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Abstract
Many motion tracking systems require solving inverse problem to compute the tracking result from original sensor measure-
ments, such as images from cameras and signals from receivers. For real-time motion tracking, such typical solutions as the
Gauss-Newton method for solving their inverse problems need an initial value to optimize the cost function through iterations.
A powerful initializer is crucial to generate a proper initial value for every time instance and, for achieving continuous ac-
curate tracking without errors and rapid tracking recovery even when it is temporally interrupted. An improper initial value
easily causes optimization divergence, and cannot always lead to reasonable solutions. Therefore, we propose a new initializer
based on random-forest to obtain proper initial values for efficient real-time inverse problem computation. Our method trains a
random-forest model with varied massive inputs and corresponding outputs and uses it as an initializer for runtime optimiza-
tion. As an instance, we apply our initializer to IM3D, which is a real-time magnetic 3D motion tracking system with multiple
tiny, identifiable, wireless, occlusion-free passive markers (LC coils). During run-time, a proper initial value is obtained from
the initializer based on sensor measurements, and the system computes each position of the actual markers and poses by solv-
ing the inverse problem through an optimization process in real-time. We conduct four experiments to evaluate reliability and
performance of the initializer. Compared with traditional or naive initializers (i.e., using a static value or random values), our
results show that our proposed method provides recovery from tracking loss in a wider range of tracking space, and the entire
process (initialization and optimization) can run in real-time.

CCS Concepts
• Computing methodologies → Classification and regression trees; Motion capture;

1. Introduction

Over the decades motion tracking systems have been dramatically
improved and are being widely used. Despite differences in track-
ing principles, a key process for many of such systems is optimiza-
tion to solve the inverse problem. A typical optimization approach
is the Gauss-Newton method. Starting from an initial value, it min-
imizes the mean square error of a cost function through iterations.
Due to the nature of the solver, a superior initializer that generates
a proper initial value, which leads to the solution, is required to al-
low the optimization process to converge at the correct solution for
the inverse problem. Without proper initial value, the result of the
optimization process is inaccurate or even wrong. Thus, develop-
ing a superior initializer is critical and an effective way to improve
the motion tracking quality. Even though many new motion track-
ing systems have been proposed, the initializer issues have not been
adequately discussed. Consequently, such systems continue to use
conventional or problem-specific initializers. Actually, many mo-
tion tracking systems require that a specific initializer be developed
for their own problem through experimental processes, e.g. testing
and customizing multiple initializers. This situation generally ex-

ists in optical motion tracking systems (e.g., [PK07]) and magnetic
motion tracking systems (e.g., [RBSJ79]).

The popularity of machine-learning methods (e.g., [Bis06]) con-
tinues to grow, and they are widely being used in 3D motion
tracking, too. Unlike other conventional initializer (e.g., random
guesses), machine-learning methods predict output values from
current input data based on training data: collected samples. For
inverse-problem-based motion tracking technologies, even though
machine-learning methods cannot provide such accurate results
(perhaps due to the ambiguity of such inverse problems), they can
predict a close value very quickly (especially tree-based methods
such as random-forest or KD-trees), which is suitable for the re-
quirements of a fast and accurate initializer. However, this potential
has not been fully investigated.

In this paper, we propose a novel random-forest-based initial-
izer for optimization-based 3D motion tracking problems. Com-
pared with other initializers or initialization methods, our method
provides a more accurate initial value in a short computational
time and can be further applied to computations of various motion
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tracking systems. With initial values close to the solution provided
by this initializer, real-time 3D motion tracking systems achieve
less divergence of optimization processes and faster recovery. To
demonstrate our approach’s benefit, we apply the initializer to the
IM3D system [HTHK14] because its calculation process is one typ-
ical example of solving the inverse problem by the Gauss-Newton
method whose tracking result sometimes cannot be obtained when
the magnitude of the magnetic field is inadequate. Based on mea-
sured magnetic flux from sensors, it computes the spatial config-
uration of markers (LC coils) by the Gauss-Newton method. Dur-
ing run-time, it uses the previous frame’s result as an initial value
to provide a relatively reliable initial value, although it does not
always lead to a solution when the marker is moving fast. Once
the system falls into a situation that it fails to track (i.e., S/N ratio
dramatically decreases when the system’s marker becomes specific
poses), the tracking result becomes unreliable as the initial value
for the next frame, and thus the recovery fails. Hence, the track-
ing quality must be improved,by introducing an accurate real-time
initializer.

