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SUMMARY

The research field of geometry processing is concerned with the representation, analysis,

modeling, simulation and optimization of geometric data. In this thesis, we introduce

novel techniques and efficient algorithms for problems in geometry processing, such as

the modeling and simulation of elastic deformable objects, the design of tangential vec-

tor fields or the automatic generation of spline curves. The complexity of the geometric

data determines the computation time of algorithms within these applications. The high

resolution of modern meshes, for example, poses a big challenge when geometric pro-

cessing tools are expected to perform at interactive rates. To this end the goal of this the-

sis is to introduce fast approximation techniques for problems in geometry processing.

One line of research to achieve this goal will be to introduce novel model order reduction

techniques to problems in geometry processing. Model order reduction is a concept to

reduce the computational complexity of models in numerical simulations, energy opti-

mizations and modeling problems. New specialized model order reduction approaches

are introduced and existing techniques are applied to enhance tools within the field of

geometry processing. In addition to introducing model reduction techniques, we make

several other contributions to the field. We present novel discrete differential operators

and higher order smoothness energies for the modeling of tangential (n-)vector fields.

These are used, to develop novel tools for the modeling of fur, stroke based renderings

or anisotropic reflection properties on meshes. We propose a geometric flow for curves

in shape space that allows for the processing and creation of animations of elastic de-

formable objects. A new optimization scheme for sparsity regularized functionals is in-

troduced and used to compute natural, localized deformations of geometrical objects.

Lastly, we reformulate the classical problem of spline optimization as a sparsity regular-

ized optimization problem.

In Chapters 1 and 2 we introduce an approach that enables the creation and design

of smooth tangential vector and n-rotational-symmetry fields on curved surfaces in real

time. Such fields can represent directional information on surfaces, and are therefore

useful for mesh texturing, remeshing, anisotropic shading, fluid simulations on sur-

faces, surface segmentation and surface reconstruction. The main contributions here

are the introduction of discrete differential operators for tangential vector and n-fields

that allow for specific spectral decompositions, higher-order smoothness energies and

the novel concept of modeling tangential vector field splines and n-field splines. To en-

able real-time editing, a reduction using the spectral decompositions and a reformula-

tion of the involved linear systems is proposed. Various novel applications are proposed

that make use of these real-time modeling tools.

Chapters 3, 4 and 5 explore the field of elastic deformable objects for computer graph-

ics. Modeling and simulating elastic objects is essential for many applications in com-

vii



viii SUMMARY

puter graphics. However, complex meshes and the non-linear behavior of elastic ma-

terials pose major barriers to achieve interactive rates for such tools. Chapter 3 de-

scribes a scheme for the real-time simulation of deformable objects. We introduce spe-

cific linear subspaces and a novel approximation scheme for local non-linearities. This

hyper-reduction scheme is combined with a recent simulation framework called Projec-

tive Dynamics, which makes use of specific energy potentials and a local-global varia-

tional time-stepping scheme. As a result, we achieve realistic and detailed dynamics for

high-resolution meshes in real-time framerates.

Chapter 4 considers the concept of shape spaces for elastic deformable objects. Shape

spaces endow the space of deformations of an elastic deformable object with a Rieman-

nian structure and thus allow us to view continuous deformations of a mesh as curves

in this space. A novel geometric flow for the processing of such curves is introduced,

with which we can compute shortest paths in shape space, regularize animations or cre-

ate new animations from key frames. The application of existing model reduction ap-

proaches in combination with this flow enables computations in shape space in a frac-

tion of the time required by previous approaches.

Chapter 5 introduces localized vibration modes, a novel basis designed to represent

localized deformations of elastic deformable objects. Vibration modes are defined as

the eigenfunctions of the Hessian of an elastic energy. Eigenfunctions corresponding to

the lowest eigenvalues correspond to infinitesimal, global deformations that require the

lowest amount of elastic energy. The basis we propose maintains this idea while addi-

tionally enforcing locality of the deformations through a sparsity term. A novel algorithm

for the minimization of L2-constrained, sparsity regularized quadratic functionals is in-

troduced. The resulting basis can be used for reduction approaches in elasticity prob-

lems, which is demonstrated for linearized, reduced simulations and elastic modeling.

Additionally it allows for the analysis and segmentation of deformable objects.

In Chapter 6, we consider the classical problem of finding a spline curve that best

matches an input curve or general curve-like data. The goal here is to find a spline curve

defined on a low number of control points, in order to reduce the amount of data that is

required to represent the input curve. By a novel reformulation of the problem we show

that this amounts to solving a sparsity regularized quadratic optimization problem, sim-

ilar to the problem encountered in Chapter 5. We test and compare several algorithms

for the optimization of the problem and propose specific tools to approximate optimal

splines. Amongst more classical applications of the resulting tools for spline optimiza-

tion we show that the approach can be used to compress and regularize motion data.

In summary, each of these six chapters provide novel approaches, techniques and

insights revolving around interactive geometry processing and model reduction. These

contributions offer enhancements to the state-of-the-art in simulation, elastic model-

ing, tangential field design, and spline optimization.



SAMENVATTING

Het onderzoeksdomein van geometrieverwerking betreft de representatie, analyse, mo-

dellering, simulatie en optimalisatie van geometrische data. In dit proefschrift introdu-

ceren we nieuwe technieken en efficiënte algoritmes voor problemen in de geometrie-

verwerking, zoals het modelleren en simuleren van elastische vervormbare objecten, het

ontwerpen van tangentiële vectorvelden of het automatisch genereren van spline krom-

men. De complexiteit van de geometrische gegevens bepaalt voor deze toepassingen de

benodigde rekentijd voor de algoritmen. Bijvoorbeeld, de hoge resolutie van moderne

meshes is een grote uitdaging wanneer van geometrische verwerkingstools verwacht

wordt interactief te presteren. Het doel van dit proefschrift is het introduceren van snelle

benaderingstechnieken voor problemen in de geometrische verwerking. Een van de tak-

ken in onderzoek om dit doel te bereiken is het introduceren van nieuwe zogenaamde

“model-order-reduction” technieken voor problemen in de geometrieverwerking. Het

concept van model-order-reduction is om de rekencomplexiteit te verminderen van mo-

dellen in numerieke simulaties, energieoptimalisaties en modelleerproblemen. Nieuwe

gespecialiseerde model-order-reduction-benaderingen worden geïntroduceerd en be-

staande technieken worden toegepast om de tools binnen het domein van geometrie-

verwerking te verbeteren. Naast de introductie van modelreductietechnieken leveren

we nog verschillende andere bijdragen aan het veld. We presenteren nieuwe discrete

differentiële operatoren en gladdere energieën voor het modelleren van tangentiële (n-

)vectorvelden. Deze worden gebruikt om nieuwe tools te ontwikkelen voor het modelle-

ren van vacht, stroke-based rendering of anisotrope reflectie-eigenschappen op meshes.

Een nieuw optimalisatieschema voor schaarsheid geregulariseerde functies wordt geïn-

troduceerd en gebruikt om natuurlijke, gelokaliseerde vervormingen van geometrische

objecten te berekenen. Ten slotte herformuleren we het klassieke probleem van spline-

optimalisatie als een schaarsheid geregulariseerd optimalisatieprobleem.

In de hoofdstukken 1 en 2 introduceren we een aanpak die de creatie en het ontwerp

van gladde tangentiële vectorvelden en n-rotatie-symmetrievelden op gebogen opper-

vlakken in real time mogelijk maakt. Dergelijke velden kunnen richtingsinformatie op

oppervlakken weergeven en zijn daarom nuttig voor het bepalen van de textuur van

een mesh, remeshing, anisotrope schakering, vloeistofsimulaties op oppervlakken, op-

pervlaktesegmentatie en oppervlaktereconstructie. De belangrijkste bijdragen hier zijn

de introductie van discrete differentiële operatoren voor tangentiële vectorvelden en n-

velden die specifieke spectrale decomposities, hogere orde gladheid energieën en het

nieuwe concept van het modelleren van tangentiële vectorveld splines en n-veld splines.

Om het aanpassen in real-time mogelijk te maken, wordt een reductie met behulp van

de spectrale decomposities en een herformulering van de betrokken lineaire systemen

voorgesteld. Er worden verschillende nieuwe toepassingen voorgesteld die gebruik ma-

ken van deze real-time modelleringstools.
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x SAMENVATTING

In de hoofdstukken 3, 4 en 5 wordt het veld van elastische vervormbare objecten

voor computergraphics verkend. Het modelleren en simuleren van elastische objec-

ten is essentieel voor veel toepassingen in computergraphics. Complexe meshes en het

niet-lineaire gedrag van elastische materialen vormen echter lastige problemen voor het

maken van interactieve tools. Hoofdstuk 3 beschrijft een schema voor de real-time si-

mulatie van vervormbare objecten. We introduceren specifieke lineaire deelruimten en

een nieuw benaderingsschema voor lokale niet-lineairiteiten. Dit hyperreductieschema

wordt gecombineerd met de specifieke energiepotentialen en een aanpak die gebruik

maakt van variatierekening van de tijdstappen die in een recente simulatie aanpak met

de naam Projective Dynamics verschijnen.

Hoofdstuk 4 behandelt het concept van vormruimten voor elastische vervormbare

objecten. Vormruimten geven de ruimte van vervormingen van een elastisch vervorm-

baar object met een Riemannische structuur en stellen ons in staat om continue vervor-

mingen van een mesh als krommen in deze ruimte te bekijken. Er wordt een nieuwe geo-

metrische stroming voor de verwerking van dergelijke krommen geïntroduceerd, waar-

mee we de kortste paden in de vormruimte kunnen berekenen, animaties kunnen re-

gulariseren of nieuwe animaties kunnen maken gebaseerd op gegeven animatieframes.

