
EG UK Theory and Practice of Computer Graphics (2012)
Hamish Carr and Silvester Czanner (Editors)

Path Tracing on Massively Parallel Neuromorphic Hardware

P. Richmond1 and D.J. Allerton1

1Department of Automatic Control Systems Engineering, University of Sheffield

Abstract
Ray tracing on parallel hardware has recently benefit from significant advances in the graphics hardware and
associated software tools. Despite this, the SIMD nature of graphics card architectures is only able to perform
well on groups of coherent rays which exhibit little in the way of divergence. This paper presents SpiNNaker, a
massively parallel system based on low power ARM cores, as an architecture suitable for ray tracing applications.
The asynchronous design allows us to demonstrate a linear performance increase with respect to the number of
cores. The performance per Watt ratio achieved within the fixed point path tracing example presented is far greater
than that of a multi-core CPU and similar to that of a GPU under optimal conditions.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture—
Parallel processing I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Ray Tracing

1. Introduction

Ray tracing offers a significant departure from traditional
rasterized graphics with the promise of more naturally oc-
curring lighting effects such as soft shadows, global illu-
mination and caustics. Understandably this improved visual
realism comes at a large computational cost. Traditionally
ray tracing has been realised in software with high perfor-
mance supercomputer solutions addressing the issue of per-
formance [GP90]. The increased flexibility of the Graphics
Processing Unit (GPU) has more recently opened up the pos-
sibly of massively parallel ray tracing on consumer hard-
ware [PBMH02, PBD∗10]. Essential to the success of this
work has been the ability to exploit thread level coherency
within the wide SIMD architecture. Typically this requires
the grouping of similar threads via the use of generated hi-
erarchical data structures [FS05]. Due to the issue of ray
coherency and the requirement of efficient algorithms for
generating hierarchical data structures on the fly, GPU ray-
tracing has failed to achieve the same orders of magnitude
speed-up achieved in other GPU accelerated domains such
as molecular dynamics. This situation has led to the use of
energy hungry supercomputing clusters of GPUs for high
performance ray tracing applications.

Aside from pure supercomputing performance, energy ef-
ficiency and cooling requirements are quickly becoming a
key consideration with respect to supercomputing metrics.
The SpiNNaker architecture is a massively parallel (up to a

million cores) and highly interconnected architecture which
considers power efficiency as a primary design goal. Origi-
nally designed for the purpose of simulating large neuronal
models in real time, the architecture is based on low power
(passively cooled) asynchronous ARM processors with pro-
grammable cores. This paper examines the potential of the
SpiNNaker architecture in its current form for the purposes
of ray tracing. More specifically this paper describes the
implementation and performance of a path tracer realised
using fixed point integer arithmetic [HRB∗09] suitable for
the ARM based architecture of SpiNNaker. Consideration
is given to the energy efficiency of the performance results
which demonstrate a significant performance per Watt ratio.

2. The SpiNNaker architecture

The SpiNNaker hardware architecture consists of a a
number of independently functional and identical Chip-
Multiprocessors each consisting of 18 ARM 968 cores run-
ning at 200MHz. Each core has its own dedicated tightly
coupled memory, holding 32KB of instructions and 64KB of
data. Each chip also contains 1Gbit of shared SDRAM con-
nected via a DMA controller which uses an asynchronous
"system" Network on Chip (NoC) to replace the require-
ment of a traditional on chip bus. The system NoC implies
a Globally Asynchronous and Locally Synchronous (GALS)
timing model [PFT∗07] allowing each chip to run in its own
timing domain. Similarly, a second "Communication" NoC

c© The Eurographics Association 2012.

DOI: 10.2312/LocalChapterEvents/TPCG/TPCG12/025-028

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/LocalChapterEvents/TPCG/TPCG12/025-028


P. Richmond & D.J. Allerton / Path Tracing on Massively Parallel Neuromorphic Hardware

provides a GALS multicast router, responsible for routing
small packets between cores and out to 6 other chips on the
SpiNNaker network. DMA events and packet inputs from
the NoC interfaces are supported via interrupts within the
overall event driven model of the architecture. A complete
SpiNNaker network consists of SpiNNaker chips arranged in
a 2D triangular torus with connections to the north, source,
east, west, southwest and northeast.