This paper consists of four main sections. In section 3, we pro-
pose the main concept of our new initializer. In section 4, we briefly
review the random-forest method and the IM3D system. In sec-
tion 5, we introduce our workflow to implement our initializer in
IM3D, including data collection, preprocess, and run-time imple-
mentation. We describe the configuration of the meta-parameters
in the random-forest model in sections 5 and 6 and evaluate the
real-time performance and discuss the benefits of our initializer in
section 6.

Our main contribution is a new data-driven initializer for real-
time optimization-based 3D motion tracking systems.

2. Related Work

Our work uses a machine-learning method to solve the initializa-
tion problem for motion tracking systems. Thus, our work is mainly
related to 3D motion tracking systems and machine-learning appli-
cations for motion tracking.

2.1. 3D Motion Tracking System

First, we review 3D motion tracking systems that suffer from ini-
tialization problems. Most marker-based tracking systems, which
compute the spatial configuration of markers by solving the inverse
problem based on sensor values, commonly apply such optimiza-
tion methods as the Gauss-Newton method for this task. Marker-
based optical tracking systems (e.g., [PK07]) are very popular these
years. They first obtain the initial value from linear singular value
decomposition (SVD), and then each frame’s result becomes the
next frame’s initial value. Even though SVD is an accurate method
for initialization, its computational complexity requires huge com-
putation resources, and consequently it cannot be used for real-time
tracking systems.

Magnetic motion tracking systems (e.g., [Pol]), which are suit-
able for precise tracking tasks, are also hampered by this initializa-
tion problem. Although a previous work [RBSJ79] argued that this
initial value is important for the convergence of the optimization

process, it did not discuss how to obtain a proper one. Tracking
loss occurs when the S/N ratio of the sensor value becomes too
small, and a proper initial value (position and orientation) close to
the actual result becomes necessary. Without a proper initial value,
the computation result will not converge, and tracking recovery re-
quires more frames.

Two other works [HTHK14] and [HMT∗15] proposed another
magnetic tracking approach that applies a typical Gauss-Newton
method to solve the inverse problem. Similar to other approaches,
these systems only start with the origin as an initial value, and each
frame uses the previous frame’s result as an initial value based on
the expectation that the previous frame’s result is acceptably close
to the current frame’s solution. However, these two works do not
provide a solution to re-initialize the tracking once it gets lost. Con-
sequently, the tracking suffers from an inability to recover from
tracking loss.

A vision-based hand-tracking system was introduced [ZCX12]
with a particle-based initialization method, which starts the opti-
mization process from many different initial values and chooses the
best result. However, such methods are not suitable for real-time
use because they require a large amount of computation resources.

Even though many researches have proposed new ideas on
optimization-based motion tracking techniques, they rarely discuss
how to obtain proper initial values. However, we believe that this
problem deserves more discussion since the optimization process
of practical motion tracking systems frequently diverges and strug-
gles to recover.

2.2. Data-Driven Methods for Motion Tracking

Data-driven methods, or machine-learning methods, can build non-
linear models. They usually adjust the parameters for specific in-
puts and outputs through training to output desired values for simi-
lar inputs in run-time. Popular techniques include multi-layer neu-
ral networks (e.g., deep neural network (DNN), convolutional neu-
ral networks [KSH12]), support vector machines (e.g., [CV95]),
and multi-layer decision trees (e.g., [THF∗03]).