De toepassing van bestaande modelreductiemethoden in combinatie met deze stroming

maakt berekeningen in de vormruimte mogelijk in een fractie van de tijd die eerdere be-

naderingen nodig hadden.

Hoofdstuk 5 introduceert gelokaliseerde trilling modi, een nieuwe basis die ontwor-

pen is om gelokaliseerde vervormingen van elastische vervormbare objecten te repre-

senteren. Trilling modi worden gedefinieerd als de eigenfuncties van de Hessiaan van

een elastische energie. Eigenfuncties die overeenkomen met de laagste eigenwaarden

komen overeen met oneindig kleine, globale vervormingen die de laagste hoeveelheid

elastische energie vereisen. De basis die wij voorstellen handhaaft dit idee en dwingt

tegelijkertijd de lokaalheid van de vervormingen af door middel van een schaarsheid

term. Een nieuw algoritme voor het minimaliseren van L2-beheerste, schaarsheid gere-

gulariseerde kwadratische functies wordt geïntroduceerd. De resulterende basis kan ge-

bruikt worden voor reductie aanpakken van elasticiteitsproblemen, wat gedemonstreerd

wordt voor gelineariseerde, gereduceerde simulaties en elastische modellering. Daar-

naast maakt het de analyse en segmentatie van vervormbare objecten mogelijk.

In hoofdstuk 6 behandelen we het klassieke probleem van het vinden van een spline

curve die het best overeenkomt met een gegeven curve of algemene curve-achtige data.

Het doel hier is om een spline curve te vinden die gedefinieerd is op een laag aantal con-

trolepunten, om zo de hoeveelheid gegevens die nodig is om de gegeven curve weer te

geven te verminderen. Door een nieuwe herformulering van het probleem laten we zien

dat dit neerkomt op het oplossen van een schaarsheid geregulariseerde kwadratische op-

timalisatie probleem, net zoals het probleem dat we in hoofdstuk 5 tegenkwamen. We

testen en vergelijken verschillende algoritmes voor de optimalisatie van het probleem

en stellen specifieke tools voor om de optimale splines te benaderen. Onder de meer
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klassieke toepassingen van de resulterende tools voor spline optimalisatie tonen we aan

dat de aanpak gebruikt kan worden om bewegingsgegevens te comprimeren en te regu-

lariseren.





INTRODUCTION

Geometry processing is a field of research dedicated to the design of algorithms for the

acquisition, (re-)construction, design, analysis, manipulation and simulation of geomet-

rical data. It provides indispensable tools that allow us to model real-life phenomena on

a computer. The field combines aspects from mathematics, computer science, engi-

neering and physics. In particular, differential geometry and numerical analysis provide

the theoretical basis, which is required to talk about shape, its representation, analysis

and manipulation, in a rigorous way. Computer science guides the design and efficient

implementation of the algorithms to carry out the desired tasks. Engineering provides

means to generate input for and output from such algorithms, e.g. in the form of scan-

ning or printing geometrical objects. Where motion and deformation are concerned,

physics provide theoretically and experimentally founded concepts and formulas that

yield plausible results for simulations or modeling tools.

To properly represent a complex geometrical object in a computer, a huge amount of

data is required. The processing of such data is computationally intensive and consumes

a huge amount of resources, but users expect tools to process geometrical data to work

at interactive rates. Interactivity is essential since creative processes thrive from instant

feedback through directly visible results. To address this contradiction, a lot of research

in geometry processing is concerned with devising more efficient algorithms to process

data, and more efficient representations of the data itself.

In an interactive setting, limitations on how to deal with the data are present. When a

simulation involves highly resolved meshes, it is impossible to perform complex opera-

tions on each vertex of the mesh. Computing the smoothest function approximating cer-

tain data on a grid involves solving a linear system. For large systems, this process can no

longer be performed at interactive rates. Modern GPUs are able to carry out thousands

of similar operations in parallel, but this only reduces computation time in cases where

the algorithms can be split into small, local and independent tasks. For many tasks in

geometry processing, parallelization is not possible or would produce an unacceptable

overhead. Even for parallelizable tasks there is a certain threshold on the size of the in-

put data after which interactivity is lost.

Model order reduction (or simply model reduction, in the following) is a concept that

can provide solutions to this dilemma. It aims to reduce the overall complexity of nu-

merical algorithms for mathematical models, such as simulation, control, and design

problems. One aspect of model reduction is to provide representations that can approx-

imate the system’s state with less data, e.g. replacing the list of the positions of all vertices

of a mesh by a few coordinates that describe the shape in some abstract way. Another

aspect is to reduce the number of operations required to process the state of the system,

1
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such as the evaluation of some geometric quantity associated to each vertex. When both

of these aspects are combined, in a fashion such that the complexity of the final algo-

rithm does not depend on the original size of the system anymore, it guarantees that the

algorithm can perform in a complexity that is independent of the size of the input data.

The field of model reduction emerged from the study of finite element discretizations

for systems of ordinary equations, but we use the term in its generality, i.e. wherever di-

mensionality and complexity reductions are used to accelerate numerical algorithms for

mathematical models.

This thesis is dedicated to the study of model reduction approaches in the field of

geometry processing. Various reduced representations and further approximations are

presented, which then yield accelerated numerical algorithms for novel and classical

applications in geometry processing. The applications considered here range from the

modeling of tangential vector- and n-fields over elastic simulation and modeling to com-

pressing curve-like data. While these applications are vastly different in terms of under-

lying theory and use cases, the approaches to model reduction are surprisingly similar.

Most reduction approaches in this thesis make use of linear subspaces. This implies

that the approximated system’s state is a linear combination of a finite number of basis

vectors or functions. The coefficients of this linear combination yield a reduced repre-

sentation, whose size can be chosen independently of the number of variables in the full

system. How to construct these subspaces such that a large number of typical states of

the system can be well approximated is an ongoing area of research, and will be inves-

tigated in this thesis for several specific problems. In some cases, the restriction of the

problem to such a linear subspace yields a natural, or canonical, reduction of the algo-

rithm, that results in a fully reduced system. In other cases, this restriction does not yield

a reduction of the algorithms complexity. For example, if a geometric quantity needs to

be evaluated at every vertex in a non-linear manner, the mesh would first need to be

reconstructed from its reduced representation, in order to use the resulting vertex posi-

tions to evaluate the quantity. In such cases, another layer of approximation is required,

a hyper-reduction. Whereas linear subspaces are a fairly universal approach to reducing

the size of the problem, approximation schemes of the latter kind vary greatly, depend-

ing on the specific problem and approximation requirements. In this thesis we will study

examples where a linear subspace is enough to yield a fully reduced system, as well as

examples where a hyper reduction is required.

Chapters 1 to 6 are based on the publications that are listed at the end of this thesis.

As such, they contain novel contributions to the field of geometry processing, which are

listed at the beginning of each chapter. Each chapter either focuses on a specific task

that benefits from model reduction approaches (e.g. the processing curves in the space

of elastic shapes or the design of tangential vector fields), or on the introduction of ad-

vances in model reduction approaches for specific tasks (e.g. a novel hyper-reduction

scheme for simulation or the approximation of curve-like data by sparse splines).

Chapters 1 and 2 are dedicated to the study of tangential vector- and n-fields on tri-
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angle meshes. Specifically we consider piecewise constant fields, where one tangential

(n-)vector is defined on each triangle. Such fields can represent geometric data defined

on the surface of the mesh and as such are used in various design applications that are

presented in the respective chapters. We develop interactive tools for the design and

manipulation of both types of fields. The computationally intensive task is to find the

smoothest field that satisfies a set of user specified constraints. To this end, specific sub-

spaces of tangential fields are designed, based on differential operators that are carefully

discretized for our specific representation. Since the smoothness energies considered in

both chapters are quadratic in the fields, a model reduction approach that enables fast

computation of the fields can be limited to constructing linear subspaces, as the com-

plexity for the energy evaluation can then be canonically reduced. Even so, our specific

choice of a basis decouples the energy term in a way that reduces the complexity of the

evaluation even further.

In Chapter 1 we establish a specific discrete Hodge–Laplace operator for tangential

vector fields, based on the Hodge decomposition, which enables a Fourier representa-

tion of tangential vector fields. We construct a linear subspace from the lowest part of

the spectrum of the Hodge–Laplace operator. Each basis vector is either divergence-free,

curl-free or harmonic, therefore the basis refines the Hodge decomposition of vector

fields. This enables directly working in curl-free or divergence-free spaces, easily remov-

ing curl or divergence from existing fields or specialized filters on the respective parts of

the spectrum. We show applications of such filters for the analysis and compression of

fields. Tangential vector field splines are then defined as minimizers of a higher order

smoothness energy subject to interpolation constraints. A tool for the interactive mod-

eling of such splines is devised and applied to the editing of fur on complex meshes in

real time.

In Chapter 2, we extend the above concepts to tangential n-rotational-symmetry

fields (n-fields), that is, fields which possess n vectors at each point of the surface, ex-

hibiting an n-fold rotational symmetry. We introduce a specific discretization of such

fields and extend the higher-order smoothness energy from Chapter 1 to n-fields. From

this energy, we obtain a Laplace operator for n-fields, which can be used to construct

linear subspaces by considering the lowest part of its spectrum. n-field splines are then

defined analogously to vector field splines and it is shown how the modeling of n-fields

using hard constraints on directions or singularities greatly benefits from the higher or-

der energies. Combining the novel subspaces with a reformulation of the resulting lin-

ear system enables interactive editing of n-fields on meshes of arbitrary size for the first

time.