A primary application of the SpiNNaker architecture is
neural simulation. Each of the ARM 968 cores is sufficiently
fast to provide simulation of up to 1000 simple integrate and
fire neurons (or less neurons based on more advanced neu-
ronal dynamics) in real time. The proposed SpiNNaker sys-
tem of 1 million cores will therefore be sufficient to simu-
late a billion neurons (or 1 percent of the human brain). The
choice of low power ARM cores suggests that the 1 million
core system should generate only 250mW to 500mW per
chip.

3. Path Tracing on SpiNNaker

In order to evaluate the suitability of SpiNNaker for ray
tracing applications a simple path tracer has been imple-
mented using the GCC cross-tools compiler for ARM.
Our implementation is based upon the SmallPt (http://
kevinbeason.com/smallpt/) path tracer, a minimal path
tracer in 99 lines of C++. Whilst this is not particularly op-
timised it has a small instruction and data overhead which
avoids having to use slower off chip SDRAM. The mod-
ified Cornel box scene described procedurally by the path
tracer program consists entirely of spheres (9 in total) sim-
plifying the ray collision code. A larger number of similar
implementations exist on other parallel architectures such as
the Graphics Processing Unit (GPU) which provide useful
benchmarking.

Interfacing with the SpiNNaker hardware is limited, our
test boards which consist of four 18 core chips, provides a
single LED per chip (which is useful for debugging) and an
Ethernet connection for transferring data packets in an inter-
nal packet format of up to 256 bytes. This connection is used
initially to send packets to a rudimentary run-time system
which allows memory values to be manipulated (including
program loading) and chip execution to begin. During exe-
cution, packets can be routed back to the host via the use of
a call to a system print f function. This configuration there-
fore requires a client server based design for our path tracer
with the client periodically sending pixel samples to a visu-
alisation server on the host machine.

The path tracing client application is identical for each
core with the exception of a random state which is used
throughout to Monte Carlo based processes. Each iteration
of the algorithm calculates a specified SPP number of sam-
ples packet (each with 2x2 sub pixel samples for anti alias-
ing) before communicating the total pixel radiance back to

the host and selecting a new pixel to proceed. Due to mem-
ory restrictions recursion is avoided and the main radiance
calculation uses a loop to avoid branching. Pixel selection
can be either stochastic (utilising the cores random state) or
sequential with each core starting at a unique position based
upon the SpiNNaker core ID. Path termination can be either
based upon Russian Roulette or a fixed recursion depth crite-
rion. Whilst the former is more computationally expensive,
the asynchronous nature of the SpiNNaker allows different
cores to follow fully divergent code paths without the no-
ticeable performance penalties observable on SIMD archi-
tectures.

Figure 1: Two SpiNNaker test boards each with 4 chips
containing 18 cores each.

4. A Fixed Point Path Tracing Implementation

The SpiNNaker hardware architecture does not provide any
Floating Point Unit (FPU) and therefore all arithmetic re-
quires a suitable fixed point integer storage format. We have
chosen a fixed point format based on a 16 bit integer and
16 bit fractional part with a range of -32768 to +32767
and a resolution of approximately 1.526× 10−5. A library
for fixed point arithmetic is provided including a a fixed
point multiply which returns a 64 bit integer (in 48:16 for-
mat) which must be downcast and an ARM assembly imple-
mentation for fixed point division (http://me.henri.net/
fp-div.html).

Implementations of common Mathematics functions for
fixed point hardware often use a combination of either ap-
proximation functions, Taylor series expansions or lookup
tables. Our implementation uses a "binary restoring square
root extraction" [Tur94] to provide a fast square root im-
plementation and a fast parabolic sin approximation which
gives more accurate results than a Taylor expansion with less
computational cost.

Whilst performing geometric operations within our path
tracer it is possible to exceed the range and resolution of our
fixed point format. This is most obvious when considering
vector normalisation and the calculation of the determinant
of the quadratic for a ray sphere intersection. In both cases
the results from fixed point multiplications cannot be cast

c© The Eurographics Association 2012.

26



P. Richmond & D.J. Allerton / Path Tracing on Massively Parallel Neuromorphic Hardware

back into the 16:16 32 bit range. Instead the 48:16 format
is preserved until the values are square rooted. The imple-
mentation of a 48:16 version of the sqrt algorithm exploits
the identity

√
xy =

√
x
√

y to perform a 32 bit square root by
shifting the 48:16 format number into the 16:16 range and
then multiplying the result by the root of the divisor value
(indicated by the shift amount).

