
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
CAe 2013, July 19 – 21, 2013, Anaheim, California.
Copyright © ACM 978-1-4503-2203-4/13/07 $15.00

The Aesthetics of Rapidly-Exploring Random Trees

Michael Burch∗ and Daniel Weiskopf†

VISUS, University of Stuttgart

Figure 1: A Rapidly-Exploring Random Tree after 5,000 algorithm iterations. The tree diagram is visually enhanced by encoding the tree
depth by link color and line thickness.

Abstract

Rapidly-Exploring Random Trees (RRTs) have been introduced as
an algorithmic concept for the rapid exploration of configuration
spaces targeting fast path planning, mainly applied in the field of
robotics. Typically, such structured space organizations are only
used on an algorithmic level but not for direct visual representation.
In this paper, we illustrate the aesthetics of such RRTs by displaying
them in a visual form that serves as a basis to generate algorithmic
art. Apart from the visual encoding of such space-filling node-link
diagrams, we demonstrate how these trees grow in the configura-
tion space for RRT layouts with and without incremental distances
from the initial point. Additionally, RRTs can be visually enhanced
by several inherent tree metrics such as tree depth, subtree size, and
branching factors to make the diagrams more aesthetically appeal-
ing and readable. We provide examples of different tree sizes and
illustrate the effect of changes to several control parameters such
as color coding, line segment thickness, layouts, and shape con-
straints.

CR Categories: I.3.0 [Computer Graphics]: General;

Keywords: Algorithmic art, Rapidly-Exploring Random Tree, hi-
erarchy visualization, node-link diagram

1 Introduction

Rapidly-Exploring Random Trees (RRTs) have been introduced as
a general concept to rapidly explore a given configuration space
in order to solve path planning problems efficiently [LaValle and
Kuffner 1999; LaValle and Kuffner 2001]. The RRT originally does
not stand for any kind of visual representation although the term
“tree” indicates that it might be a visual metaphor for a hierarchy.
In fact, the RRT is traditionally used in the form of a data structure
and algorithm focusing on efficient searching in non-convex high-
dimensional search spaces. Such a tree is computed incrementally
by adding a new sample to the tree randomly, computing the least

∗e-mail:michael.burch@visus.uni-stuttgart.de
†e-mail:daniel.weiskopf@visus.uni-stuttgart.de

distant already existent sample in the tree by a distance function,
and finally connecting both samples by a straight line that produces
a new branch in the tree. By this strategy, it is guaranteed that the
corresponding tree diagrams are free of link crossings, i.e., the aes-
thetic criterion of planarity is preserved. Furthermore, such tree
diagrams become space-filling variants of node-link diagrams. Fur-
thermore, the RRT can be classified as a Monte-Carlo-like method
of biasing search into largest Voronoi regions. The class of those
tree algorithms produces different types of stochastic fractals [Man-
delbrot 1982]. The fractal behavior is beneficial because many nat-
ural phenomena show fractal characteristics.

The planarity, space-filling, and fractal properties of the RRT are
useful characteristics for producing aesthetic diagrams. Therefore,
we have chosen RRTs as a basis for algorithmic art. We focus on
improving the visual representation of the RRTs to increase their
aesthetics and readability. Therefore, we do not just use traditional
line drawings of node-link tree diagrams but additionally take into
account tree-inherent metrics such as tree depth, subtree size, and
branching factor. Those metrics are visualized by

• color coding and

• line thickness.

We focus on the tree depth because it illustrates the length scale
of the depicted part of the tree. Descending the hierarchy, we visit
shorter links shown by thinner lines. Therefore, the length scale
of the fractal corresponds naturally to the line thickness. The vi-
sual representation is further improved by additional color coding,
which makes the diagrams easier to perceive and structures easier
to be traced, especially for densely packed RRT regions.

Furthermore, we provide several additional parameters that allow
us to modify and control the appearance of the RRT diagrams:

• the starting point at which the algorithm is initiated,

• the number of incrementally added vertices (iterations),

• the incremental maximal distance from the initial point,

• obstacles or space constraints,

• and the shape that drives the construction of the RRT.

We illustrate the effects of those parameters on the visual appear-
ance by including several example images in Section 4.