Recently with the improvement of and deep research on data-
driven methods, many new motion tracking techniques have ap-
peared. For example, a system was introduced [MFWM17] that
trains a DNN with Doppler sensor values as inputs to regress hand
motions. Even though its accuracy is relatively low, it demonstrates
the potential of multi-layer neural networks for motion tracking
systems. Two other works [SFC∗11] and [SKR∗15] used random-
forest to track full-body or hand motions from depth images, al-
though their methods do not address the inverse problem. These re-
searches solved the initialization problem of previous systems with
high performance and robust per-frame initialization. This implies
that, even though the result of the random-forest method may be
less accurate than optimization, it can be applied to give proper ini-
tial values in acceptable accuracy for motion tracking systems that
solve the inverse problem by optimization.
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Figure 1: Workflow of initializer

3. Data-driven Initializer for Real-time 3D Motion Tracking

3.1. Objective

As stated above, in motion tracking systems, most inverse problems
are solved by the Gauss-Newton method. Denote Vi(t) as an initial
value and Vr(t) as a result at time instance t. The computation starts
from initial value Vi(t) and optimizes the cost function’s minimum
squared error through steps and gets converged result Vr(t). When
error E between Vi(t) and Vr(t) is too large, this method fails to
get a proper result. The previous frame’s result Vr(t−1) is usually
used as the current frame’s initial value Vi(t). Once the tracking is
lost, the error between Vr(t) and Vi(t) becomes too large, causing
the optimization process to diverge. We define function P(i), which
predicts an initial value through raw input data I, and the error as

E = |P(i)−Vr(t)| (1)

We need to find a better function P′(i) so that most cases E can
be reduced through optimization (i.e., calculation converges) and
applied in real-time. In this paper we prove that for a specific prob-
lem, random-forest offers a better P′(i) with less error than con-
ventional methods and low computation resource requirements to
ensure convergence of the optimization process.

3.2. Workflow

As shown in Fig. 1, the workflow that builds the initializer in-
cludes two phases: training and run-time. In the training phase,
we ran a simulation of the motion tracking system to generate
as many theory-based samples as possible and make input-output
pairs. Then we trained the random-forest with these samples to get
a classification model. In the run-time phase for every frame, we
put the latest sensor data into the model to predict the output as
an initial value to solve the inverse problem. This workflow, which
can be applied to all categories of inverse-problem-based tracking
systems that need initial values, adds a per-frame initialization to
them. As stated in section 3.1, as long as the predicted initial value
has less error than the other methods, the divergence of the opti-
mization process decreases, especially when tracking loss occurs.

3.3. Random-Forest

Random-forest, or a random decision forest, is an effective multi-
class classifier that consists of multiple decision trees with splits
and leaf nodes (Fig. 2). Each split node consists of feature fθ and

Figure 2: Decision tree in random-forest for parameter x

threshold τ. To classify input set I, start at the root and repeatedly
evaluate Eq. 2, branching left or right based on the comparison to
threshold τ. At each leaf node in the tree, the distribution of output
~P(X |ID) is stored:

fθ(I,x) = dI(x+
u

dI(x)
)−dI(x+

x
dI(x)

) (2)

The distributions are averaged for all the trees in the forest to give
the final distribution, which is the final possibility of this classifier’s
output. A random-forest can be effectively trained with a previously
described algorithm [THF∗03].

Random-forest has two main configurable parameters: the depth
of the trees and their number, both of which determine the model’s
complexity. In practice, we configure these parameters based on the
model’s actual performance through experiments. In section 5, we
also show an experiment with which we configured the model for
our application example.

3.4. Sample Acquisition

Collecting training data is sometimes difficult for precise and high-
resolution motion tracking systems. In most previous researches,
training data were carefully collected through actual use cases, for
example, using accurate robot arms for automatic measurements
or manual measurements in small intervals of positions (< 5mm)
and rotations (10◦) for the entire tracking space since the machine-
learning model’s output directly becomes tracking results. How-
ever, our initializer does not require such sampling because the
random-forest’s output is used as an initial value that only has to
be accurate enough for the optimization process. This actually in-
troduces a possible approach to simply acquire massive samples.
As Eq. 3 describes, the optimization process of 3D motion tracking
systems can be generalized to a process that minimizes the objec-
tive function. Here x is the tracking result, M is the measurements,
and f (x) calculates the theoretical measurements for specific track-
ing result x based on a tracking principle. Therefore, such optimiza-
tion is seeking theoretical value x so that f (x) = M. Based on this,
we use a simulator to enumerate every possible x to compute cor-
responding f (x) and use these combinations as training samples:

E(x) = |M− f (x)| →Minimum (3)
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Figure 3: Tracking principle of IM3D

4. Implement Initializer for IM3D

In this section, we introduce the implementation of our initializer
for IM3D as an application example of our method.