Chapters 3, 4 and 5 make use of the concepts of deformation and physical elastic-

ity. The deformations of shapes are quantified by elastic energies, that are discretized

on triangle or tetrahedral meshes. To properly retain certain physical phenomena, non-

linear elastic energies are required. This poses a difficulty to applying model reduction

approaches that was not present in Chapters 1 and 2. A reduced representation alone

will no longer be enough to achieve interactive rates, since another layer of approxima-
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tion for the non-linearities will be required. Aside from the common theme of elasticity

and deformation, each of these three chapters has a vastly different focus.

In Chapter 3 we devise a novel hyper-reduction scheme for a specific simulation

framework called Projective Dynamics. An approximation scheme for specific energy

potentials that appear in Projective Dynamics is introduced. Together with a novel, fast,

scalable and general subspace construction for the approximation of the vertex posi-

tions, real-time framerates for the simulation of highly complex meshes (> 1.6 million

tetrahedrons) can be achieved on a consumer desktop computer. The simulation frame-

work supports multiple types of objects (shells, solids, springs), is unconditionally stable,

allows for changing the material parameters in real time and requires low precomputa-

tion times.

In Chapter 4 elastic energies are used to devise a physically-motivated metric on Rie-

mannian shape spaces, i.e. spaces containing (a subset of the) deformations of a shape.

This allows notions such as shortest paths between two deformations of the same shape

(i.e. a geodesic in shape space), spline curves within the space of deformations of a shape

or smoothly varying deformations. Computations in such shape spaces are expensive.

For example, the degrees of freedom to compute a geodesic in shape space are those

of multiple (tens to hundreds) of copies of a complex shape, as the whole (discretized)

curve is the unknown objective of a non-linear energy functional. We accelerate com-

putations in shape space by making use of existing model reduction techniques and in-

troducing an optimization scheme that employs a novel geometric flow. The flow itera-

tively smooths curves in shape space by local averaging operations, akin to smoothing

approaches for polygonal curves. As linear subspaces we either use a principal compo-

nent analysis of existing collections of deformations of a shape or an existing subspace

construction from prior work that uses derivatives of shapes with respect to an interpola-

tion parameter. For the fast evaluation of (the gradients of) the elastic energy functions,

we make use of two previously introduced approximation schemes: ghost meshes or the

optimized cubature. The model reduction approaches, together with the novel flow, en-

able fast computations of curves and lines in shape space. Applications include shape

interpolation, creating animations from key frames, regularizing motion or removing

linear and temporal artifacts from animations.

Chapter 5 is dedicated to the construction of a specific linear subspace to represent

localized deformations of a shape. We extend the notion of natural vibration modes of

an elastic energy to a one parameter family of bases, which correspond to low frequency

deformations that are localized to certain areas or volumes of a shape. The modes are de-

fined as the solutions to an optimization problem that combines a quadratic elastic en-

ergy term, which penalizes high frequency deformations, with a weighted L1-norm term,

which enforces sparsity. A novel algorithm to compute such compressed eigenmodes of a

shape operator is devised, which outperforms other state of the art algorithms for simi-

lar problems. The basis is shown to enhance applications such as linearized simulations,

elastic modeling, deformation compression and shape segmentation.
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Chapter 6 also makes use of the concept of sparsity. There, we try to approximate

curves in d-dimensional Euclidean space by spline curves that are defined by the lowest

number of control points possible. We consider a general formulation of this problem,

allowing for control points at arbitrary parameters of the curve and for various types

of splines. We reformulate the problem in a way that finding an optimal spline curve

amounts to solving a sparsity-regularized quadratic minimization problem. We apply,

adapt and compare several algorithms for the approximation of the problem. The ap-

proach can be used to heavily reduce the amount of data required to represent curves,

but also other data that smoothly depends on one parameter. As an example we com-

press animation data acquired from motion capturing. In addition to reducing the data,

which enables faster post-processing, the approach also regularizes the data by replac-

ing noisy parts with smooth spline curves.

Each chapter closes with a short conclusion that summarizes the contributions, shows

limitations of the proposed methods or offers specific suggestions of future work in the

respective area of focus. The concluding Chapter 7 offers a more general outlook on the

implications of this work and proposes future directions for model reduction approaches

in computer graphics.





1
SPECTRAL PROCESSING OF

TANGENTIAL VECTOR FIELDS

This chapter is based on the publication Spectral Processing of Tangential Vector Fields by

Christopher Brandt, Leonardo Scandolo, Elmar Eisemann and Klaus Hildebrandt, pub-

lished in Computer Graphics Forum in 2017.

1.1. OVERVIEW

Tangential vector fields are a fundamental representation of directional information on

a surface. For example, gradients of functions are tangential vector fields and flows,

stresses, strains, or curvature directions are tangential to a surface. Therefore, the pro-

cessing of tangential vector fields is important for algorithms for many applications in

graphics.

Spectral methods are well established for the processing of functions and signals

over planar domains. Within the last two decades, spectral methods for the processing

of curved surfaces and functions on them have been developed and the field of spec-

tral mesh processing has been established. Central is the eigendecomposition of the

Laplace–Beltrami operator, which generalizes the Fourier basis from planar domains to

curved surfaces. Whereas on planar domains, spectral methods can be directly gener-

alized to the processing of vector fields by simply applying the method to each of the

component functions of the vector field, this is not possible for tangential vector fields

on curved surfaces because there is no rigid Cartesian coordinate system.

In this chapter, we introduce a framework for spectral processing of tangential vector

fields on curved surfaces, akin to spectral mesh processing. The foundation is a Fourier-

type representation that associates frequencies with tangential vector fields. To con-

struct the Fourier-type basis on the space of tangential vector fields, we combine the

eigendecomposition of the Hodge–Laplace operator and the Hodge decomposition to

obtain basis fields that are either integrable, co-integrable or harmonic.

We formulate the spectral processing framework for piecewise constant tangential

7
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vector fields on triangle meshes. These vector fields are widely used in graphics appli-

cations and a discrete Hodge decomposition has been established. To define the spec-

tral basis, we introduce a discrete Hodge–Laplace operator for piecewise constant vec-

tor fields on surface meshes. The operator shares important properties with its con-

tinuous counterpart and fits conceptually to the prominent cotan discretization of the

Laplace–Beltrami operator. We show that a sparse matrix representation of the opera-

tor can be obtained by combining a set of simple matrices. Additionally, we derive a

discrete Dirichlet energy that can be used as a regularizer or fairness energy for piece-

wise constant tangential vector fields on surfaces. For solving the eigenproblem of the

discrete Hodge–Laplace operator, we introduce a scheme that boils the computation of

the eigenfields down to the computation of the eigenfunctions of two discrete Laplace–

Beltrami operators.

To illustrate the potential of our framework for the applications, we introduce tools

for spectral filtering and analysis, compression and real-time tangential vector field de-

sign. The filtering tools allow users to design filters in the spectral domain. Individual

filters can be specified for the integrable and co-integrable parts of a field. The compres-

sion scheme allows for lossy compression of tangential vector fields at high compression

rates. For vector field design, we follow the approach introduced by Fisher et al. [1]. A

tangential vector field is constructed by minimizing the Dirichlet energy subject to soft

constraints that implement the user input.

To ensure interactive editing of tangential vector fields on arbitrarily complex sur-

faces, we employ a model reduction approach by restricting the design space to the space

spanned by 1-2k low-frequency eigenfields of the introduced Hodge–Laplace operator.

This significantly accelerates the computation times of smoothest fields, as compared to

the approach presented in [1] (up to a factor of 200 in our experiments).

Our second main contribution is a “spline-like”-editor for tangential vector fields. It

allows for modeling tangential vector fields using hard constraints on the field and its

divergence and curl. Tangential vector field splines (TVFS) can be defined (analogous

to cubic splines) as the minimizers of a biharmonic energy under constraints. This idea

was already discussed in [Fisher2007] as a possible extension of the design method in-

troduced in the paper. However their approach has two limitations: only soft constraints

can be imposed and the resulting scheme is not fast enough to allow for interactive edit-

ing. In this work, we overcome both limitations and transfer the approach to piecewise

constant vector fields. To be able to formulate TVFS for piecewise constant vector fields,

we introduce a biharmonic energy for these fields. Furthermore, we introduce a numer-

ical scheme for computing the TVFS in real-time. The scheme combines the spectral

basis and an efficient solver of the quadratic problem.

1.2. RELATED WORK

Spectral mesh processing Within the last two decades a large number of methods

for tasks in shape analysis and processing that use the spectrum and eigenfunctions of

the Laplace–Beltrami operator have been proposed. In the following, we briefly discuss

some of the applications. For an introduction to spectral mesh processing and a broader

overview of applications, we refer to the surveys by Lévy and Zhang [2] and Zhang, van

Kaick and Dyer [3].
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The eigendecomposition of the Laplace–Beltrami operator yields a basis of the space

of functions on a curved surface analogous to the Fourier basis for signals over a one-

dimensional domain. By transforming a function into this basis, it is decomposed into

oscillations that are ordered by their frequencies. Even the surface itself (i.e. the em-

bedding of the surface in R
3) can be treated in this way. Vallet and Lévy [4] proposed a

framework for the design of mesh filters. The framework allows for amplifying and sup-

pressing the different frequencies in the embedding of the mesh. For example, high and

low pass filters for sharpening and smoothing the mesh can be constructed. Karni and

Gotsman [5] proposed a scheme for the compression of triangle meshes based on the

eigendecomposition of a combinatorial Laplacian. Recently, a scheme for the compres-

sion of dynamic mesh sequences was introduced by Váša et al. [6]. The regular pattern of

minima and maxima of the eigenfunctions are used for generating a quadrangular mesh

on a surface. Dong et al. [7] introduce a technique that uses the Morse–Smale complex

of a carefully chosen eigenfunction to generate a coarse quadrangulation. Huang et al.

