroGraphics conference 2003 (short
presentations) (2003), The Eurographics Association,
pp. 69–75. 62, 63, 64, 66

[PSS05] PORCU M. B., SANNA N., SCATENI R.: Effi-
ciently keeping an optimal stripification over a clod mesh.
Journal of WSCG 13, 2 (feb 2005), 73–80. 62, 63, 64, 66

[RCBR04] RAMOS F., CHOVER M., BELMONTE O., RE-
BOLLO C.: An approach to improve strip-based multires-
olution schemes. Journal of WSCG 12, 1 (Feb. 2004),
349–354. 62

[SP03] SHAFAE M., PAJAROLA R.: Dstrips: Dynamic tri-
angle strips for real-time mesh simplification and render-
ing. In Proceedings of the 11th Pacific Conference on
Computer Graphics and Applications (2003), pp. 271–
280. 62

[SS97] SPECKMANN B., SNOEYINK. J.: Easy triangle
strips for TIN terrain models. In Canadian Conference
on Computational Geometry (1997), pp. 239–244. 62

[Ste01] STEWART A. J.: Tunneling for triangle strips in
continuous level-of-detail meshes. In Graphics Interface
2001 (June 2001), pp. 91–100. 62, 63, 64, 66

[Van02] VANECEK P.: Comparison of stripification tech-
niques. In Proceedings of 6th Central European Seminar
on Computer Graphics CESCG’02 (2002), pp. 65–74. 68

[XHM99] XIANG X., HELD M., MITCHELL J. S. B.:
Fast and effective stripification of polygonal surface mod-
els. In Proceedings of the 1999 symposium on Interactive
3D graphics (1999), ACM Press, pp. 71–78. 62

c© The Eurographics Association 2006.



70 Porcu and Scateni / Partitioning Meshes into Strips using the Enhanced Tunnelling Algorithm (ETA)

Figure 8: From top to bottom: images of the Happy Bud-
dha (1,087,716 triangles), the Hand (654,666 triangles) and
the Armadillo (345,944 triangles) datasets; they are, respec-
tively, rendered with 19, 14, and 18 strips.

c© The Eurographics Association 2006.


