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 Abstract 
A novel post-processing approach for removing Monte Carlo noises in synthetic images is presented in 
this paper. This paper first presents our findings on the statistical characteristics of the Monte Carlo 
noise, and then proposes a Bayesian method to remove this noise. The aim of this approach is to 
efficiently produce high quality synthetic images using Monte Carlo based rendering at low sampling 
rates. 

Categories and Subject Descriptors (according to ACM CCS): I.4.3 [Image Processing and Computer 
Vision]: Enhancement; I.3.3 [Computer Graphics]: Picture/Image Generation  

 

 
 

1. Introduction 

It is still a great challenge to accurately compute the 
lighting for rendering a synthetic image in an acceptable 
time period. A lot of work have been carried out in this 
field, from the early simple basic ray tracing [Whi80], 
through radiosity [GCT86], radiance [War94], bi-
directional path tracing [LW93], to photon mapping 
[Jen96], metropolis light transport [VG97], and various 
hybrid solutions [LTG92], together with a variety of 
rendering acceleration methods, like level of detail [FC93], 
scene simplification [LE97], and perception based 
acceleration methods [BM98, RPG99].  All the modern 
rendering methods are based on solving the radiance or 
rendering equation for global illumination [Kaj86]. 

These various methods for global illumination computation 
can be classified into two categories: object space methods, 
and image space methods [McC99]. Finite element 
methods were developed to solve the radiosity problem 
[GCT86, LTG92] in object space by exploiting the fact that 
diffuse light transport results in illumination that is 
relatively coherent and smooth. But this method introduces 
error by incorrectly smoothing over discontinuities in true 
solution. On the other hand, most image space methods 
[Kaj86, LW93, War98] compute the radiance value for 
each pixel using Monte Carlo methods. These methods are 
more general in that they can handle variety of surface 
geometry, variety of surface properties. They are able to 
identify discontinuities in the scene without much problem. 
However, they have their own drawback: extremely low 
convergence speed, especially around illumination 
discontinuities such as light source edges, penumbrae, 
fuzzy specula reflections, and caustics spread. According to 
the noise analysis in [McC99], plenty of samples are 
needed for each pixel around such image regions to obtain 
estimates under some threshold error [Pur87, RW94]. This 
greatly impedes the rendering speed for a high quality 

synthetic image. As a result, noise free computation of 
reasonably complex images may take minutes to hours 
[SWS96, War98]. So much of computation time is 
generally not affordable in practice. So when using a Monte 
Carlo based global illumination method for image 
synthesis, one trades off rendering time for noisy images. 
The amount of noise in the image varies with an inverse 
square relationship with the rendering time. [RW94] 
provides a time measure in terms of the number of samples 
required to get a given accuracy. The expression for this 
time measure is given in Equation (1). 

( )21
16_4 −∆⋅= tvispt LSM   (1) 

where, tM  denotes the number of estimate samples required 
to obtain a result with accuracy or error tolerance of tvisL∆ . 

16_pS  is the mean error obtained using 16 samples. 

Thus, to increase the accuracy two times, i.e. to reduce
tvisL∆  by half of its original value, 

tM  should be increased 
four times. In conclusion, it is expensive to get high-quality 
synthetic images simply by increasing sampling rate.  In 
other words, images computed within a reasonable time 
period using a Monte Carlo radiance computation method, 
will invariably have noises (more or less). 

To remove these noises, researches have devised various 
methods, which can be generally categorized into two 
classes: post-processing and importance sampling. The 
former removes the Monte Carlo noise after rendering, 
while the latter suppresses the Monte Carlo noise during 
rendering. The approach proposed in this paper is a post-
processing approach, which builds a statistical model of 
Monte Carlo noise, and removes the noises using Bayesian 
method based on this model. 

The goal for Monte Carlo noise reduction is to suppress as 
much noise as possible while keeping true information 
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undisturbed. The image processing and computer vision 
community has invented a bunch of noise reduction 
techniques, like uniform filtering, Wiener filtering, wavelet 
thresholding [Mal89, Pae90, PS00, WH94]. All these 
models take advantage of the intrinsic spatial coherence 
property of natural images. These methods make 
assumptions about the noise type. 