[8] and Ling et al. [9] extended this approach such that it can provide a user with control

of the shape, size, orientation, and feature alignment of the faces of the resulting quad-

rangulation. Spectral methods for shape segmentation have been introduced by Sharma

et al. [10] and Huang et al. [11].

The eigenfunctions enjoy many desirable properties. They are intrinsic, which means

they do not change if the mesh is isometrically deformed. Since they are derived as the

discretization of a continuous concept, they are mesh independent. They are variational,

which makes them robust to remeshing. These properties make them well-suited for the

design of pose-independent and mesh-independent shape descriptors. Various descrip-

tors have been designed including the Shape-DNA introduced by Reuter et al. [12, 13],

Rustamov’s Global Point Signature (GPS) [14], the Heat Kernel Signature (HKS) proposed

by Sun et al. [15], the Auto Diffusion Function introduced by Gebal et al. [16] and the

Wave Kernel Signature by Aubry et al. [17]. A signature involving not only intrinsic, but

also extrinsic information about the surface was introduced in [18, 19]. Based on the GPS

and the HKS, Ovsjanikov et al. [20, 21] introduced schemes for the detection of shape

symmetries. The pose and mesh independence has also been the basis of schemes for

shape correspondences and matching. Dey et al. [22] propose a robust pose-oblivious

shape matching algorithm based on persistent extrema of the HKS. The functional maps

framework, introduced by Ovsjanikov at el. [23], uses low-frequency eigenfunctions of

the Laplace–Beltrami operator on two shapes for constructing a linear map between the

function spaces of the shapes. Rustamov et al. [24] used this functional correspondence

to compare shapes.

Discrete Laplace–Beltrami operators are the backbone of spectral mesh processing.

Commonly, piecewise linear and continuous functions (linear Lagrange finite elements)

over triangle meshes are considered. The discretization of the Laplace–Beltrami oper-

ator in this setting leads to the prominent cotan weights [25, 26]. Discretizations with

higher-order elements were consider by Reuter et al. [12]. Properties of the discrete

Laplace operators have been studied by Wardetzky et al. [27, 28]. Convergence of the

discrete operators and their spectrum have been studied by Hildebrandt et al. [29, 30]

and Dey et al. [31].

In this chapter, we are proposing a framework that allows for applying spectral meth-
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ods for the processing of tangential vector fields on surface meshes. The spectral analysis

of vector fields on planar domains has been treated by Wagner, Garth and Hagen [32] and

a construction of reduced bases for fluid simulation on planar domains using Laplace

eigenfunctions was introduced by de Witt, Lessig and Fiume [33]. These techniques

however do not carry over to curved surfaces since they require a fixed Cartesian co-

ordinate system, which is not available for tangential fields on curved surfaces.

Tangential vector field processing Tangential vector fields appear in many applica-

tions in graphics. They are used for controlling anisotropic shading of surfaces [34, 35],

non-photorealistic rendering [36–38], texture generation[39, 40], simulation of fluid and

liquids on surfaces [41, 42], surface segmentation [43, 44] and surface construction [45,

46]. For a recent surveys on direction field synthesis, design, and processing, we refer

to [47, 48]. Methods that use tangential vector fields and more general direction fields

for surface meshing have received much attention in recent years. Some examples are

[49–56]. For a recent survey on the topic, we refer to [57].

The Hodge decomposition of vector fields is an important tool for the processing of

tangential vector fields. It allows for decomposing the fields into an integrable, a co-

integrable and a harmonic part. A discrete Hodge decomposition of the space of piece-

wise constant vector fields on a surface mesh has been introduced by Polthier and Preuss

[58, 59]. Tong et al. [60] generalized this decomposition to 3-dimensional domains and

introduced a multi-resolution representation of vector fields using the potential and co-

potential of a vector field. Wardetzky [61] extended the approach from simply-connected

domains to surfaces of arbitrary genus and proved convergence of the decomposition.

The spectral decomposition we are proposing is compatible with this discrete Hodge

decomposition. For a recent survey on discretizations and applications of the Hodge

decomposition, we refer to [62].

Fairness energies are used for the reconstruction, design and synthesis of tangential

vector and direction fields. Fairness energies for different representations of vector and

direction fields have been proposed [51, 63–67]. Here, we introduce a discretization of

the Dirichlet energy for piecewise constant tangential vector fields using a combination

of conforming and non-conforming discrete divergence and curl operators.

Alternatively to working with vector fields, one can dualize and consider 1-forms.

Discrete Exterior Calculus [68] provides notions of discrete k-forms and discrete opera-

tors on them including a discrete Hodge Laplacian for k-forms. A discrete Hodge decom-

position for 1-forms was introduced by Fisher et al. [1] and a spectral decomposition of

a discrete Hodge Laplacian on spaces of discrete k-forms has been derived by Arnold et

al. [69].

1.3. BACKGROUND: HODGE DECOMPOSITION OF VECTOR FIELDS

In this section, we review the Hodge decomposition of vector fields on a smooth sur-

face M embedded in R
3. We denote the surface normal field by N , and, for any point

p ∈ M the tangent plane of M at p by TpM . Before stating the Hodge decomposition,

we introduce basic differential operators on the space of functions and vector fields on

surfaces.
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Gradient, divergence, curl and Laplace–Beltrami The gradient is a linear operator

mapping differentiable functions to tangential vector fields. For any point p ∈ M the

gradient of f at p is defined as the tangential vector grad f (p) that satisfies

〈grad f (p),v〉R3 = dv f (p)

for all v ∈ TpM . Here, dv f (p) is the derivative of f at p in direction v. At any point,

grad f points in direction of the steepest ascent of f . We denote by J the operator that

rotates any vector of a vector field in its tangent plane by π
2

(following the orientation

of the surface). Besides the gradient operator, we consider the operator J grad, which

concatenates the gradient and the rotation J. We call this operator the co-gradient.

The divergence and curl are linear operators that map vector fields to functions. The

divergence of a vector field v at a point p ∈M is defined by

div v(p) =
2

∑

i=1

〈∇ei
v(p),ei 〉,

where ∇ is the covariant derivative and {e1,e2} forms an orthogonal basis of the tangent

plane at p. We define the curl as

curl v =−div J v. (1.1)

The divergence and curl are related to the gradient and co-gradient. To describe this

relation, we use the L2-scalar products on the spaces of square-integrable functions and

vector fields. These are defined as

〈

f , g
〉

L2 =
∫

M

f (p)g (p)dA (1.2)

〈v,w〉
L2 =

∫

M

〈

v(p),w(p)
〉

R3 dA (1.3)

The divergence and gradient as well as the curl and the co-gradient satisfy

〈

divv, f
〉

L2 =−
〈

v,grad f
〉

L2 (1.4)
〈

curl v, f
〉

L2 =−
〈

v, Jgrad f
〉

L2 , (1.5)

for all pairs of a continuously differentiable function f and tangential vector field v,

which follows from an integration by parts. By combining the operators introduced

above, we can define the Laplace–Beltrami operator

∆=−divgrad (1.6)

on the space of twice differentiable functions. Note that the operator could alternatively

be defined as the negative of the curl of the co-gradient: ∆=−curlJgrad.

Hodge decomposition and harmonic fields The space X of smooth tangential vector

fields on a surface with vanishing boundary can be decomposed into three L2-orthogonal

subspaces

X = Image(grad)⊕ Image(J grad)⊕H ,
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The first subspace is formed by the gradients of smooth functions. Fields in this space

are curl-free and represent the integrable part of a vector field. Similarly, the second sub-

space is the space of co-gradients of smooth functions, which are divergence-free. This

space represents the co-integrable part of a vector field. The third space consists of the

harmonic tangential vector fields H . These fields are neither gradients nor co-gradients

of functions. The space H can be defined as the intersection of the kernel of the di-

vergence and the curl. In other words, these are exactly the fields that have vanishing

divergence and curl. The space contains information about the topology of the surface.

H equals the first singular cohomology of the surface. This is an important relation

between vector calculus and algebraic topology. We refer to the literature, e.g. [70], for

more about this connection. One consequence is that the dimension of H on a surface

of genus g is 2g .

1.4. DISCRETE HODGE DECOMPOSITION

In graphics applications, we are often dealing with piecewise constant vector fields on

triangle meshes. A discrete counterpart of the Hodge decomposition for piecewise con-

stant vector fields has been introduced in [58–61]. In this section, we review this con-

struction.

Function spaces We denote the space of vector fields that are constant in every trian-

gle of a mesh Mh by Xh . In addition, we consider two function spaces. Both consist

of functions on Mh that are linear polynomials in every triangle. The two spaces are

constructed by imposing continuity constraints on the linear polynomials of neighbor-

ing triangles: the space Sh of piecewise linear polynomials that are globally continuous

and the space S∗
h

of piecewise linear polynomials that are continuous at the midpoints

of all interior edges. The combination of Sh and S∗
h

is needed for the discrete Hodge

decomposition.