4.1. IM3D

IM3D is a unique magnetic motion tracking system with multiple
tiny, identifiable, wireless, occlusion-free passive markers (i.e., LC
coils) that provide reasonable accuracy, a reasonable update rate,
and an appropriate working space for natural, dexterous 3D inter-
action.

As shown in Fig. 3, once a varying electromagnetic field is gen-
erated by the modulated current in the driving coil, the LC coil
inside the electromagnetic field is induced and generates a resonant
magnetic flux. Then the pick-up coils in several different locations
sense the magnetic field from the LC coil. The signals are measured
by AD converters, and finally the program computes the LC coil’s
3D position and orientation except for the rotation around the axis
of the LC coil. Each LC coil is identifiable since it has an individ-
ual number of wire turns and generates magnetic flux in a unique
resonant frequency. 15 identical markers are concurrently available
in IM3D because the number of unique frequencies of modulated
current is limited by the modulator specifications.

This system computes the spatial position and orientation of the
LC coils by solving an inverse problem. Assuming that the flux
density generated by the marker can be regarded as a magnetic
dipole field, more than six values (in an actual implementation,
the number of values equals the pick-up coils) of flux density at
the known positions are required to calculate the six parameters of
the markers: position (x, y, z), orientation (θ and φ), and the mag-
netic moment (M). The system solves this inverse problem, using
the following equations (derived from the Biot-Savart law) and a
non-linear method of least squares with the affect optimization of
the Gauss-Newton method [NK82]. The details of this process were
previously described [HTY∗08]:

S (~p) =
n

∑
i=1

∣∣∣~B (i)
meas−~B (i)

cal (~p)
∣∣∣2→Minimum (4)

~B (i)
cal (~p) =

1
4πµ0

{
−

~M
r3
i
+

3( ~M ·~ri ) ·~ri

r5
i

}
(5)

~p = (x,y,z,θ,φ,M ) (6)

As the Biot-Savart law indicates, if the LC coil is perpendicular
to the magnetic field of the driving coil (i.e., parallel to the pick-up
coil array in this case), then it fails to be driven and will not gen-
erate the resonant magnetic field: hence tracking loss (dead-angle
problem). This problem was successfully solved [HMT∗15] by de-
signing a marker with three LC coils in different spatial rotations so
that for any time instance, there is at least one tracked LC coil (de-
tails are available [HMT∗16]). However, this solution suffers when
the markers become bulky and the number of available markers de-
creases. To avoid these problems, a single LC coil must be used as
a marker.

Although this system uses a previous result as an initial value,
tracking gets lost once the marker goes outside the tracking space,
and the previous result becomes improper as an initial value, and
thus a robust initializer is required.

4.2. Data Structure

The input data for random-forest consist of 32 voltage values from
32 pick-up coils of the system. Due to the initializer’s purpose, the
output has the same form as the initial value for the inverse problem
(described in section 4.1).

Even with the same spatial pose, the flux strength generated by
each LC coil is different due to the different number of wire turns
and the various magnitudes of the power supply from the driv-
ing coil. We measured the data from different LC coils and found
that the normalized distribution of the flux is very similar when
the markers have identical spatial configuration. This idea can also
be explained by the Biot-Savart law; the magnetic moment of the
source determines the scale of the distribution. Therefore the data
set of each sample is normalized and passed into the random-forest,
helping the initializer discard the massive input samples due to the
wide range of the possible magnetic moment.