Random number generation is achieved by using an im-
plementation of a linear congruential generator. Each core
implementing our path tracing client maintains its own seed
value. To initialise the seed value of each core a shared seed
is set in shared system RAM of each SpiNNaker chip. Se-
quential loading allows each seed to be generated using the
shared seed value, itself iterated using the linear congruential
generator. Experimentation has shown that a careful choice
of multiplier and increment are necessary, especially as ran-
dom numbers within the range of 0 and 1 utilise only the
bottom 16 bits of the seed value.

5. Path Tracing Visualiser

Visualisation of the path tracing results is provided through
an interactive server application which runs on the "host"
machine connected to the SpiNNaker hardware. The server
is initialised by the receipt of packets which arrive in a fixed
format composed of a pixel location followed by an r,g and b
radiance value. The rgb values are stored in discrete buffers
which hold cumulative average values for each pixel with a
samples buffer storing the running total number of samples
per pixel. A separate pixel buffer maps the rgb radiance val-
ues into a single 32 bit RGBA format (after clamping and
gamma correction) which is continuously rendered by a sep-
arate display loop thread. A final activity buffer holds an
RGBA colour value (set to green with zero alpha when a
packet is received for a given pixel). The render loop decays
each activity buffer value by increasing the alpha value to
give a visual heat map used to display an overlay indicating
pixel activity. As each packet is received a number of statistic
are also updated and optionally displayed including values
such as total packets, total samples, running time, average
packets/samples per pixel and average packets/samples per
second.

6. Results and Discussion

Figure 2 shows a visual comparison of the fixed
point path tracer in comparison with the results ren-
dered using full double precision and results from a
floating point implementation of the path tracer ren-
dered within SmallptGPU (http://davibu.interfree.
it/opencl/smallptgpu/) using OpenCL for the GPU. As
with floating point implementations, numerical precision
causes an issue for self intersections and as such a small ε

value is used to offset rays from their originating surface.
Figure 3 shows that for small ε values of 0.01 the numerical

Figure 2: Comparison between our fixed point path tracer
on SpiNNaker(top) and double precision CPU result (bot-
tom) both rendered using 20,000 samples per pixel.

precision of our 16:16 format is insufficient to avoid signifi-
cant rendering artefacts during intersection. An ε of 0.06 still
shows some minor artefacts which are not observable for an
ε of 0.1 (2). Unfortunately large ε values prohibits the gen-
eration of the reflectance based light hat visible on the glass
sphere (right).

The performance of the fixed point path tracer running on
the SpiNNaker hardware has been evaluated by considering
the average samples per second for a number of hardware
configurations at varying SPP values. Figure 4 shows this
performance using both "Russian Roulette" path termination
and a fixed number of 4 bounces per ray. The results show a
linear scaling of performance for both ray termination tech-
niques as the number of SpiNNaker cores are increased.

In contrast with alternative parallel architectures, a multi
core CPU implementation of the Smallpt path tracer is able
to render a scene of 1024× 768 pixels with 25,000 sam-
ples per pixel (spp) using Russian Roulette path termination
in 10.3 hours on a 2.4GHz Intel Core 2 Quad CPU. This
implies a rate of roughly 530,226 total samples per second
(sps). In direct compassion this is approximately 4 times
faster than our 136 core implementation. Considering that
the dual test card set-up used for our calculations consumes

c© The Eurographics Association 2012.

27



P. Richmond & D.J. Allerton / Path Tracing on Massively Parallel Neuromorphic Hardware

Figure 3: Using an insufficient epsilon value (in this case
0.01) causes visual artefacts as a result of the fixed point
precision used to implement the path tracer on SpiNNaker
hardware.

Figure 4: Results show linear scaling of performance (i.e.
samples per second shown on Y axis) vs. the number of
SpiNNaker cores (X axis) for both fixed bounce and Russian
Roulette path termination.

at most 4W of power this is considerably more cost effective
in terms of sps/W than that of the Quad Core set-up which
requires a potential of 105W (excluding power requirements
of other system components).