45

http://www.eg.org
http://diglib.eg.org

2 Related Work

RRTs have been introduced as a search tree generation algorithm
by LaValle and Kuffner [1999; 2001]. They guarantee a com-
plete exploration of a pre-defined configuration space. Optimal
control theory [Bellman 1957], non-holonomic planning [Laumond
et al. 1998], and randomized path planning [Amato and Wu 1996;
Kuffner and LaValle 2000] served as basis ideas for the develop-
ment of RRTs.

The concept of RRTs is related to Diffusion-Limited Aggregation
(DLA), which is described as the process in which particles under-
going random walks cluster together to form aggregates of them-
selves due to Brownian motion [Witten and Sander 1981]. The
formed clusters are denoted as Brownian trees and can be classified
as a fractal having a fractal dimension of 1.71 in 2D space, which is
used as a complexity measure in fractal theory [Peitgen and Richter
1986; Peitgen and Saupe 1988; Peitgen et al. 1992]. In our work,
we also investigate a variant of such Brownian trees—although not
explicitly described—where the tree is growing radially outward
starting at a single initial point; see Figure 2.

RRTs have some important benefits. They are well-known for their
fast expansion as tree structures and hence, they cover yet unex-
plored regions of the pre-defined configuration space. This tree gen-
eration and fast evolving hierarchical structure building process can
be efficiently used for searching possible targets, hence their partic-
ular suitability in path planning. Some algorithm variants even take
obstacles or space-constraints into account to safely guide a robot
from a source to a target [Rodriguez et al. 2006]. In our work,
we also experiment with such space constraints. The structure of
RRTs has recently also been applied to guide the edge bundling in
node-link diagrams of graphs [Burch et al. 2013b]. In the domain
of game design, RRTs can be applied for constructing a compact
graph representation to automatically explore existing levels of a
2D platform game [Bauer and Popovic 2012].

Although the powerful concept of the RRTs has successfully been
applied to path planning problems in high-dimensional spaces [Ni-
eto et al. 2010], research on aesthetically visualizing the data struc-
ture enhanced by tree-specific metrics such as tree depth, branch-
ing factor, and subtree size is rare. From a visualization perspec-
tive, these diagrams have an important advantage compared to ex-
isting node-link tree visualizations: they are space-filling represen-
tations of hierarchical data, which is discussed for various visual
metaphors for hierarchies by McGuffin and Robert [2009]. This
space-efficient representation makes the RRTs hard to understand
since they do not provide a clearly structured tree diagram.

For this reason, visually encoded extra information can be used to
understand and explore such hierarchical structures in a better way
and it allows the viewer to visually compare similar and non-similar
patterns in the data. The perceptual abilities of the human visual
system can be better exploited due to its strengths in fast pattern
recognition when the representation is emphasized by tree-specific
features.

In the field of information visualization, hierarchical data has been
visualized since ancient times. Five major visual metaphors for this
type of data have been developed over the years that are used de-
pending on the application domain, including the prominent node-
link diagrams [Reingold and Tilford 1981]. The RRT diagrams
also belong to the class of node-link diagrams although the ver-
tices are not explicitly shown. Further metaphors are indented
plots [Burch et al. 2010] that follow the principle of indentation,
layered icicles [Kruskal and Landwehr 1983] exploiting the strat-
egy of stacking, treemaps [Shneiderman 1992] that apply nesting
layout strategies, and fractal approaches [Mandelbrot 1982; Barne-

ley et al. 1988; Rosindell and Harmon 2012], to which RRTs also
may belong due to their self-similarity property.

For the prominent example of node-link diagrams, layout and aes-
thetic criteria are discussed in the literature [Wetherell and Shannon
1979]. Although node-link diagrams are intuitive and easy to draw,
visual scalability and labeling often are an issue. For RRTs, visual
scalability is a highly relevant issue because those trees are proce-
durally constructed and can therefore become large with little effort
on the data-production side. A benefit of the RRTs is their embed-
ding in a crossing-free manner into the configuration space. We
further increase the visual scalability by not drawing the nodes ex-
plicitly but only implicitly at the connection points and line ends.
Another strength of RRTs is their space-filling character that allows
for good visual scalability. Finally, we enhance the visual represen-
tation of the RRT by color coding and varying line thickness for
better readability and more aesthetic display.