This paper handles Monte Carlo noises in synthetic images 
by modeling the noise and proposing a framework to 
remove the noise to create visually pleasing images. 

Three keen observations inspire our work. First, most of the 
noise is in the indirect inter-reflection 
component [JC95]. Second, if we assume 
mostly diffuse environment then the diffuse 
inter-reflection tends to be of low frequency 
[WRC88]. Third, we find most of the noise 
tends to be high frequency. In this paper we 
explore the idea of Monte Carlo noise 
reduction using Bayesian method. Bayesian 
denoising is a successful image denoising 
technique that favorably suppresses the higher 
frequency information where noise 
concentrates. 

The paper presents this approach in three 
sections: analysis of Monte Carlo noise, a 
framework to remove Monte Carlo noise, 
experimental results. 

This paper has two contributions: (1) it 
proposes a general model of the Monte Carlo 
noise; (2) it is the first attempt of applying 
Bayesian method to Monte Carlo noise 
reduction. 

2. Related work 

Extensive work has been carried out to reduce 
noise in images created by Monte Carlo 
methods. Of the different methods, we will 
confine our discussion to post processing related methods. 

The early work of [LR90] revealed that the Monte Carlo 
noise (for sensory data) comes from frequencies above 
sampling frequency being folded into frequencies that can 
be displayed, and presents itself as noisy spikes. He 
proposed median and alpha-trimmed mean filters to reduce 
the noise, which assumes that the noise comes from 
unwanted secondary input, such as bit errors in 
transmission, and just throws away those extraneous 
samples.  However, it is not the same case for synthetic 
images, because the noise in synthetic images comes from 
insufficient sampling, not secondary input, and the so-
called noise carries information about the true value of the 
image [Pur87, RW94]. 

Rushmeier et al [RW94] first realized that the Monte Carlo 
noises in a synthetic image carry meaningful information 
and proposed an energy preserving non-linear filter to make 
use of the information implicit in the noise by distributing 
them to neighboring pixels. However, this method assumes 
a simple linear tone reproduction operator when deriving 
the average number of samples to approximate the 
rendering equation. As we know, High Dynamic Range 

image is a natural outcome of most renders and non-linear 
tone reduction operator are mostly used to display the final 
image on common display devices. This invalidates the 
assumption, and hence, invalidates the derivation of the 
formulation for the number of samples (Equation (1)). 

Jensen et al. [JC95] presented an alternative perspective to 
Monte Carlo noise in synthetic image. They assumed that 
the noise is mainly from diffusely reflected indirect
illumination. They separated indirect illumination and 
removed the noise from this indirect component using 
various filters, such as low pass filter, mean filter.  
However, they failed to consider the “outliers” in areas 

with sharp luminance changes, like light source edges 
[RW94]. And the filters used blurred the edges.  

 

Anisotropic diffusion has been successfully applied in 
Monte Carlo noise reduction to keep edges, and remove 
noise within regions [McC99]. This method is sensitive to 
outliers.  

The following list summarizes the various facts about 
Monte Carlo noises from all the work done so far on 
dealing with Monte Carlo noise. 
� The Monte Carlo noise comes from insufficient 

sampling in high variance regions.  
� The noise can be classified into two types: outliers 

[RW94] and inter-pixel incoherence [JC95, TJ97]. 
o Outliers often occur where luminance changes 

abruptly, like edges.  
o Outliers carry useful luminance information. 
o Inter-pixel incoherence often occurs inside high 

coherent regions.  
� More noises come from computation of indirect 

diffuse inter-reflection. 