Discrete operators The gradients of functions in Sh and S∗
h

are defined for all points in

the interior of a triangle and they are constant within each triangle. Hence the gradient is

a linear map from Sh and S∗
h

into Xh . While the gradient can be directly transferred to the

discrete setting, we define the discrete divergence and curl operators indirectly using the

gradient and equations (1.4) and (1.5). As in the continuous case, the discrete divergence

and curl map vector fields to functions. Since we are working with two function spaces,

we get two discrete divergence and curl operators. The conforming discrete divergence

is the linear operator

divh : Xh 7→ Sh

that satisfies
〈

divh v, f
〉

L2 =−
〈

v,grad f
〉

L2

for all v ∈Xh and f ∈ Sh and the nonconforming discrete divergence is the linear opera-

tor

div∗h : Xh 7→ S∗
h
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that satisfies
〈

div∗h v, g
〉

L2 =−
〈

v,grad g
〉

L2

for all v ∈Xh and g ∈ S∗
h

. Following the definition (1.1) of the curl in the continuous case,

the conforming and nonconforming discrete curl operators are defined as

curlh v =−divhJv and curl∗h v =−div∗hJv.

We discuss explicit matrix representations of the operators in Section 1.5.

Finally, we want to remark that there is a difference between the discrete operators

we define here and the definitions in [59, 61]. They define the divergences and curls of

vector fields as integrated quantities, while in the presented definitions, the divergences

and curls of vector fields are piecewise linear functions (hence pointwise quantities).

The notions are related, one can use the mass matrix (see Section 1.5) to convert one

into the other. We refer to [71] for a discussion of integrated vs. pointwise quantities.

Discrete Hodge decomposition As in the continuous case, the discrete Hodge decom-

position divides the space of vector fields into three orthogonal subspaces: the image

of the gradient, the image of the co-gradient and a space of harmonic vector fields. To

obtain spaces of harmonic fields that are 2g -dimensional as in the continuous case, we

need to combine the spaces Sh and S∗
h

. The discrete Hodge decomposition of the space

of piecewise constant vector fields is

Xh = Image(grad|Sh
)⊕ Image(J grad|S∗

h
)⊕Hh . (1.7)

The first component, Image(grad|Sh
), consists of the vector fields that are gradients of

functions in Sh . This part describes the integrable part of a vector field, which has van-

ishing nonconforming discrete curl. This means the first component is part of the kernel

of curl∗
h

. The second component, Image(J grad|S∗
h

), consists of the vector fields that are

co-gradients of functions in S∗
h

, the co-integrable part. These vector fields have vanish-

ing conforming discrete divergence. Hence, the second component is part of the kernel

of divh . For surfaces with genus zero (homeomorphic to a sphere), Image(grad|Sh
) is ex-

actly the kernel of curl∗
h

and Image(J grad|S∗
h

) is exactly the kernel of divh . However, for

surfaces with non-vanishing genus g there is a 2g -dimensional space Hh of piecewise

constant vector fields for which curl∗
h

and divh vanish. These vector fields are neither

gradients of functions in Sh nor co-gradients of functions in S∗
h

. We call

Hh = Kernel(divh)∩Kernel(curl∗h)

the space of discrete harmonic vector fields.

We want to emphasize that this theory requires the interplay of the conforming and

nonconforming spaces and operators. For example, a vector field is the gradient of a

function in Sh (on a simply-connected domain) if curl∗
h

vanishes. Moreover, to get spaces

of discrete harmonic vector fields of dimension 2g , the spaces Sh and S∗
h

have to be

combined. If only gradients and co-gradients of functions in Sh are used, the dimension

of the resulting space of harmonic fields depend on the mesh (and not only on the genus

of the surface) and are usually large (e.g. the dimension grows under mesh refinement).
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As an alternative to (1.7), we could exchange the roles of Sh and S∗
h

and obtain the

decomposition Xh =Image(grad|S∗
h

)⊕Image(J grad|Sh
)⊕H

∗
h

. Since in this case the inte-

grable part of a vector field is the gradient of a function in S∗
h

, we call this the noncon-

forming discrete Hodge decomposition. The resulting space of nonconforming discrete

harmonic fields is H
∗
h
=Kernel(div∗

h
)∩Kernel(curlh). The fact that there are two differ-

ent discrete Hodge decompositions is specific to the discrete setting and is not present

in the continuous case. In [61], it was shown that both decompositions converge to their

smooth counterpart under suitable refinement of the surface meshes. In this sense, the

two decompositions are similar.

In the following, we will consider only the decomposition (1.7). However, for any

notion we introduce, there is a corresponding notion where the roles of the spaces Sh

and S∗
h

are exchanged.

1.5. DISCRETE HODGE–LAPLACE OPERATOR FOR VECTOR FIELDS

In this section, we introduce a discrete Hodge–Laplace operator for piecewise constant

vector fields on surface meshes and the corresponding discrete Dirichlet and biharmonic

energies. Before we consider the discrete setting, we first review the smooth setting.

The smooth setting By combining the operators discussed in Section 1.3, one can con-

struct the Hodge–Laplace operator

∆=−(grad div+ J grad curl) (1.8)

on the space of smooth tangential vector fields on a surface. We use the minus sign

in (1.8) to get positive eigenvalues for the Hodge–Laplace operator.

Since we could not find a reference where (1.8) is stated, we want to put this formula

in context with the literature. The Hodge Laplacian is usually defined as an operator

on smooth k-forms on a Riemannian manifold [72]. For surfaces, 0- and 2-forms can

be identified with functions and the Hodge Laplacian for these forms is the Laplace–

Beltrami operator (1.6) for functions. 1-forms on a surface can be identified with vector

fields via v ↔〈v, ·〉. Using this isomorphism, we can carry over the Hodge Laplacian from

1-forms to vector fields and express this operator in terms of the operators J, grad, div

and curl. Formula (1.8) is the resulting operator. For vector fields on planar domains, this

operator agrees with the vector Laplacian. In this sense, the Hodge Laplacian generalizes

the vector Laplacian from vector fields on planar domain to tangential vector fields on

curved surfaces.

Discrete Hodge–Laplace operators Using the definition (1.8) of the smooth Hodge–

Laplace operator for tangential vector fields on a surface and the discrete operators in-

troduced in Section 1.4, we can construct the discrete Hodge–Laplace operator for piece-

wise constant vector fields on a surface mesh. As for the discrete Hodge decomposition,

the discretization mixes the conforming discrete divergence and the non-conforming

discrete curl operators

∆h =−(grad divh + J grad curl∗h).
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The discrete Hodge–Laplace operator ∆h shares many properties with its continuous

counterpart ∆.

1. Symmetry The operator ∆h is self-adjoint with respect to the L
2-scalar product, i.e.

〈∆hv,w〉
L2 = 〈v,∆h w〉

L2

for any pair v,w ∈Xh .

2. Harmonic fields The discrete harmonic vector fields (which we defined in Section

1.4) are exactly the piecewise constant fields with vanishing discrete Hodge–Laplace

operator, i.e.

Hh = Kernel(∆h).

3. Positive semi-definite The operator∆h is positive semi-definite. The symmetry guar-

antees that all eigenvalues are real. The harmonic fields have eigenvalue zero, all

other eigenvalues are positive.

4. Locality The continuous Hodge–Laplace operator is local, i.e. evaluating the smooth

Hodge–Laplace of a vector field at a point p does not depend on the surface or

the vector field outside of an arbitrarily small neighborhood of p. We achieve this

property by using a diagonal mass matrix for the L2-scalar product on Sh . Then,

for any v ∈ Xh and triangle t ∈ Mh , the vector that ∆h(v) assumes in t depends

only on the vectors of v in the triangles that share a common vertex with t and the

geometry of these triangles.

5. Intrinsic The discrete Hodge–Laplace operator is an intrinsic operator, i.e., it can be

constructed using only the length of all edges of the mesh. As a consequence it

does not change if the surface is isometrically deformed.

6. Hodge decomposition The discrete Hodge–Laplace operator respects the correspond-

ing discrete Hodge decomposition. The image of an integrable vector field is an in-

tegrable vector field and the image of a co-integrable vector field is a co-integrable

vector field.

Discrete energies Based on the discrete Hodge–Laplace operator, we introduce two

quadratic functionals (or energies) on the space of piecewise constant tangential vector

fields: the Dirichlet energy

ED(v) = 〈∆hv,v〉L2 =
∫

Mh

(

(divh v)2 + (curl∗h v)2
)

dA (1.9)

and the biharmonic energy

EB(v) = 〈∆hv,∆hv〉L2 =
∫

Mh

‖∆h v‖2 d A. (1.10)

For simply-connected surfaces (topological spheres) the energies are positive definite,

and, for surfaces of genus g > 0, the energies are semi-positive definite. In the latter

case, the harmonic fields are in the kernel of the energies. We will use these energies as

regularizers for the construction of smooth vector fields.
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Matrix representations Matrix representations of all the discrete operators and the en-

ergies can be obtained as products and sums of a set of six simple matrices. This illus-

trates the structure underlying the operators and simplifies the implementation. To get

a matrix representation of an operator, we first have to fix bases in the relevant spaces.

We use the nodal bases, i.e. a function in Sh is represented by a vector listing a function

value for every vertex and a function in S∗
h

is represented by a vector listing a function

value for every edge. The linear polynomials over each triangle corresponding to a nodal

vector are uniquely determined via interpolation. For S∗
h

, the nodes are located at the

midpoints of the edges. For a vector field in Xh , we are listing one tangential vector for

every triangle. To describe the vectors, we fix a (positively oriented) orthonormal basis

of the tangent plane in every triangle.