In this sense, our goal is to generate algorithmic art. Therefore, our
work is related to previous work on algorithmic art, such as Trav-
eling Salesman Problem art [Bosch and Herman 2004; Kaplan and
Bosch 2005]. That approach also produces aesthetically appealing
diagrams but not for hierarchical structures as in our work.

3 Rapidly-Exploring Random Trees

In this section, we describe how RRTs are generated and used for
rendering. We start with the actual RRT generation, partially fol-
lowing our previous discussion from [Burch et al. 2013b]. Then,
visual enhancements for an aesthetic visual representation are pre-
sented. Finally, we discuss our pixel-based rendering algorithm for
the visually enhanced RRTs.

3.1 RRT Generation

Algorithm 1 provides the pseudo code for RRT generation. A gen-
eral configuration space S serves as the basis for building the tree
that starts with an initial vertex: the root vertex vinit. This vertex
can be placed randomly, in the display center, or manually at any
location demanded by the user. The algorithm works incrementally
by adding N new vertices to an existing RRT that initially contains
only the root vertex vinit with its corresponding coordinates.

The incremental steps of the algorithm work as follows: A random
node vrand is chosen and the nearest already existing node vnear in
the RRT or point on an already existing line is computed. An incre-
mental distance ∆v can be used to move from vnear in the direction
of the randomly chosen node vrand. This incremental distance can
be used to avoid newly added links that are longer than a given

Algorithm 1 Rapidly-Exploring Random Tree

Generate RRT(vinit, N, ∆v):
// vinit : Initial root position
// N : Number of nodes to be added
// ∆ : Incremental distance from vnear to vnew

RRT.init(vinit);
for i := 1 to N do

vrand ←− Random Node();
vnear ←− Nearest Node(vrand, RRT);
vnew ←− New Node(vnear,∆v);
RRT.add node(vnew);
RRT.add link(vnear, vnew);

end for
return RRT;

46

(a) (b) (c) (d)

Figure 2: A growing RRT with an incremental distance from the initial vertex for the newly added vertices: (a) after 250 iterations, (b) after
500 iterations, (c) after 750 iterations, (d) after 1,000 iterations. The initial vertex is located in the center, which results in a radially outward
growing tree. Red color indicates edges and vertices added in most recent iterations, whereas blue color indicates earlier ones.

(a) (b) (c) (d)

Figure 3: The complete configuration space can be incrementally filled by randomly chosen vertices: (a) after 250 iterations, (b) after 500
iterations, (c) after 750 iterations, (d) after 1,000 iterations. There is no incremental distance for added vertices, i.e., there are no constraints
for newly added vertices. Red color indicates edges and vertices added in the most recent iterations.

threshold, e.g., to prevent nodes to be located further away from the
initial vertex position than the threshold distance. As the last step,
the new node vnew and new edge (vnear, vnew) are added to the RRT.

Figure 2 illustrates how an RRT is incrementally built. Here, 1,000
iterations are used to produce an RRT whose initial vertex position
is located at the center of the display. An incremental distance is
used when the tree evolves, i.e., new vertices can only be added if
those are below a given threshold distance from the initial vertex.
This threshold is enlarged over time, leading to circular shaped RRT
layouts. Figure 2 shows four snapshots after N = 250, 500, 750,
and 1, 000 iterations. A blue-to-red color gradient is used to visu-
alize the time at which vertices and edges were added: red colored
vertices and edges were added later and blue ones earlier—just for
illustrative purposes.

Figure 3 shows snapshots of RRTs after N = 250, 500, 750, and
1, 000 iterations. Here, the initial vertex position is selected ran-
domly and no incremental distance is used, i.e., vertices are placed
anywhere and the already existing vertex with a minimal distance to
the added one has to be computed. Then, a new edge is introduced
connecting both vertices. The tree generation process generates a
layout that is free of link crossings and that benefits from its space-
filling property in contrast to other existing node-link tree diagrams.
Again, the time when edges and vertices were added is visualized
by a blue-to-red color gradient.

Figures 2 and 3 illustrate how the RRT layout can be modified and
controlled by varying the position of the initial vertex and the dis-
tance theshold for the newly added vertices.

