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Abstract
Hydrocarbon reservoir simulation models produce large amounts of heterogeneous data, combining multiple variables of dif-
ferent dimensionality, such as two or three-dimensional geospatial estimates with abstract estimates simulated for the complete
field or different wells. In addition these simulations are nowadays often run as so-called ensemble simulations, to capture
uncertainty of the model, as well as boundary conditions as variation in the output. The (visual) analysis of such data is a
challenging process, due to the size and complexity of the data. In this paper we present an integrated system for the visual
analysis of ensemble reservoir simulation data. We provide tools to inspect forecasts for multiple variables of complete fields,
as well as different wells. Finally, we present a case study highlighting the effectiveness of the presented system.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications—

1. Introduction

Ensemble forecasts, i.e., simulations that result in multi-valued,
multi-variate, and multi-dimensional data, are computed in many
different application areas, such as the geo-sciences. Numerical
models are limited by computational resources and, as such, are not
exact. Additionally, starting conditions and model inputs (e.g. forc-
ing and parameters) are often not well known due to scarcity of data
and measurement errors. The inherent uncertainty can be mapped
to multiple runs of the same or of different models, resulting in
multiple possible outcomes forming an ensemble representing the
probability distribution of the simulated fields. Most notable appli-
cations for ensemble simulations are weather and climate forecasts,
where such data are the de-facto standard. However, similar data
becomes relevant in basically all geophysical simulations, such as
ocean forecasting [HPB02,HHG∗13] or, recently, also in petroleum
engineering applications [ANO∗09,KASH15,KHS15]. While sim-
ilar in spirit, such reservoir simulations combine different types of
data and pose different requirements to the analysis process com-
pared to the more widely used weather or climate forecasts.

Specifically, in the application, presented here, we combine un-
structured 4D spatio-temporal data, containing multiple variables
such as pressure or water saturation for each grid cell of the sim-
ulated reservoir with one dimensional temporal data of production
rate forecasts at single wells as well as the complete field. Besides
the pure data exploration, comparison of different data points is cru-
cial. E.g., one might ask how production rates that were simulated
for different possible well positions compare. We propose the use
of a multiple-linked-views [Rob07] framework for the exploration
and analysis of these data.

2. Related Work
While the display of uncertainty information, such as error bars,
are ubiquitous in visualization of abstract data for a while now,
it is a relatively new development to present this information to
the user of visualizations in a spatial context. Pang et al. [PWL97]
present an overview of early work on uncertainty visualization for
scientific 3D data. Later, Johnson and Sanderson challenge the vi-
sualization community “to take the next step and make visually
representing errors and uncertainties the norm rather than the ex-
ception” [JS03]. This call is not an ends to itself. In many fields
data containing uncertainty information has become ubiquitous in
recent years, especially in the area of numerical simulations, where
ensemble simulations are the norm ( [KDP01, LKP03, KKL∗05,
LPK05]). Weather and climate forecasts are on the forefront of this
development, justifying the development of several fully featured
ensemble visualiation applications, such as Ensemble-Vis by Potter
et al. [PWB∗09], Noodles by Sanyal et al. [SZD∗10] or Met.3D by
Rautenhaus et al. [RKSW15]. Similarly, systems for ocean fore-
casts (i.e. OVis by Höllt et al. [HMC∗13, HMZ∗14]) and storm
surge predictions [HAM∗15] were presented recently. Köthur et
al. [KWS∗15] present a general approach to the visual analysis
of time series ensembles. All of these tools use multiple views on
the data, some show aggregates of the multivalued part of the en-
semble, for example by means of statistics, while other views let
the user directly compare different results. Examples for compar-
ative approaches to ensemble visualization in various application
areas are the works of Healey and Snoeyink [HS06], Matković et
al. [MGKH09], Piringer et al. [PPBT12], or Demir et al. [DDW14].
Whitaker et al. introduced an implementation of boxplots for con-
tours [WMK13] and generalized it for curves [MWK14].
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Figure 1: System Overview. A screenshot of the presented application, showing the combination of different views: a 3D view of a single
layer of the reservoir (a), showing the reservoir geometry in combination with water saturation mean and variance. b shows the complete
distribution of all members of the ensemble for two variables (here water saturation and pressure) for a single selected point in space and
time. c shows a prediction of oil and gas production rates for a selected production well over 18 years. d shows a 2D version of a plus the
position of the selected well.

3. Visual Analysis System

We show a screenshot of our proposed visual analysis system in
Figure 1. The presented system is based on the ocean forecast vi-
sualization system OVis [HMZ∗14] that was adapted to the specific
requirements for the reservoir analysis. The system is divided into
four data views (Figure 1a-d) plus a unified settings widget (Fig-
ure 1e). The views adapt flexibly to the data and can be configured
to show any available data. We refer to the supplemental video for
an interactive impression of the system.