(a) 

 (b) 
 

(b) 

Figure 1: Test image and its subbands in 
Wavelet domain. Figure (a) is the 
indirect reflection component using only 
a small number of MC samples. Figure 
(b) is the actual indirect reflection 
component obtained using a much larger 
number of samples. Figure (c) shows the 
sub-bands after wavelet transformation 
of the log luminance channel of Figure 
(b). 
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Based on the previous work about Monte Carlo noise 
reduction and on our new observation, a Bayesian noise 
reduction method is presented in the following sections. 
Our method makes use of the statistical characteristics of 
Monte Carlo noise for noise reduction. 

3. Monte Carlo noise analysis 

Given an image created at a low sampling rate using a 
Monte Carlo method, there are plenty of visible noises. 
These noises are generally present in two forms: outliers 
and inter-pixel incoherence. We try to build a general 
statistical model to handle both types of Monte Carlo noise. 
This model addresses two problems: the way noise is 
combined with true pixel values; and the distribution of the 
noise. 

From our experiments with a number of images generated 
using Monte Carlo methods, we find that the coefficients of 
the wavelet band of the Monte Carlo noise map in log 
domain approximately follow a regular distribution. We use 
parameterized Laplacian function1 shown in Equation (2) to 
model the distribution of these coefficients of the actual 
image and of noise map in wavelet domain. 

)1(2

,1),;( |/|

pp
sZ

xe
Z

psxf
psx

Γ=

∞<<−∞= −

 (2) 

where, ps,  are parameters of the distributions, and Z  is 
normalization constant. s  specifies the heaviness of the 
noise, and p  specifies the shape of the distribution 
function. 
To verify the correctness of our model, we give examples 
as shown in figures 1 and 2. We use the measure shown in 
Equation (3) to estimate the fitting error. 

∑
=

−=
N

n
xfxfxF

N
errorfitting

1

22 )())()((1    (3) 

where, )(xF  is the true distribution density of the function 
at point x , )(xf is the modeled distribution density and 
N the number of  bins used in the discrete summation. The 

smaller the fitting error, the greater the fitting accuracy. 
The two images Figure 1(a) and Figure 1(b) are rendered 
using RADIANCE [War04]. In Figure 1(a) indirect 
reflection component is estimated using 10 samples per 
bounce, and Figure 1(b) is indirect component estimated 
using 300 samples per bounce. Figure 1(a) takes less than 5 
minutes on a Celeron 2.0G running Window2000, while 
figure 1(b) takes 1.67 hours on the same platform. Figure 
1(b) is used as accurate image. Figure 1(c) is the wavelet 
subband transformation of the log luminance of Figure 1(b) 
using steerable filters [SA96, Sim99]. The noise in the 
image is extracted by dividing Figure 1(a) with   Figure 
1(b). The logarithm of the noise map is similarly converted 
into wavelet domain. We compute the high pass band, as 
well as 4 bands for 2 levels. The coefficient distribution 
                                                             
1 The Laplacian function has been used in [11] to model the 

distribution of wavelet coefficients of natural images. 

and the fitting to Laplacian function for the high-pass band 
and one of the other bands are shown in Figures 2(a), 2(b) 
and Figures 3(a) and 3(b). The blue curves are the fitted 
Laplacian functions, and the red curves are the actual 
distribution density. The title line on the figures show the 

ps,  values and the error in fitting the Laplacian function 
computed using Equation (3). 
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Figure 2: The coefficient distribution of two sub-bands vs. 
fitted Laplacian distribution. 
 
 

 s p fitting error 
High pass band 0.0033 0.3732 0.4149 
Level 1, band 1 0.0060 0.4329 0.5847 
Level 1, band 2 0.0059 0.4654 0.4269 
Level 1, band 3 0.0022 0.3833 0.4673 
Level 1, band 4 0.0036 0.4294 0.3991 
Level 2, band 1 0.0416 0.5293 0.7867 
Level 2, band 2 0.0387 0.5916 0.7241 
Level 2, band 3 0.0096 0.4294 0.6356 
Level 2, band 4 0.0246 0.5369 0.6610 

Table 1: ps,  coefficients of the Laplacian distribution of 
the various bands in Figure 1(c) and the fitting errors 
 
The parameters of fitting Laplacian function for the bands 
in are shown in Table 1 and Table 2. 