Once the bases are fixed, we can construct the matrices. The first two matrices are

the gradients G and G∗ on Sh and S∗
h

. Both matrices are sparse (three entries per row).

Explicit formulas for the computation of the gradient of a linear polynomial over a tri-

angle can be found in [25] and [73, pp. 40–41]. Furthermore, we need three diagonal

mass matrices M , M∗, and M representing the L2-scalar products in Sh ,S∗
h

and Xh . The

i th diagonal entry of M is a third of the combined area of the triangles adjacent to the

i th vertex and the j th diagonal entry of M∗ is a third of the combined area of the two

triangles sharing the j th edge. Alternatively, the Voronoi areas of the vertices and edge

midpoints can be used. The diagonal entries of the matrix M are simply the areas of

the corresponding triangles. We refer to [71] for a discussion of mass matrices. The last

matrix J is the matrix representation of the operator J that rotates every vector of a piece-

wise constant vector field by π/2 in the tangent plane. The matrix is block diagonal, each

block consists of a 2×2 matrix that represents the π/2-rotation in one triangle with re-

spect to the chosen orthonormal basis. All the 2×2 matrices are the same since for any

positively oriented orthogonal basis, a π/2-rotation maps the first entry of the vector to

the second and the second to the negative of the first entry.

Matrix representations of all the discussed discrete operators can be obtained as

products and sums of these six matrices. For the discrete divergence and curl operators,

we have the following matrix representations We denote the matrices representing the

divh curlh div∗
h

curl∗
h

−M−1GT M M−1GT J M −M∗−1G∗T M M∗−1G∗T J M

discrete Dirichlet energy, Hodge–Laplace operator and biharmonic energy by S,L and B.

The matrices satisfy

S = M(GM−1GT − JG∗M∗−1G∗T J)M

L = M−1S

B = LT ML = SM−1S

To derive the first row, we combine the matrix representations of the operators divh and

curl∗
h

and form the energy (1.9). The second row follows by construction because the dis-

crete Hodge–Laplace operator is the self-adjoint operator corresponding to the discrete
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Dirichlet energy. For the first step in the third row, we use (1.10), and the second step

follows from the formula for L.

We want to remark that the discrete Dirichlet energy for piecewise linear functions

and the discrete Laplace–Beltrami operator can also be constructed from these matri-

ces. The matrix S representing the Dirichlet energy of functions is given by S =GT MG .

This is exactly the cotan matrix [25, 26]. The matrix L representing the discrete Laplace–

Beltrami operator is given (analogous to the second row above) by L =M−1S.

1.6. FOURIER REPRESENTATION OF TANGENTIAL VECTOR FIELDS

In this section, we describe a Fourier type representation of tangential vector fields that

associates frequencies with the fields in the space Xh . The representation is based on

the eigenfields of the Hodge–Laplace operator, which have to be computed numerically.

We introduce a scheme for computing the eigenfields of the Hodge Laplacian that re-

duces the problem to the computation of the eigenfunctions of the conforming and the

nonconforming discrete Laplace–Beltrami operators.

Eigenfields of the discrete Hodge–Laplace operator The eigenfields of ∆h are the so-

lutions of the equation

∆hΦ=λΦ.

Instead of solving this eigenproblem directly, we construct the eigenfields using the eigen-

functions of the conforming and nonconforming discrete Laplace–Beltrami operators

∆h =−divhgrad and ∆
∗
h =−div∗hgrad.

These operators are the cotan-Laplacians on Sh and S∗
h

. Eigenfunctions of these opera-

tors are solutions of the problems

∆hφ=λφ and ∆
∗
hψ=µψ,

where φ ∈ Sh and ψ ∈ S∗
h

. The numerical treatment of the eigenproblem for the con-

forming operator is the basis for spectral geometry processing and is treated in detail in

[4]. The nonconforming case can be treated in the same way, only the matrices M∗ and

S∗ =G∗T MG∗ are used instead of M and S =GT MG .

The following Lemma summarizes the relation of the eigenfunctions of ∆h and ∆
∗
h

and the eigenfields of ∆h and is the basis of our scheme for computing the eigenfields.

Lemma 1 The gradient of any eigenfunction of ∆h is an eigenfield of ∆h and the co-

gradient of any eigenfunction of ∆∗
h

is an eigenfield of ∆h . The eigenvalues of an eigen-

function and the corresponding eigenfield are the same.

Proof. Let φ be an eigenfunction of ∆h with eigenvalue λ. Then,

∆hgradφ=−grad divhgradφ− J grad curl∗hgradφ

= grad∆h φ=λgradφ.

This proves the lemma for eigenfunctions of ∆h . The statement about the co-gradients

of eigenfunctions of ∆∗
h

is proved in a similar manner. ä
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Figure 1.1: The first, 21st, 51st and 71st pairs of eigenfields on the centaur model. Green fields are curl-free, red

fields are divergence-free.

Fourier representation We denote the number of vertices, edges and the genus of our

mesh by nv , ne , and g . The following lemma shows that we can use Lemma 1 to con-

struct an orthonormal basis of Xh .

Lemma 2 Let {φ0,φ1, ...,φnv−1} and {ψ0,ψ1, ...,ψne−1} be eigenbases of ∆h and ∆
∗
h

(where

φ0 and ψ0 are the constant functions), and let {Γ1,Γ2, ...,Γ2g } be an orthonormal basis of

the subspace of harmonic fields Hh . Then, the set B = {Φ1,Φ2, ...,Φnv−1,Ψ1,Ψ2, ...,Ψne−1,

Γ1,Γ2, ...,Γ2g }, where Φi = 1
‖gradφi‖L2

gradφi and Ψi = 1
‖gradψi‖L2

J gradψi , is an orthonor-

mal basis of the space Xh of piecewise constant tangential vector fields.

Proof. We first show that any pair of vector fields from B is orthogonal. For i 6= j , we have

〈

gradφi ,gradφ j

〉

L2 =
〈

∆hφi ,φ j

〉

L2 =λi

〈

φi ,φ j

〉

L2 = 0,

which implies
〈

Φi ,Φ j

〉

L2 = 0.

In a similar manner, we can show that any pair Ψi ,Ψ j is orthonormal. The discrete

Hodge decomposition (1.7) guarantees that any pair of vector fields with different letters

is orthogonal, because such fields are in different components of the Hodge decomposi-

tion. It remains to show that the number of vector fields in the set equals the dimension

of the space Hh . The set B consistes of |B | = nv −1+ne −1+ g vector fields. Using the

Euler formula nv −ne+n f = 2−2g , we get |B | = 2ne−n f . Since our mesh is a closed man-

ifold, every edge is in two triangles, which means 3n f = 2ne . Using this equation, we get

|B | = 2n f , which is exacty the dimesion of Xh . We showed that B is an orthonormal set

in Xh with 2n f elements, which proves that B is an orthonormal basis of Xh . ä
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As consequence of the lemma, we can represent any field v ∈Xh in the basis B

v =
nv−1
∑

i=1

αiΦi +
ne−1
∑

i=1

βiΨi +
2g
∑

i=1

γiΓi , (1.11)

where αi = 〈v,Φi 〉L2 , βi = 〈v,Ψi 〉L2 and γi = 〈v,Γi 〉L2 . Since any basis field is an eigen-

field of the discrete Hodge–Laplace operator, we can associate a frequency, the square

root of the eigenvalue, to every basis field. Hence, this representation associates fre-

quencies with tangential vector fields. In this sense, (1.11) is a Fourier representation. In

the following sections, we will show benefits of this representation for the applications.

In the continuous case, the eigenfunctions come in pairs. For every eigenfield Φ, the

rotated field, J Φ, is also an eigenfield with the same eigenvalue. Since we construct the

basis as gradients and co-gradients of eigenfunction of the Laplace–Beltrami operator,

we choose in every eigenspace the basis such that every basis vector is in one compo-

nent of the Hodge decomposition. As a result, the Fourier representation refines the

Hodge decomposition. Since in the discrete case two different function space, Sh and

S∗
h

, have to be combined, the symmetry is broken and “pairs” of eigenfields have only

approximately the same eigenvalues. Figure 1.1 shows “pairs” of eigenfields of the dis-

crete operator.

Computation of the eigenfields Our scheme for computing the low-frequency eigen-

fields proceeds in three steps. The input is a maximum eigenvalue λmax (or alternatively

the number of eigenfields to be computed). The first step is to compute a basis of the

space of discrete harmonic fields (which along the way provides us with a basis of the

cohomology of the surface). The space is 2g -dimensional, where g is the genus of the

surface. The idea is to project 2g random vector fields to the space of harmonic fields.

These will span the space of harmonic fields (the probability that the random vectors

or their projections are linearly dependent vanishes). Finally, we orthonormalize these

vectors. To project a vector field v into the space of harmonic fields, we remove the inte-

grable and the co-integrable parts. The potentials of the integrable and the co-integrable

part can be determined by solving the least squares problem

argmin
f ∈Sh ,g∈S∗

h

∥

∥v−grad f − J grad g
∥

∥

2
.