Figure 1a shows a 3D visualization of a single layer of the reser-
voir. While the data is three-dimensional, depth is not a continuos
axis, but is rather divided into a few discrete layers, each consisting
of complex 3D geometry. We decided to show only one of these
layers at a time, since multiple layers would be mostly occluded
by the top layer. Instead we provide a simple slider that allows the
user to sweep through all available layers. In total the view provides
three channels to visualize different variables of the data: geometry,
color and noise. In the standard setting the geometry of the surface
represents the actual geometry of the reservoir. The underlying grid
is being provided as an unstructured mesh. We use color coding to
show the mean value of a given variable, such as water saturation.
To indicate uncertainty, we added the possibility to blend a noise
texture with variable frequency on top of the color plot to show
standard deviation or variance (see detail in Figure 2). We use a
smooth transition from no noise through low frequency noise to
high frequency noise to indicate increasing variance or standard
deviation values. Figure 2a shows the combination of color map-
ping the mean and using the noise overlay to show the variance.

Figure 2b shows only the variance using noise. For illustration we
show the variance using color mapping in Figure 2c.

In addition to the described standard settings we compute a num-
ber of statistics, such as the median or higher order moments on
demand, that can be assigned to any of the visual channels. It is
also possible to select specific ensemble members or combine dif-
ferent variables to find correlations and dependencies. The user can
probe in the 3D view, by hovering the mouse over any position,
and we show the complete distribution of selected variables of the
ensemble in the attached histogram view (Figure 1b).

The 2D view, as presented in Figure 1d provides the same func-
tionality as the 3D view, with the exception of 3D geometry. In
addition the 2D view provides a visualization of the positions of
loaded wells, represented by needles. The user can load these posi-
tions from file, including separate data, such as the oil production
for a production well or the water injection rate for an injection
well, or interactively define positions to probe the data available on
the grid within the application.

Figure 1b shows the comparative histogram view. We show two
histograms for comparing the distributions of two different vari-
ables and/or positions. The histograms x- and y-axis are flipped,
compared to the conventional histogram, where the x-axis is usu-
ally used for the variable and the y-axis for the number of occur-
rences. The y-axis is shared, with the left histograms’ x-axis point-
ing to the left and the right histograms x-axis to the right. This
configuration is specifically suited for comparison of two distri-
butions. While the horizontal orientation is much more common
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Figure 2: Visualization of Variance by a Noise Overlay. We use
a combination of color mapping and noise overlay to show two
variables at once (a). b shows the noise overlay for the variance
of a cut out of a, without color mapping a second variable. Low
frequency noise corresponds to little variance, high frequency noise
strong variation (see highlighted areas in b and c). For illustration
we use color mapping to show the variance in the same area in c.

for histograms we found out that for comparison this configuration
works very well. The two sides of the histogram view can be freely
configured to show any of the available variables. The main idea is
to show the detailed distribution of the two- or three-dimensional
variables at a single grid point. Therefore, the user can select the
desired position by simply hovering the mouse over the surface in
the 3D view. In an alternative mode positions can also be picked.
E.g., the user can select a fixed position for one side of the his-
togram and show the histogram for the position where the mouse
hovers on the other side, for comparison. The histogram updates in
real-time when the user moves the mouse, allowing for very fast
probing of the data. Alternatively the user can also select different
variables (at the same or different positions) for the different sides
of the histogram to inspect the interplay of different variables.

We extend the idea of the histogram view in the time series view
(Figure 1c). Based on the two-sided histogram we use a simple
glyph (Figure 4b), as introduced by Höllt et al. [HMZ∗14]. The
histogram is smoothed using kernel density estimates and the re-
sulting estimate of the probability density function (pdf) is used as
the contour of the glyph. Just as the histogram view the glyph can
be configured to show the pdf of different variables and/or posi-
tions on the two sides. Glyphs for each simulated time point are
then arranged on the x-axis of the time series view. In the example
in Figure 1c we show the oil and gas production rate, respectively,
for a selected well using the two sides of the glyphs. The example
demonstrates the need for such a detailed view of the ensemble dis-

tribution, instead of simply using mean and variance. After the first
few time steps the glyphs become very elongated, indicating large
uncertainty. However, the distributions are multi-modal and can not
easily be parametrized, such as a Gaussian distribution.