GPU implementations of the Smallpt path tracer boast
a considerably greater performance than that of multi core
CPU implementations. Tokaspt (http://code.google.
com/p/tokaspt/) is significantly faster than SmallptGPU
and boasts a performance of 185.6M sps (for a fixed max-
imum of 4 bounces per sample) using an NVIDIA Quadro
FX 5800. In terms of performance per Watt a conservative
estimate of 500W for a high end PC system with a fully
loaded Quadro FX 5800 implies a value of 371,200sps/W .
In direct comparison with the SpiNNaker path tracer this is
roughly 4 times better than our implementation on SpiN-
Naker. It is worth noting however that using a fixed number
of bounces per ray presents an almost ideal case for the GPU
in that there is no thread level divergence across threads. In

more realistic situations or comparing our method with Rus-
sian Roulette would likely demonstrate a swing in our favour
with respect to overall performance per Watt.

7. Future Work

Future work will concentrate on the use of SpiNNaker in
more robust ray tracing applications involving large datasets
requiring access to SDRAM memory. The most obvious
mapping of a pixel per core in the million core system seems
the most intuitive way to achieve real time performance. De-
spite this we are also interested in how massive distributed
datasets may be mapped to and rendered efficiently using the
hardware. There is also significant scope to explore caching
techniques and intelligent scaling of the fixed point for-
mat. From a practical perspective, we have observed that
the largest number of packet tracer packets which can be
communicated via ethernet is roughly 1500 per second. Any
more than this causes active cores to interfere with the load-
ing and starting of new cores on the same test board. This
therefore requires that the value of SPP is increased at the
same rate as the core count. In future work it will be neces-
sary to consider the use of higher bandwidth output mech-
anisms or a more direct hardware framebuffer implementa-
tion. Likewise future variations of SpiNNaker may consider
alternative ARM cores capable of SIMD instructions or the
possible addition of a FPU if necessary.

References
[FS05] FOLEY T., SUGERMAN J.: Kd-tree accel-

eration structures for a gpu raytracer. In Proceed-
ings of the ACM SIGGRAPH/EUROGRAPHICS con-
ference on Graphics hardware (New York, NY, USA,
2005), HWWS ’05, ACM, pp. 15–22. URL: http:
//doi.acm.org/10.1145/1071866.1071869, doi:
http://doi.acm.org/10.1145/1071866.1071869.
1

[GP90] GREEN S. A., PADDON D. J.: A highly flexible multi-
processor solution for ray tracing. The Visual Computer 6 (1990),
62–73. 10.1007/BF01901067. URL: http://dx.doi.org/
10.1007/BF01901067. 1

[HRB∗09] HEINLY J., RECKER S., BENSEMA K., PORCH J.,
GRIBBLE C.: Integer ray tracing. journal of graphics, gpu, and
game tools 14, 4 (2009), 31–56. 1

[PBD∗10] PARKER S. G., BIGLER J., DIETRICH A.,
FRIEDRICH H., HOBEROCK J., LUEBKE D., MCALLIS-
TER D., MCGUIRE M., MORLEY K., ROBISON A., STICH M.:
Optix: A general purpose ray tracing engine. ACM Transactions
on Graphics (August 2010). 1

[PBMH02] PURCELL T. J., BUCK I., MARK W. R., HANRA-
HAN P.: Ray tracing on programmable graphics hardware. ACM
Transactions on Graphics 21, 3 (July 2002), 703–712. ISSN
0730-0301 (Proceedings of ACM SIGGRAPH 2002). 1

[PFT∗07] PLANA L., FURBER S., TEMPLE S., KHAN M., SHI
Y., WU J., YANG S.: A gals infrastructure for a massively par-
allel multiprocessor. IEEE Design & Test of Computers 24(5)
(2007), 454–463. 1

[Tur94] TURKOWSKI K.: Fixed Point Square Root (Tech Report
96). Tech. rep., Apple Computers, 1994. 2

c© The Eurographics Association 2012.

28

http://doi.acm.org/10.1145/1071866.1071869
http://doi.acm.org/10.1145/1071866.1071869
http://dx.doi.org/http://doi.acm.org/10.1145/1071866.1071869
http://dx.doi.org/http://doi.acm.org/10.1145/1071866.1071869
http://dx.doi.org/10.1007/BF01901067
http://dx.doi.org/10.1007/BF01901067