The results from various experiments show that for most 
scenes: 
� p often lies in the range [ ]0.2,5.0 , and the p values for 

all bands are generally similar. 
� s often lies in the range [ ]0.1,0.0 , and the s values for 

bands except for the high pass band are generally 
similar, and is usually one quarter to one half of the 
value for the high pass band. 

Based on these two observations we use two parameters, 
),( nn ps  for all bands except for high pass band, and use 
),2( nn ps  for high pass band.  So, only two parameters are 

used to model the noise, ),( nn ps . For heavier noise, we 

use a larger s in [ ]0.1,0.0 , and for more complex scenes 
we use a smaller p in ]0.2,5.0[ . We would like to point out 
that the above selection rules are based solely on our 
experimental observation. 
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(b) 

Figure 3: The coefficients distribution of the wavelet sub-
bands of Monte Carlo noise in the sample image shown in 
Figure 1(a). Figure (a) and (b) are the distribution 
functions for high pass band, and for bands 1, level 1), 
respectively. 
 

 
 s p fitting error 

High pass band 0.1345 0.7111 0.4076 
Level 1, band 1 0.0288 0.5658 0.3621 
Lebel 1, band 2 0.0479 0.7140 0.3381 
Level 1, band 3 0.0212 0.5478 0.5338 
Level 1, band 4 0.0454 0.6998 0.3537 
Level 2, band 1 0.0385 0.5015 02179 
Level 2, band 2 0.0369 0.5654 0.2471 
Level 2, band 3 0.0114 0.4327 0.6035 
Level 2, band 4 0.0370 0.5648 0.3199 

Table 2: ps,  coefficients of the Laplacian distribution of 
the various noise bands. 

4. Bayesian Monte Carlo noise reduction 

4.1. Denoising framework 

Based on the Monte Carlo noise model given in the 
previous section, a general Bayesian denoising framework 
is described in this subsection. The framework has been 
shown in figure 4. Following [JC95] we assume that most 
Monte Carlo noise comes from indirect inter-reflection. So, 
we first separate the rendering result into direct component 
(direct illumination + specular illumination) and indirect 
component (diffuse inter-reflection), which is easy to 
implement by adding a few lines of code into the renderer 
source code to separately record the indirect and direct 
components. 

Indirect component is denoised, and then combined with 
direct component to generate the final denoised image. The 
next subsection presents the Bayesian denoising method, 
which makes use of Monte Carlo noise model shown in the 
previous section. 

 
indirect 

component 

direct 
component 

denoised 
indirect 

component 
denoised 

image 

denoising 

Figure 4: Monte Carlo denoising framework. 

4.2. Bayesian denoising 

We apply Bayesian denoising in the wavelet domain 
[SA96, Sim99] to estimate the true image values from the 
values. The image is first transformed into logarithm 
domain, and then transformed into wavelet domain. 
Bayesian method is then applied to remove image noise by 
adjusting the transformed wavelet coefficients. The method 
is based on the assumption that the noise is independent of 
the true value. We model the MC noise to be multiplicative 
in nature. Hence, the noisy image value can be written as 
multiplication of true value and noise value. 

NCY *=   (4) 

where, Y is noisy image value, C is true image value, and N 
is noise value.  

Wavelet transformation of logarithm of Equation (4) gives 
us Equation (5). 

ncy +=   (5) 

In Equation (5), the lower case symbols y,c,n denote the 
wavelet band coefficients of logY, logC and logN, 
respectively. We model these wavelet band coefficients in 
wavelet domain using Laplacian distribution. The 
distribution of wavelet band coefficients, C, is as follows. 

)1(2
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pscP cp
c

Γ=

= −

   (6) 

where, cc ps ,  are parameters of the distributions, and cZ  is 
the normalization constant. 

The Bayesian estimation of the true sub-band coefficient is 
then given by Equation (7). 