4.3. Sampling and Training

IM3D’s tracking principle is technically a process that searches for
a spatial pose where a measured value set matches the theoreti-
cal value set, which is computed with the Biot-Savart law. In ideal
cases, these two value sets perfectly match. For practical cases, they
are also very close because the square error is usually less than
0.001 (position in meters, and rotation in radius). Based on this re-
sult, we computed the theoretical values of all the locations and
orientations and used them as training samples. We built a gener-
ator that enumerates all the spatial poses with high resolution for
the whole tracking space and created 32 values in 32 locations of
the pick-up coils based on the Biot-Savart law. With this generator,
a billion different samples can be created with very little effort for
acceptable accuracy. For other 3D motion tracking systems, as far
as a known theoretical model exists, training samples can be gen-
erated that consist of the position and the orientation of the marker
and sensor values.

4.4. Initializer Implementation

We implemented a random-forest model as a classifier whose out-
put is discrete. Since we only require an approximation from the
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initializer, this model still satisfies our need. We therefore specifi-
cally constructed and configured the forest training parameters for
this goal.

We simply constructed a forest for each dimension of the initial
value (thus 6). For each positional (x, y, and z), rotational (θ, φ),
and magnetic moment (M) dimension forest, we tagged the train-
ing samples based on target resolution res. For instance, tag ID of
sample A in forest of x can be obtained by applying the following
formula (min and max show the minimum and maximum values of
tracking space in the dimension):

IDA =
x−min

res
(7)

In this way when we get predicted tag IDX from the initializer,
we can transform it back into an actual number in a reversed way:

x = IDA · res+min (8)

Therefore, the number of classes for each forest (number) can be
obtained:

number =
max−min

res
(9)

Based on our observation in pilot study, since the optimization
process highly converges with initial values within 70 mm of the
real position, we set our initializer’s resolution to 10 mm. For the
rotation, we set the resolution to 10 degrees to get as many samples
as possible with acceptable accuracy.

We chose the number of trees in each forest based on the number
of classes. We experimentally decided the number of trees as half of
the number of classes. The other parameter, maximum depth, was
also chosen from our experiment results. A detailed comparison is
discussed in section 6.3.

5. Evaluation

In this section we describe the evaluation of our method that was
implemented in IM3D. Through these evaluations we show the ben-
efit of our initializer.

5.1. Convergence

Convergence is the most important feature brought to the system
by our initializer. Previously without an initializer, when tracking
loss occurs, the system has trouble recovering since it cannot find a
proper initial value for the optimization process. With our method,
the system can ensure a proper initial value, and so the optimization
process highly converges when the S/N ratio is acceptable. We ex-
perimentally proved this feature and the superiority of our method
by comparing our method and two other settings: 1) Always setting
the initial value to a static position in the tracking space (x = 0 mm,
y = 50 mm, z = 0 mm from the IM3D’s origin), and 2) randomly
choosing a value inside the tracking space at every time instance.
We chose these two because they are the most common methods
used by practical real-time motion tracking systems when tracking
loss occurs.

Figure 4: Convergence rate of three methods

We put a marker at 100 different locations inside the tracking
space to uniformly collect data (3 mm, 32 mm, 64 mm, 93 mm,
and 122 mm for x and z axis; 32 mm, 64 mm, 93 mm, and 122
mm for y axis). The real position was measured by a ruler to main-
tain 1-mm accuracy. The locations are within one quarter of the
whole space because of the symmetry of the pick-up coil layout and
evenly distributed inside the space while maintaining differences
from typical locations and training samples. We mainly evaluated in
several height layers from 32 mm (the lowest height our measure-
ment structure can reach) to 122 mm. We measured flux 100 times
in each position and processed the optimization with initial values
computed by the three methods. Diverged processes were detected
by checking whether the calculated magnetic moment of each pro-
cess was significantly large. To avoid counting trials in which the
processes converged into the local minima of the cost function, we
also counted trials as diverged trials when the distance between the
calculated position and the actual position was larger than 40 mm.

The convergence rate ( trials−diverged
trials ) of each method is shown

in Fig. 4, and the convergence rate of our method significantly ex-
ceeds all other methods. Individual results in every specific position
are shown in Fig. 5. Our initializer has more effective results in al-
most all the measuring positions, indicating that our initializer can
provide better initial values even for areas far from the center of
the space. Hence it is more robust. This result also implies that our
method will be more effective for other tracking systems with a
larger tracking space. Therefore, the initial values predicted by our
method are perspective values for computation.