3.2 Visually Enhanced RRTs

Large RRTs that show the tree structure only by equally thick lines
and uniform color make it hard for the viewer to identify global and
local tree structures. Those drawbacks of the traditional line rep-
resentation without the enhancement of tree-specific metrics come
from its space-efficient representation. The viewer is not able to
explore the tree because it is not separated into distinguishable lay-
ers as it is, for example, done in traditional node-link tree diagrams

following a top-down layout approach; see the evaluation of tree-
reading strategies in an eye tracking experiment [Burch et al. 2011;
Burch et al. 2013a]. However, even if the separation into single
tree layers is not that clear in an RRT, we can achieve readable and
aesthetic diagrams. The RRT representation can be extended and
visually enhanced by integrating visual features to each of the used
line segments; see Figure 4.

Each hierarchy or subhierarchy contains some inherent specific
properties that can be visually encoded to make a tree structure
clearer:

• Tree branching: The branching factor at a specific vertex is
defined as the number of splittings into subhierarchies, i.e.,
the number of direct child vertices. In fractal theory, this
branching can be used for computing the fractal dimension
as a complexity measure.

• Tree depth: The depth of a tree is defined as the longest path
from the root to a leaf vertex.

• Tree size: The size of a tree is defined as the number of ver-
tices contained in it: root vertex, inner vertices, and leaf ver-
tices.

Generally, all these properties can be used to enhance the repre-
sentation of an RRT. We first compute the tree properties and then
visually encode those raw quantitative numbers in each link (i.e.,
line segment) of the RRT by color coding and line thickness. Both
color coding and line segment thickness can be changed on user
demand to control the visual appearance.

From experimenting with tree visualizations, we identified the tree
depth as the most important property that should be enhanced to
make the tree diagram more readable and aesthetically appealing
in the sense of computational art. The advantage of the tree depth
metric is that it naturally fits to the fractal characteristics of the
RRT: the tree depth corresponds to the length scale of the depicted
part of the tree and, accordingly, the line thickness is adapted.

47

(a) (b)

Figure 4: A selected region of an RRT: (a) Only equally thick line segments of the RRT are shown; color coding is used for the age of a
segment. (b) The tree depth is visually encoded by the thickness of line segments and additionally enhanced by color coding.

3.3 Rendering Algorithm

We use a pixel-based rendering algorithm for generating the visu-
ally enhanced RRTs. For each pixel of the final image, the vertex
in the precomputed RRT with the least distance to that pixel is ac-
cessed in an array along with its corresponding value for the tree
metric. From this information, we compute a tree-metric specific
color by applying a color map. The color coding can be adapted
by applying value mappings, e.g., with a logarithm function or by
changing the exponent in the used formula; see Algorithm 2.

Algorithm 2 Visually Enhanced RRTs

Aesthetic RRT(M):
// M : Array with metric values
// xmax : Number of pixels in x-direction
// ymax : Number of pixels in y-direction
// p : Parameter to change thickness
// dmin : Distance to closest vertex
// Ifinal : Final values
for i := 1 to xmax do

for j := 1 to ymax do
Ifinal[i][j] := dmin · logp(M [i][j]);

end for
end for
return Ifinal;

Algorithm 2 shows the details of our visually enhanced RRTs in
pseudo code. We assume that a rectangular image with xmax × ymax
pixels is used as rendering viewport. When generating an RRT (Al-
gorithm 1), we already update arrays of metric values, i.e., for each
pixel position, we store in an array M the metric value (i.e., depth,
size, or branching factor) of the least distant RRT edge. This ar-
ray is permanently being updated and finally used in Algorithm 2
to visually enhance the space-filling tree diagram by visually en-
coding the tree-specific metric. The resulting value is computed by
Ii,j := dmin · logp(Mi,j). The parameter p can be used to vary
the thickness of the line segments. The array Ifinal is used for the
final rendering of the image, i.e., a user-defined color coding can

be chosen and applied. This procedure allows the interactive up-
date of the visually enhanced RRTs on user demand. The logarithm
function may be deselected, but then the line segments representing
branches closer to the root vertex look unnaturally thick compared
to the smaller branches in very deep tree levels. Therefore, we use
the logarithmic function for all enhanced RRT images of this paper.