Since the integrable and co-integrable parts are orthogonal, solving this problem can

be carried out in two steps: first compute the integrable part, then the co-integrable

part. Both steps require solving a linear system where the matrices are the cotan matri-

ces S = GT MG and S∗ = G∗T MG∗. The second step is to compute linearly independent

eigenfunctions φ of ∆h with eigenvalue smaller than λmax. Since all eigenvalues are pos-

itive, we compute bands of eigenfunctions with increasing eigenvalue starting with zero

until we reach λmax. Then we compute the corresponding eigenfields Φ=grad φ and or-

thonormalize them. The third step is to compute the eigenfunctions ψ of ∆∗
h

with eigen-

value smaller than λmax. As before, we compute the corresponding eigenfields Ψ=J grad

ψ and orthonormalize them. For the computation of the eigenfunctions of ∆h and ∆
∗
h

,

we follow [4].
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The resulting eigenbasis refines the discrete Hodge decomposition. By construction

each type of eigenfield belongs to one subspace of Xh . The fields Φ are in the integrable

component, the fields Ψ in the co-integrable component and the rest forms a basis of

the space of harmonic fields.

1.7. TANGENTIAL VECTOR FIELD SPLINES

Many classical splines can be characterized by variational principles. Splines in tension

are minimizers of a weighted sum of the biharmonic and the Dirichlet energy subject to

constraints (cubic splines are the special case when the weight of the Dirichlet energy

vanishes). Following the classical example, we define the tangential vector field splines

(TVFS) as minimizers of the weighted sum of the biharmonic and the Dirichlet energy

EB(v)+ωED(v) (1.12)

subject to linear equality constraints on the vectors of v and its divergence and curl.

Vortices can be constructed by prescribing non-zero curl, sinks and sources are created

via positive or negative divergence respectively. Alternatively, singularities can be con-

structed by specifying a few vector constraints around their desired locations. We refer

to the several images to see several examples of this type of topology control in action.

The biharmonic energy is needed to obtain smooth enough vector fields that satisfy the

hard constraints. The effect is shown in Figure 1.2.

We want to remark that the idea of defining tangential vector field splines as min-

imizers of (1.12) was introduced in [1] as an extension of their vector field design ap-

proach. However, their approach has two limitations: only soft constraints can be im-

posed and the resulting scheme is not fast enough to allow for interactive editing.

Model reduction The computation of a TVFS amounts to solving a sparse quadratic

problem with linear equality constraints. The challenge is to solve the problems at real-

time rates to enable an interactive TVFS editor.

Directly solving the resulting linear systems to compute a TVFS is not an option since

this can take several minutes. Directly re-using a sparse factorization is not possible,

because the size of the matrix changes, whenever constraints are added or removed.

Figure 1.2: The per-face Dirichlet energy of a tangential vector field spline from a single constraint on an ir-

regular sphere is shown (red: high Dirichlet energy, green: low Dirichlet energy). On the left, we show the

minimizer of the Dirichlet energy only, without higher order regularizer, on the right, we use the biharmonic

energy (1.12) with low ω.
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Therefore, we employ a model reduction approach, by restricting the search space

to a subset of the basis of eigenfields. This reduces the size of the system matrix but

additionally enhances the speed of the linear solve required to find the smoothest field.

We are using the property of the eigenbasis that in the basis of eigenfields, the Dirichlet

and the biharmonic energy are represented by diagonal matrices.

In a preprocess, we compute the d eigenfields with the smallest eigenvalue as de-

scribed in Section 1.6. We assemble the vectors to form the columns of a matrix U ∈R
2n f ×d .

A tangent field in the d-dimensional subspace can be described by reduced coordinates,

i.e. a vector v ∈ R
d . The matrix U transforms from reduced coordinates v to the full

coordinates x = Uv ∈ R
2n f . Since we are using a basis of eigenfields, in the reduced co-

ordinates the energies are represented by diagonal matrices. The matrix Λ representing

the Dirichlet energy has the eigenvalues on the diagonal. Then, Λ2 represents the bihar-

monic energy and the resulting energy matrix D is

D ===Λ
2 +ωΛ.

We consider nc linear constraints, which in the unreduced coordinates have the form

C̃x = c, where C̃ ∈R
nc×2n f , c ∈ R

nc and x ∈ R
2n f . To constrain the divergence or curl of

the field at a vertex or an edge, we copy the corresponding row from the divergence and

curl matrices (see Section 1.5) into C̃. The entry in the vector c specifies the value the di-

vergence or curl assumes. Values at arbitrary locations in a triangle can be specified us-

ing barycentric coordinates. In a similar manner, vectors in triangles can be prescribed.

Once the matrix C̃ is constructed, we can obtain its reduced counterpart by matrix mul-

tiplication: C = C̃U. The matrix C ensures that the reduced solution exactly satisfies the

constraints. The matrix is of small size, C ∈R
nc×d .

Now we describe how to efficiently solve the constrained linear system. We first con-

sider the case of a surface of genus 0. In this case, the matrix D has full rank and since it

is diagonal, it can be easily inverted. Using Lagrange multipliers, represented by a vector

µ ∈ R
nc , the solution v of the constraint optimization problem is computed by solving

the linear system

Dv −CT µ= 0

Cv = c

Instead of solving this system directly, we first transform it. To eliminate v from the

second equation, we multiply the first equation by CD−1 and subtract it from the second

equation

Dv −CT µ= 0 (1.13)

CD−1CT µ= c (1.14)

To compute the solution v , we first solve (1.14) for µ and then (1.13) for v . To compute

µ, we factor the matrix CD−1CT , which is a very small matrix of size nc × nc . A new

factorization is computed whenever the set of constraints changes, changing the value

of the constraints affects only the right-hand side of the equation. Solving for v is very

fast since D is diagonal.
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In the case, of a surface of genus g > 0, the matrix D has the harmonic fields in its

kernel. The resulting system can be solved by treating the harmonic part separately. The

system can be re-arranged such that first the harmonic part and the Lagrange multipliers

are determined and then v is computed. An alternative is to slightly modify the system

by setting the eigenvalues of the harmonic part to a small positive constant (e.g. a tenth

of the lowest non-zero eigenvalue).

Since we are restricting the computation to a subspace spanned by low-frequency

fields, the algorithm computes a low-pass filtered TVFS. From a signal theoretic point

of view, the TVFS are low-frequency fields by construction. Our computational scheme

cuts-off the remaining high-frequencies of the field. In this sense, the reduced solution

could even be the preferred solution. Using bases of 1-2k eigenfields, the reduced results

are typically very close to the TVFS.

1.8. APPLICATIONS AND EXPERIMENTS

1.8.1. COMPUTATION OF THE EIGENFIELDS

Table 1.1 lists timings for the computation of the eigenfields of the Hodge Laplacian. The

column Bases setup contains the total time to setup the conforming and nonconforming

Laplace–Beltrami operator, computing their eigenfunctions and then computing their

gradients and co-gradients. To compute the low-frequency eigenfunctions, we use the

shift-and-invert Lanczos method. The implementation was done in Java with native calls

to the MUMPS library [74] for solving the sparse linear systems. The computation was

performed on a Dell Precision M3800.

Figure 1.1 shows examples of low-frequency eigenfields. For each integrable field

(green), the corresponding co-integrable field (red) is shown.

1.8.2. SPLINE EDITOR FOR TANGENTIAL FIELDS

In Section 1.7, we described a system for modeling tangential vector field splines in real-

time, making use of our reduced basis. We implemented this system, using a dense

Cholesky factorization and utilizing the GPU to quickly map from the reduced space to a

full field representation. In total, we get real-time responses in an interactive editing en-

vironment, where vector constraints can be specified via click-and-drag and a globally

optimal tangential field is instantly updated. The method scales well with the sizes of

Model #faces Bases Spline Editing Reduced Soft Design Full Soft Design

Name setup Setup \Solve Factor \Solve Factor \Solve

Hand 12184 23s 12ms \ 1ms 148ms \ 2.5ms 1.4s \ 16ms

Rocker Arm 20088 43s 15ms \ 1ms 148ms \ 2.6ms 3.3s \ 28ms

Bunny 69666 184s 18ms \ 2ms 155ms \ 2.4ms 22.7s \ 141ms

Bumpy Torus 140240 395s 17ms \ 2ms 169ms \ 3.1ms 86.8s \ 379ms

Armadillo 331904 1246s 49ms \ 4ms 150ms \ 3.5ms 187.7s\ 818ms

Table 1.1: Timings for tangential vector field bases computation, solving the reduced tangential vector field

spline system and solving the reduced and full design system. In all three systems we used a second order

energy term as an additional regularizer. In all examples a basis size of 1000 was used (500 divergence free and

500 curl free eigenfields of the Hodge–Laplace operator) and 30 constraints were specified.
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Figure 1.3: Comparison between editing using our tangential vector field spline editor as described in Section

1.7 (left) and using soft constrained vector field design (cf. [1]) (right). As can be seen, not all constraints on

the right are satisfactorily obeyed.

the meshes and allows for real-time tangential vector field modeling on larger meshes:

aside from mapping the reduced coordinates to the full representation (which can be

done efficiently on the GPU), the size of the system to be solved is independent of the

resolution of the mesh.

In Table 1.1, 4th column, we list the resulting total time for generating tangential vec-

tor field splines on various meshes from 30 user defined constraints using a basis of 1000

eigenfields. We separately list the timings for setting-up and factorizing the system and

the timing for a solve (including the time for sending the reduced coordinates to the GPU

and there mapping them to the full representation). When a new constraint is added,

both those steps have to be executed, but if a constraint is just modified (e.g. changing

the direction of a vector constraint), only the solve time has to be taken into account,

which is below 5ms even for our largest test mesh (the Armadillo mesh).