5.2. Prediction

The system with our initializer has same tracking accuracy as a pre-
vious work [HMT∗15] that applied the same principle. However,
our random-forest method shows amazing potential in position cal-
culation since the initializer’s output seems very close to the fi-
nal result. Additionally, we want to confirm that the random-forest
yields a prediction that is close to the actual location, so that the
inverse problem can be successfully solved. Based on these goals
we experimentally demonstrated this feature.
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(a) Random value (b) Random-forest (c) Static value

Figure 5: Visualization of convergence rate of three methods

Figure 6: Visualization of prediction accuracy inside space

5.2.1. Positional Accuracy

We calculated the distances between the initial values predicted by
random-forest and the actual positions by using the data we ac-
quired in section 5.1.

The visualized results are shown in Fig. 6. The error of each
location is mapped in 3D colored dots, and the minimum error (30
mm) is shown as green dots and the maximum error (150 mm) is red
dots. Most points are either highly green or highly red. The average
prediction error within the tracking space is 35 mm, which is highly
satisfactory as an initial value for the inverse problem, since from
previous experience an initial value with error less than 70 mm can
ensure the convergence in calculation with an acceptable S/N ratio.

5.2.2. Flux Strength Affect

We conducted an additional evaluation with different rotations and
different numbers of markers. These different conditions changed
the flux sensed by the pick-up coil. We want to evaluate the magni-
tude of flux with which the initializer can yield a reliable result.

We used a rotating platform (Fig. 7) to fix the marker in corre-
sponding rotations. In six different locations in the tracking space,
we got the data with both one-marker and fifteen-marker config-
urations. We defined 90 degrees as a parallel pose to the plane of
the pick-up coil array and 0 degrees as a perpendicular pose to the
plane. The magnitude of flux decreases when the marker’s pose be-
comes close to 90 degrees, and the S/N ratio becomes poor.

Fig. 8 shows the prediction error in different rotation from var-
ious locations, where the error in different locations (coordination
represented as X|Y|Z at the top of the graphs) is shown as lines in

Figure 7: Marker (LC coil) on rotating platform

(a) one-marker configuration result

(b) fifteen-marker configuration result

Figure 8: Prediction error in different rotations from different lo-
cations
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(a) forests with 10 mm interval training samples

(b) forests with 5 mm interval training samples

Figure 9: Success rate with meta-parameters (i.e., maximum depth
of trees and number of trees)

different colors. These results show that prediction accuracy falls
when the flux is reduced, since the accuracy in the larger rotation
is lower than that in the smaller ones, and in the same pose, the
accuracy in the one-marker configuration is higher than the fifteen-
marker configuration. Actually, the IM3D system suffers from this
dead-angle problem. When its angle is almost parallel to the pick-
up coil array, the LC coil cannot generate any flux, which also
caused tracking loss even with proper initial values.

5.3. Meta-Parameters of Random-Forest

We also did another experiment to obtain output from our initializer
with the measured flux data in experiment in section 5.1 to deter-
mine the effects of different parameter configurations. We focused
on the estimation success rate, which is defined as the prediction
percentage with error smaller than 50 mm among all the test points.
Fig. 9(a) shows the success rate when we train the forests with 10-
mm interval samples (1.1 million samples) with a maximum tree
depth (30 to 70) for four different number of trees (8, 16, 24, 32).
This graph shows the results with different combinations of num-
ber of trees and maximum depths for each tree. For all the config-
urations of different numbers of trees, the success rate reached its
highest result with a maximum depth of 60, and with 16 trees the
forest reaches its highest rate of 90%.

Fig. 9(b) shows the same experiment with 5-mm interval samples
(8.8 million samples). Similar to Fig. 9(a), it has a peak for the
success rate, and more trees increase the success rate.

We also found that the accuracy with 10-mm samples is better

Figure 10: Speed (in FPS) decreases when markers (LC coils) in-
crease
than 5 mm by comparing all these results, probably caused by more
ambiguity in the excessively massive data samples.