4 Exploring the Design Space

In this section, we provide several example images that serve as il-
lustrative figures for the visually enhanced RRTs. With those exam-
ples, we briefly explore the design space of the control parameters
for RRTs. The trees can be generated in the complete configuration
space, i.e., there is no constraint for their expansion, obstacles can
occur that have to be taken into account when generating the RRT
and when visually enhancing them, and finally the configuration
space itself can be bound to a given shape.

4.1 Constraint-Free RRTs

In the constraint-free variant of the RRT generation algorithm, we
can let the tree expand over the complete (rectangular) display
space, leading to rectangular shaped RRTs.

Figure 5 shows larger examples of RRTs after N = 10, 000 it-
erations for combinations of parameter settings, i.e., for an RRT
without an incremental distance where the initial vertex position is
randomly chosen and where it is fixed in the display center. Here,
we can see that the variant with the randomly chosen initial vertex
position generates diagrams with more white space. This effect can
be explained by the fact that many more tree branches are located
in deeper levels than in the center-based approach, leading to much
thinner line segments.

Figure 6 shows an RRT with N = 1, 000, 000 algorithm iterations.
Also here, the main branches are visible by following the red col-
ored and thicker line segments. The branchings into deeper sub-
hierarchies can be detected by inspecting the line segments colored
in green, whereas the deepest tree branches are visually encoded

48

(a) (b)

Figure 5: Examples of RRTs after N = 10,000 iterations: (a) no incremental distance and randomly chosen initial vertex position, (b) no
incremental distance and with the initial vertex position in the display center. There are no constraints for the RRTs, i.e., they can expand
in the complete configuration space. Color coding and line thickness show tree depths; elements that are deeper in the tree are mapped to
thinner lines.

Figure 6: An RRT after N = 1,000,000 algorithm iterations.

in white. The structure of the tree becomes apparent and it is, for
example, easy to visually ascend or descend along the tree.

4.2 Obstacle-Based and Constraint-Based RRTs

Obstacles are a natural phenomenon for growing tree-like structures
that must be circumvented in some way. If we think of a city-shape
metaphor, similar visual patterns as in RRTs occur when inspected
from a bird’s eye view. Larger and wider streets such as highways
connect bigger city districts. Inside the single districts, streets be-
come smaller and smaller until a hierarchical level of single house-
holds is reached. In this scenario, obstacles are also prominent, for

example, in the form of parks or lakes; streets are not allowed to
cross those obstacle regions and hence must be guided on a differ-
ent way around them. For RRTs, a similar phenomenon can occur.

Figure 8 illustrates an example of such an RRT after 20,000 al-
gorithm iterations. The algorithm cannot generate a tree diagram
by extending it into the complete configuration space but, instead,
a rectangular obstacle region must stay empty, i.e., no edges can
cross it and hence, a different way has to be computed to organize
the tree structure in the upper left region for example.

49

(a) (b)

Figure 7: Shape-driven RRTs: (a) circular shape x2 + y2 < r2, (b) parabola shape y − x2 < r.

Figure 8: An RRT after N = 20,000 algorithm iterations with a
rectangular empty region illustrating an obstacle.

Figure 9: Shape-driven RRT in a sine shape with decreasing am-
plitude y − c

x
sin(x) < r.

4.3 Shape-Driven RRTs

Also, the shape on which an RRT is inscribed can be modified
and controlled. We show how specific shapes such as a circle, a
parabola, or a sine with decreasing amplitude can be used to gen-
erate a configuration space of a specific form in which an RRT is
generated and then visually enhanced by the tree depth metric; see
Figure 7 and Figure 9. Such a scenario can also occur in nature,
e.g. in Diffusion-Limited Aggregation (DLA) where the space is
typically limited. Also, the growing behavior of cities is limited in
many cases due to their location close to an ocean or mountains.

4.4 Color Coding and Line Segment Thickness

Our tool allows the user to interactively change the color coding as
well as the parameter p for the line segment thickness. Figure 10
illustrates how the parameter changes influence the appearance of
different RRTs.

5 Discussion

RRTs are driven by randomly selected positions for the vertices in
an incremental way. This means that the user is not able to fully
control the layout of the finally generated vertex positions. How-
ever, we do not think that this is a problem for algorithmic art. In
fact, the aesthetics might benefit from some stochastic behavior,
making the images come with some “natural” characteristics.