∫= cdcycpyc yc )|()(ˆ |   (7) 

where, )|(| ycp yc  the posterior probability, is the 
probability of the actual coefficient c given the observed 
coefficient y. Using Bayesian rule, it is possible to express 

)|(| ycp yc  in terms of the components that are known in 
advance. (Refer to Appendix A for a short discussion on 
Bayesian rule.) 
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 (8) 

In Equation (8), )|(| cyp cy  is the posterior probability of y 

given c. )(),( ypcp yc  are a prior probability of c and y. 
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)|(| ccyp ccy −−  is the posterior probability of noise (y-c) 

given c. Because the Monte Carlo noise is assumed to be 
additive in logarithm domain, and independent of the true 
band coefficient value c the posterior probability of noise n 
given c, is simply the probability of the noise itself, i.e. 

)()|(| cypccyp ncn −=−   (9) 

Equation (8) can now be rewritten as Equation (10) by 
plugging in Equation (9). 

∫ −

−
=

dccpcyp

cpcyp
ycp

cn

cn
yc

)()(

)()(
)|(|  (10) 

Using Equation (10), the estimator of true band wavelet 
coefficient in Equation (7) can be written as Equation (11) 
[Sim99]. 

∫
∫

−

−
=

dccpcyp

cdccpcyp
yc

cn

cn

)()(

)()(
)(ˆ   (11) 

)( cypn − , )(cpc , the distributions of the noise and the 
true wavelet sub-band coefficients respectively, are both 
modeled as Laplacian distributions, as shown in Monte 
Carlo noise analysis in last section and image wavelet sub-
band coefficients analysis in this section. Given the values 
of these distributions, Equation (11) can be calculated using 
simple discrete integration method. 

Both of the distributions are determined by two parameters 
s  and p . For the noise, the parameters ),( nn ps  are 
provided as input to the denoising program. And, for the 
image wavelet sub-band coefficients, the parameters are 
recovered from second and fourth moments of noise 
wavelet band coefficients by solving Equation (12). (For 
details about the derivation of Equation (12), refer to the 
next subsection). In Equation (12), ),( nn ps  are parameters 
of the noise distribution, and ),( cc ps  are parameters for 
the accurate sub-band coefficients, 42, yy mσ  are variance and 
fourth moments of the noise sub-band coefficients 
respectively, and Γ  is the gamma function. ),( nn ps  is 
provided as program parameters. Since there are two 
unknowns, cc ps ,  in two equations, the parameters are 
uniquely determined from the equation pair. 
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With the recovered parameters of the wavelet sub-band 
coefficients distribution, the estimator of accurate sub-band 
coefficient can be easily computed through Equation (11). 
The integral is computed using discrete summation of the 
integrand. Finally, the denoised image is recovered by 

transforming the denoised wavelet sub-band coefficients 
into spatial domain. 

4.3.  Derivation of Second and Fourth Moments of 
Wavelet Subband Coefficients 

Let’s write the band coefficient c contaminated by noise as 
y : 

ncy +=   (13) 

where, the accurate coefficient c  and noise n  are assumed 
to be independent. 

Assuming both of the accurate value c  and noise n  follow 
Laplacian distributions: 

∞<<∞−

−
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)/1(2

)(         (14) 

Both the distributions of noise and accurate coefficients are 
determined by two parameters respectively: 

),(),,( ccnn psps         (15) 

The problem is to calculate the second moment and fourth 
moment of the noise coefficients in light of their 
independence. 

The second and fourth moments for Laplacian distributions 
are [SA96]: 
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But for the noise coefficients, the second moment can be 
calculated as: 
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And, the fourth moment should be calculated as: 
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So, the parameters for true value can be solved according to 
Equations (17-18), if the parameters of the noise are 
known. 

 

5. Experimental results 

To show the denoising effects of our approach, two 
denoised images using our method are shown in this 
section. We used “RADIANCE” [War04] to create the 
noisy and accurate images. For the “cabin” image, as 
shown in Figure 5, computation of the noisy image took 
286 secs. The denoising took 37 secs.  Thus the total time 
spend was 323 secs, compared to 3602 secs taken to 
compute an equivalent image. The denoising was carried 
out on a 2.0GHz Celeron running Window2000. We 
implemented  our approach using Matlab 6.0. 