The time series in these data consist of many more time steps,
than the ocean forecasts presented in prior work [HMZ∗14]. The
example shown in Figure 1 consists of 216 time steps, represent-
ing monthly samples of 18 years. Using finer sampling or an even
larger time span would rapidly increase the data size. To adapt the
time series view to these larger time series we implemented a sum-
mary overview visualization, as well as filtering of the time series.
To summarize the time series statistics we use a simple connected
box-plot (Figure 4). For each time step we compute the median,
10th and 90th percentile, as well as the minimum and maximum
values. We show the median and extrema as lines, connecting each
time step in the time series. The area between the 10th and 90th
percentile is filled semi-transparently using the same color hue that
is used for the glyph. Showing all time steps of a large time series
using the glyph-based visualization results in a lot of clutter and is
limited by available screen real estate. The box-plot allows us to fil-
ter the glyphs, without losing too much information. Therefore, we
provide the user with the option to select an appropriate sampling
of the glyphs. One way to do this is by simply selecting every n-th
time step. We also provide a smart sampling, based on an automatic
analysis of the original temporal resolution of the time series. E.g.,
assuming a temporal resolution of one day, we allow weekly and
monthly filtering. This filtering is based on the calendar, so e.g.,
monthly filtering results in non uniformly sized time steps of 28–
31 days. We also apply this filtering in case of missing data, or if
the temporal domain itself has been sampled non-uniformly.
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Figure 3: Illustration of the Spatial Analysis for injection well
placement. It becomes apparent that large parts on the left side of
the reservoir are not swept when injecting water.
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Figure 4: Illustration of the Time Series Analysis for injection well placement. The top view in a shows a comparison of the well production
rate over time for two wells, P01 and P09. The bottom shows the water cut rate. The components of the glyph are described in b.

4. Use Case

We present a use case of a real world reservoir forecast analysis, us-
ing the presented system. We use a forecast dataset that was com-
puted using a multi-data Ensemble Kalman-based history match-
ing framework, as presented by Katterbauer et al. [KASH15]. The
forecast consists of a time series of monthly samples of 18 years,
between January 2006 and December 2023, resulting in 216 time
steps. Each time step consists of multiple, unstructured 3D scalar
fields, including water saturation, pressure, permeability, and (tem-
porally stable) rock porosity, covering the complete reservoir do-
main. Each 3D field is composed of eight horizontal layers, con-
sisting of 5800 grid cells, each. In addition to the spatial data the
dataset includes field predictions and 11 wells, seven oil produc-
ers and four injection wells. Oil, water and gas production rates, as
well as the water cut are predicted for individual producer wells as
well as the cumulative rates and field level performance. Borehole
pressure is forecasted at all wells. In addition, injection well fore-
casts include water injection rates. Simulated results are available
for each of the 55 geological realizations present in this ensemble to
account for geological and engineering uncertainties in the model.

A typical reservoir management study consists of proposing in-
fill well locations and recommending production strategies, to max-
imize sweep efficiency of the reservoir and thus increasing the
net present value of the asset. Figure 3 shows several samples of
the water saturation of the top layer of the reservoir over time
(timesteps 5, 60, 120 and 180 are shown in Figure 3a-d, respec-
tively). In the presented application one could simply scrub the time
slider to get to these points in the time series. Naturally the wa-
ter saturation increases first in the areas around the injection wells
(Figure 3a). In the following time steps it becomes clear that water
injected through the two wells in the bottom right merges very early
(Figure 3b/c) and creates a highly saturated area in the lower right
corner of the reservoir and finally that the saturation in the lower
left area remains rather low even very late in the time series.

Figure 4 shows two different time series plots for the production
wells P01 and P09, highlighted in Figure 3a. Solely based on the

visualization in Figure 3, the water saturation over time seems to be
quite similar for these two positions. Thus, without the time series
view (Figure 4) we would also expect similar production rates for
these two positions. The detail analysis, however, reveals a much
more complex situation. The top time series in Figure 4a shows
the oil production, the bottom time series shows the water cut. Oil
production at P09 is expected to be much higher, compared to P01
from the beginning. However, the much larger spread in the blue
part of the glyphs, corresponding to P09, also indicates a much
larger uncertainty and as such a higher risk that the well will not
perform as expected. Contrary, the plots for P01 exhibit much less
variation and as such less uncertainty. Looking at the time series for
the water cut (Figure 4a, bottom) we see that the water cut for P09
increases much earlier compared to P01 and also with a much flatter
curve. That would put a large economical burden on production
from this well, as oil and water needs to be separated from early
on. The combination of these two series show the complex decision
making process to decide on well placement. P09 initially exhibits
much higher production rates, however, at higher uncertainty and
the economical benefit of these might greatly be diminished by a
costly process of reducing the water cut. With our tool the analyst
can make an informed decision based on all available data.

5. Conclusion
In this work, we present an interactive system for the visual explo-
ration and analysis of reservoir forecasts based on ensemble sim-
ulation. The system extends and adapts previous work for the vi-
sualization of ocean forecasts to support the specific needs for the
analysis of reservoir forecasts. We show how our tool supports the
complex decision making process in a simple use case.

For the future we would like to use the system to steer the opti-
mal field development planning. One could think of defining pos-
sible positions for well placement and based on this run the reser-
voir simulator again, to investigate the possible well potential and
likelihood of success. The newly created forecasts could then be
compared directly with the results of the previous forecasts, using
the presented tools.
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