For the visual enhancement of the tree diagrams, we use line thick-
ness and color coding. However, we do not have any fully compu-
tational way to determine those parameters. Yet, useful parameter
choices depend on the size and structure of the RRT. For exam-
ple, the segments should be not too thick because otherwise many
overlaps with thinner segments will occur, which will result in over-
plotting and visual clutter [Rosenholtz et al. 2005]. For this reason,
we allow the user to interactively adjust the line thickness and color
coding, essentially delegating the responsibility for finding good
parameter choices to the user.

50

(a) (b)

(c) (d)

(e) (f)

Figure 10: RRTs with varying color coding: (a) blue-green-red, (b) cold-to-hot, (c) blue-white-red, (d) white-to-blue, (e) ocean color map,
(f) vegetation color map. Any other color coding can be used on user’s demand. Changes to the parameter p influence the thickness of the
line segments. The trees are generated by 2,000 algorithm iterations.

We argue that the tree depth metric is most suitable for making
the RRTs more readable and aesthetically appealing. A user study
could help find out if this is really the case. Apart from visualizing
the tree depth, also the Horton-Strahler number may be of interest
to make the diagrams more aesthetic and interpretable. It may also
be discussed if the line segments can be used to visually encode
more than one of tree-specific metric simultaneously.

We have restricted ourselves to using RRTs for algorithmic art.
However, aesthetic usability could also help improve the effective-
ness or efficiency of tree diagrams for data visualization. The ques-
tion arises if a real-world abstract relational dataset might also be
used as the basis for guiding the tree layout in an incremental way.

In such a scenario, a distance function between two elements must
be present in order to place the next processed node in the already
existing layout. Possible application domains include social net-
work visualization or software visualization. A hierarchical struc-
ture is typically generated by applying hierarchical clustering algo-
rithms exploiting a given distance function, i.e., working directly on
the abstract data and not by incrementally mapping the data points
to spatial positions. If such a strategy is found, we will have the op-
portunity to algorithmically compute a hierarchical organization for
relational data that can be represented in a space-filling node-link
visual metaphor. The investigation of aesthetic RRT data visualiza-
tion is left as open question for future work.

51

6 Conclusion and Future Work

We have illustrated how RRTs can be visually enhanced by adding
information about tree-specific metrics, in particular, the tree depth.
The tree metric is visually encoded by color mapping and the thick-
ness of line segments. This visual enhancement allows a better
readability and a more aesthetical visualization than those tradition-
ally used to illustrate the RRT data structure. The construction and
rendering of the RRTs can be affected and controlled by a num-
ber of user-specified parameters. We have illustrated the effects of
those parameters for a couple of illustrative examples.

As discussed in the previous section, future work could extend the
enhanced RRTs to the visualization of hierarchical data. Further-
more, our visualization approach could be adapted to other types of
line-based diagrams with an additional line-oriented metric. One
possible application could be graph visualization: traditional node-
link diagrams might be presented in a way that shows the impor-
tance of relations by varying link thickness and color coding. An-
other application could be the visualization of trajectory data.

References

AMATO, N. M., AND WU, Y. 1996. A randomized roadmap
method for path and manipulation planning. In Proceedings of
the IEEE International Conference on Robotics and Automation,
113–120.

BARNELEY, M. F., DEVANEY, R. L., AND MANDELBROT, B. B.
1988. The Science of Fractal Images. Springer, New York.

BAUER, A., AND POPOVIC, Z. 2012. RRT-based game level anal-
ysis, visualization, and visual refinement. In Proceedings of the
Conference on Artificial Intelligence and Interactive Digital En-
tertainment.

BELLMAN, R. E. 1957. Dynamic Programming. Princeton Uni-
versity Press.

BOSCH, R., AND HERMAN, A. 2004. Continuous line drawings
via the traveling salesman problem. Operations Research Letters
32, 4, 302–303.

BURCH, M., RASCHKE, M., AND WEISKOPF, D. 2010. Indented
pixel tree plots. In Proceedings of International Symposium on
Visual Computing, 338–349.