The noisy cabin image in Figure 5 is composed of direct 
component (c) and indirect component (d), which are 

rendered using 10 indirect samples. Accurate image using 
300 samples is shown in Figure 5(a), noisy image is shown 
in figure 6(b) for comparison with denoised results. The 

denoised indirect component is shown in Figure 
5(e), and the final denoised image is shown in 
Figure 5(f). The noise parameters used in 
denoising Figure 5(d) are )5.1,19.0( == nn ps . 
Note that the direct component in Figure 5(c) 
carries little noise. 

Figure 6 illustrates another denoising example. 
And the used parameters are 5.1,6.0 == nn ps . 

We can see from these experimental results that 
the edges are well preserved, and the noises are 
suppressed with little blurring of the image. 
The experimental results also verify our findings 
about Monte Carlo noise. Based on the 
assumption that most noises gives rise to smaller 
wavelet coefficients Bayesian denoising method 
works by suppressing smaller band coefficients, 
but keeping larger band coefficients. Its successful 
application to Monte Carlo noise verifies that most 
Monte Carlo noises are actually concentrated 
around smaller values. Our Laplacian modeling of 
Monte Carlo noise also has the greatest density 
around the smallest values. 
 
6. Conclusions 

We presented a general framework of the Monte 
Carlo noise removal. We developed a novel model 
of Monte Carlo noise. Bayesian method 
effectively exploits this model for noise reduction. 
Nice looking images can be synthesized using a 
combination of low sample rendering and the 
noise removal technique proposed in this paper. 
Based on our Monte Carlo noise model, more 
advanced denoising methods are expected to be 
developed for better denoising effects. 

Compared to the other Monte Carlo denoising 
method [JC95, McC99, RW94], we take a 
statistical perspective to the Monte Carlo noise, 
and introduce a Bayesian method to remove 
Monte Carlo noise under this perspective.  This is 
the first trial to reduce Monte Carlo noise by 

modeling its statistical characteristics. Our experimental 
results prove its feasibility, and we believe more work can 
be done along this new direction for Monte Carlo noise 
reduction problem. 

So far, we have only applied our technique on the most 
commonly encountered Monte Carlo noise, that is, Monte 
Carlo noise generated using a path tracer. We have not tried 
on other special Monte Carlo noise, like Metropolis noise 
[VG97], which is presented as streaks.  

However, proof of the assumption in our approach remains 
another problem yet to be studied. We derive our approach 
by assuming the independence of Monte Carlo noise and its 
contaminated true value.  And our experiments show 
successful results under this assumption. Because the 
emphasis of this paper is to present the successful 

(a) Accurate image (b) Noisy image 

(c) Direct component (d) Noisy indirect image 

(e) Denoised indirect image (f) Denoised image 

Figure 5. Denoising of “cabin”. 
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application of Bayesian method on Monte Carlo noise 
reduction with a noise statistics model, we leave this 
problem for later study. 
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Appendix A: Bayesian rule 

The Bayesian rule states the posterior probability of an 
event A to another event B is equal to the probability of 
event A and B divided by the prior probability of event B. 
It is described as Equation (A.1). 

)(
)()|(

BP
ABPBAP =     (A.1) 

In other word, the joint probability of events A and B is 
equal to the posterior probability of A given B times the 
prior probability of the event B, and it is also equal to the 
posterior probability of B given A times the prior 
probability of event A. And it can be written as Equations 
(A.2-3). 

)()|()( BPBAPABP =    (A.2) 

)()|()( APABPABP =    (A.3) 

Then, the Bayesian rule can be finally written as Equation 
(A.4), which is derived from Equations (A.3-4).   

)(
)()|()|(

BP
APABPBAP =    (A.4) 

So, the Bayesian rule converts the calculation of posterior 
probability of event A given event B as the calculations of 
the posterior probability of event B given event A and prior 
probabilities of event A and B, which are available in many 
cases. 
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