5.4. Performance

For a real-time motion tracking system, since its computational
speed’s performance must be ensured, we also did such experi-
ments. We mainly tested the speed of the entire process (our initial-
izer and the optimization process) and the initializer’s speed itself.

For the random-forest performance, we simply ran the random-
forest evaluation 1000 times and checked the time cost. Each pre-
diction call cost 1 millisecond, which barely affected the entire sys-
tem’s performance.

For the speed of the whole process, we set up the system with
a different number of markers ranging from 1 to 15, ran it for 100
seconds, and tracked all the used markers. The system provided
high-tracking speed close to 60 Hz for a marker. When tracking
with up to 15 different markers, it can still maintain a speed over
30 Hz (Fig. 10). The speed reduction is caused by the increase of
overhead, other than introduced by our initializer.

6. General Discussion

Due to resource limitations, we only implemented our method on
a magnetic 3D motion tracking system. However, as mentioned in
section 3, it can generally be applied to other optimization-based
tracking systems. As in these systems, since simulation is easier
than solving the inverse problem, massive training samples can be
easily obtained from the simulation. For example, for camera-based
optical tracking systems, the simulation input can be rendered as
images with specific camera-marker configuration, and for mag-
netic tracking systems, the simulation input can be theoretical val-
ues with specific marker locations and rotations.

Our evaluation results proved that our method adds robustness
to 3D motion tracking systems. Since interactive techniques always
require continuous tracking results for continuous interaction, our
method, although not directly, will also improve the experience of
3D motion-based interactive techniques.

We chose to experiment with a random-forest rather than other
data-driven methods, such as a deep neural network (DNN) or
the Gaussian process. Actually, we tested these methods with the
same input-output strategy and training data through preliminary
research. However, none of these methods yielded satisfactory re-
sults, perhaps due to the complexity and the ambiguity of such in-
verse problems or the model’s complexity during run-time. On the
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other hand, without yielding very accurate results, random-forest
constantly gave acceptable predictions very quickly; we choose it
because it is a fast and accurate initializer.

Regarding the run-time phase, random-forest works like lookup
tables, which only search from existing data to find the best match.
Since we can generate a very large database using the Biot-Savart
law without much effort, such a method might effectively get close
output. Based on this difference, perhaps other similar methods (for
instance, KD trees) might be successful, although further experi-
ments are needed.

Our evaluation shows that our initializer itself is so fast that there
is almost no effect on the system’s cost. This leaves space for fur-
ther improvements, such as filters or regression.

7. Conclusion and Future Work

We present a novel random-forest-based initializer for
optimization-based 3D motion tracking systems. As an ex-
ample, we apply this approach to a magnetic 3D motion tracking
system (IM3D) to solve an actual initialization problem. Our fast
and accurate initializer provides successful per-frame initialization
from 32 sensor values (flux intensity) for an optimization problem
in real-time. With this feature, the new system gains recovery
ability, allowing it to recover from tracking loss despite very low
computation resource cost.

We propose and discuss the structure and the parameter con-
figuration of our initializer and experimentally evaluate its perfor-
mance. It gives an initial value within 35 mm from the actual posi-
tion (in most cases in 1 millisecond), which helps the optimization
process calculate a result with less than 10 mm error. Since our
new initializer can yield output within 1 millisecond, the integrated
system’s speed exceeds 30 Hz, even with 15 markers, which is rea-
sonable for real-time motion capture or applications.

The accuracy of the output from our initializer and many other
data-driven tracking systems convinces us that perhaps we can
completely rely on data-driven methods instead of such optimiza-
tion problems of this system. This could boost this system’s speed,
but it requires more strategy design and training efforts. A possi-
ble solution is to divide the whole tracking space into many small
regions to build a multi-layer predictor. Other machine-learning re-
searches have proven the efficiency of this idea for increasing ac-
curacy.

With our initializer, real data can also be collected for on-line
training. For future applications, we are considering acquiring sam-
ples during run-time for progressively refining the model. More-
over, dexterous motion data can also be collected for other re-
searches such as motion synthesis.

Other future work will apply our approach to more different
tracking systems such as optical and acoustic systems.
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