BURCH, M., KONEVTSOVA, N., HEINRICH, J., HÖFERLIN, M.,
AND WEISKOPF, D. 2011. Evaluation of traditional, orthog-
onal, and radial tree diagrams by an eye tracking study. IEEE
Transactions on Visualization and Computer Graphics 17, 12,
2440–2448.

BURCH, M., ANDRIENKO, G., ANDRIENKO, N., HÖFERLIN, M.,
RASCHKE, M., AND WEISKOPF, D. 2013. Visual task solution
strategies in tree diagrams. In Proceedings of Pacific Visualiza-
tion, 169–176.

BURCH, M., SCHMAUDER, H., AND WEISKOPF, D. 2013. Edge
bundling by rapidly-exploring random trees. In Proceedings of
the International Conference on Information Visualisation.

KAPLAN, C. S., AND BOSCH, R. 2005. TSP art. In Renaissance
Banff: Bridges 2005: Mathematical Connections in Art, Music
and Science, 301–308.

KRUSKAL, J., AND LANDWEHR, J. 1983. Icicle plots: Better
displays for hierarchical clustering. The American Statistician
37, 2, 162–168.

KUFFNER, J. J., AND LAVALLE, S. M. 2000. RRT-connect: An
efficient approach to single-query path planning. In Proceedings
of the IEEE International Conference on Robotics and Automa-
tion, 995–1001.

LAUMOND, J. P., SEKHAVAT, S., AND LAMIRAUX, F. 1998.
Guidelines in nonholonomic motion planning for mobile robots.
In Robot Motion Planning and Control, J. P. Laumond, Ed.
Springer, 1–53.

LAVALLE, S. M., AND KUFFNER, JR., J. J. 1999. Randomized
kinodynamic planning. In Proceedings of the IEEE International
Conference on Robotics and Automation, 473–479.

LAVALLE, S. M., AND KUFFNER, JR., J. J. 2001. Rapidly-
exploring random trees: Progress and prospects. In Algorith-
mic and Computational Robotics: New Directions, B. R. Donald,
K. M. Lynch, and D. Rus, Eds. A K Peters, 293–308.

MANDELBROT, B. 1982. The Fractal Geometry of Nature. W.H.
Freeman and Company. New York.

MCGUFFIN, M., AND ROBERT, J. 2009. Quantifying the space-
efficiency of 2D graphical representations of trees. Information
Visualization 9, 2, 115–140.

NIETO, J., SLAWINSKI, E., MUT, V., AND WAGNER, B. 2010.
Online path planning based on rapidly-exploring random trees.
In Proceedings of the IEEE International Conference on Indus-
trial Technology, 1451–1456.

PEITGEN, H.-O., AND RICHTER, P. H. 1986. The Beauty of Frac-
tals – Images of Complex Dynamical Systems. Springer.

PEITGEN, H.-O., AND SAUPE, D., Eds. 1988. Science of Fractal
Images. Springer.

PEITGEN, H.-O., JÜRGENS, H., AND SAUPE, D. 1992. Chaos
and Fractals – New Frontiers of Science. Springer.

REINGOLD, E. M., AND TILFORD, J. S. 1981. Tidier drawings
of trees. IEEE Transactions on Software Engineering 7, 2, 223–
228.

RODRIGUEZ, S., TANG, X., LIEN, J.-M., AND AMATO, N. M.
2006. An obstacle-based rapidly-exploring random tree. In Pro-
ceedings of the IEEE International Conference on Robotics and
Automation, 895–900.

ROSENHOLTZ, R., LI, Y., MANSFIELD, J., AND JIN, Z. 2005.
Feature congestion: A measure of display clutter. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing
Systems, 761–770.

ROSINDELL, J., AND HARMON, L. 2012. OneZoom: A fractal
explorer for the tree of life. PLOS Biology 10, 10, e1001406.

SHNEIDERMAN, B. 1992. Tree visualization with tree-maps: 2-D
space-filling approach. ACM Transactions on Graphics 11, 1,
92–99.

WETHERELL, C., AND SHANNON, A. 1979. Tidy drawings of
trees. IEEE Transactions on Software Engineering 5, 5, 514–
520.

WITTEN, T. A., AND SANDER, L. M. 1981. Diffusion-limited ag-
gregation, a kinetic critical phenomenon. Physical Review Let-
ters 47, 1400–1403.

52