In Figure 1.3, left, we show a result of designing a vector field using our spline editor.

As can be seen, all constraints are exactly obeyed but the overall field is still very smooth.

Another result of TVFS editing on a high-resolution meshes can be seen in Figures 1.4

and 1.5, where we effortlessly designed tangent vector fields on meshes with 331k and

70k faces respectively.

1.8.3. FUR DESIGN

As an application of tangential vector field spline editing, we introduce a tool for fur de-

sign on surface meshes. In Figures 1.4 and 1.5 snapshots of an interactive editing session

using this tool can be seen. The efficient and intuitive way to design smooth tangent

fields via few hard constraints allows a designer to edit fur on surface meshes in real-

time by specifying the length and direction of the hair at certain spots, while aiming for

an overall smoothly varying hair direction.

For this type of design task real-time visual responses are crucial, which is made pos-

sible with our reduction via the spectral basis. More generally does the reduced basis al-

low for efficient updates to the GPU when the tangential field changes, which can speed-

up the visualization of CPU-run simulations of tangential vector fields.
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Figure 1.4: Real-time tangential vector field spline editing on the armadillo model (left, 331904 faces) and the

resulting fur (right).

Figure 1.5: Fur design on the bunny mesh. Left: constraints and resulting tangential vector field spline, right:

output field visualized as fur on the bunny.
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1.8.4. SPEEDING-UP SOFT CONSTRAINED DESIGN

In Fisher et al. [1], a method for designing vector fields using weak constraints has been

proposed. Sinks, sources and vortices can be constructed via prescribing non-zero curl

and divergence at specific vertices/edges, but vanishing curl and divergence on the rest

of the mesh. Additionally, interpolation constraints for the vector field can be imposed.

Since this, in general, over-constrains the system, they are treated as weak constraints

and a least-squares problem is solved. As a regularizer, either the Dirichlet energy or a

weighted sum of the biharmonic and the Dirichlet energy are used. Denoting the linear

constraints by C̃ x = c, as in Section 1.7, and the weight of the biharmonic energy by ω,

the linear system

(S +ωB + C̃ T C̃ )x = C̃ T c

has to be solved to construct a field. To solve the system, a sparse Cholesky factorization

is computed once and used to solve the systems. When the set of constraints changes, a

sparse Cholesky update is computed.

By restricting the construction to a subspace of d =1-2k low-frequency modes, we get

a fast approximation algorithm for this system. In particular, the computational cost for

the reduced computation depends on the dimension of the subspace and is independent

of the resolution of the mesh. The only operations that depend on the mesh size are the

mapping of the reduced coordinates to the unreduced coordinates and the construction

of the subspace, which is done in a preprocess. Using the notation of Section 1.7, the

reduced system is

(Λ+ωΛ2 +C T C )v =C T c,

which is a d-dimensional system. To solve the system, we compute a dense Cholesky

decomposition and use dense Cholesky updates, when the set of constraints changes.

After employing the spectral basis to the resulting system, we are able to speed-up the

computation times of the designed tangential fields by a factor of up to 200 (for higher

resolution meshes this factor will become larger). Figure 1.6 shows an example of a re-

duced and an unreduced solution to the system. One can see that the reduced solution

is a smoother field (since additional high frequencies are cut-off). Note that Fisher et

al. propose their method in the setting of discrete 1-forms. However, to make a better

comparison, we re-implemented their system to work with piecewise constant tangen-

tial fields. We solve the resulting sparse linear systems using the MUMPS library, which

provides sparse Cholesky factorizations. The speed-up can be observed from the timings

listed in Table 1.1, where one can see, that already for small meshes we gain significantly

shorter computation times, and that for large meshes, interactive design is made possi-

ble at all only by using our reduced basis. We list timings for factorizations and solving

the systems separately. We create tangential fields from 30 user defined constraints and,

in the reduced case, we use a basis of 1000 eigenfields. The biharmonic energy was added

as a regularizer. Note that adding constraints does not require a re-factorization in either

the full or the reduced case, since the factorization can be updated using sparse or dense

Cholesky updates, which take less than a millisecond.

To highlight the difference of our tangential vector field spline editing and the vector

field design system discussed in this section, we point to Figure 1.3. Here one can see

how not all constraints in the least squares system are satisfactorily obeyed. The rea-

son for this is that the user needs to specify the weights for the prescribed vectors and
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Figure 1.6: Comparison of unreduced (left) and reduced (right) vector field design.

the magnitudes of the prescribed curl and divergence, which results in a trade-off be-

tween satisfying the locations of prescribed sinks, sources and vortices versus obeying

the prescribed vectors. In the shown example, no weights were found where both types

of constraints were obeyed satisfactorily at the same time.

1.8.5. SPECTRAL ANALYSIS AND FILTERING

The Fourier representation (1.11) discussed in Section 1.6 allows for spectral analysis and

filtering of tangential vector fields. In practice, we only compute the harmonic and first

k integrable and co-integrable eigenfields, where k is between 500 and 5000. Then any

piecewise constant vector field v can be written as

v =
k
∑

i=1

(

αiΦi +βiΨi

)

+
2g
∑

i=1

γiΓi +vr (1.15)

where vr is the “rest-field” of v, i.e. vr =
∑n

i=k+1
αiΦi +

∑m
i=k+1

βiΨ
c
i
. The coefficients

αi ,βi describe the contribution of v to the corresponding eigenfields. They are ordered

by ascending frequency and can be analyzed and manipulated for spectral processing of

the field. Note that the harmonic eigenfields are in the kernel of ∆h and thus contribute

to the lowest frequency part of the field.

To enable the spectral processing of tangential vector fields via the creation of spec-

tral filters, we use the established method (cf. [4]) of enabling the user to “draw” func-

tions Fα,Fβ : R+ → [0,τ], such that a new vector field v∗ is acquired by replacing the spec-

tral coefficients of v by new coefficients α∗
i
= Fα(

√

λi ) ·αi and β∗
i
= Fβ(

√

λi ) ·βi . Here,

λi is the i th distinct eigenvalue of the Hodge Laplacian and τ signifies the largest possi-

ble magnification of a coefficient. The reason for scaling the coefficients by Fα/β(
√

λi ) is

that the frequency of the i th eigenfunction is related to the square root of λi .
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Figure 1.7: Applying spectral filters to a custom vector field (left). The integrable and co-integrable parts of the

field are filtered individually. Two results (middle and right) are shown.

Figure 1.8: Spectral analysis of the field shown in Figure 1.7.

In addition, constants γh and γr can be defined, which specify the scaling of the har-

monic part of the field and the rest field vr. A typical “low-pass” filter is Fα/β(λ) = e−λ

which keeps low frequencies intact while exponentially suppressing high frequencies,

which can be used to simplify fields or remove unwanted noise. In the same vein, a

“high-pass” filter is Fα/β(λ) = 2− e−λ, which can be used to “sharpen” the field. The in-

tegrable and co-integrable parts of the field can be filtered separately, which allows for a

spectral analysis of the divergence-free and curl-free part of the vector field.

Spectral filtering can be seen in action in Figure 1.7, where we show how it can be

used to interactively edit and analyze tangential fields. As a first step, we perform a spec-

tral analysis. The plot of the coefficients of the field in the spectral domain for both the

integrable and co-integrable eigenfields is shown in Figure 1.8. The unaltered field is

shown on the left of Figure 1.7. In the magnified area the vectors seem to exhibit noise,

and indeed, when applying a low-pass filter on both the field and additionally enhanc-

ing the integrable low-frequency part (middle), we get a smoothed and more structured

field. Since we magnified only the integrable part, the vortex on the stomach of the cen-

taur disappears. To analyze the noisy features, we enhance the high-frequency part of
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Figure 1.9: Rate distortion curves when compressing various custom tangential vector fields on three different

meshes.

the field and remove the low frequency integrable part (right). We can see that the high-

frequency part mainly consists of two vortices on the side of the centaur (highlighted).

1.8.6. COMPRESSION

The spectral decomposition and the transformation into the frequency domain described

above can immediately be used to reduce data rates required to represent tangent vector

fields on meshes: instead of storing a vector field on a triangular mesh by specifying two

values per triangle (coordinates with respect to an edge or similar common representa-

tions), a field can be represented by the nv +ne +2g coefficients αi ,βi ,γi . Compression

can be achieved by cutting off the higher coefficients, since the high frequency part of

the fields is typically small. This approach extends existing approaches from mesh com-

pression [5] or dynamic mesh compression [6] to the compression of tangential vector

fields on meshes. Rate-distortion curves can be found in Figure 1.9.

In Figure 1.10, we compressed a field exhibiting over 100 small curls on a bunny mesh

using the lowest 1k integrable and co-integrable eigenfields. All features are kept faith-

fully intact.

In Figure 1.9, left, we plot the relative L2-error when using a varying number of eigen-

fields to reproduce the fields on the hand model and on the rocker arm, both shown in

Figure 1.9, right, as well as the field on the bunny shown in Figure 1.10. The plot is es-

sentially a rate-distortion curve, as the number k of pairs of eigenfields used to compress

the field directly relates to the data rate, namely the number of bits per vertex is 2·64·k/n

(where n is the number of vertices) when using double precision for the coefficients. In

case of the tangential field on the bunny mesh, the error only slowly converges to 0, since

the field contains a lot of high frequency elements (of course, the error still reaches 0 as

the number of eigenfields reaches the number of vertices plus the number of edges).
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Figure 1.10: A field exposing a lot of small features (left) and the compressed version made from the 1000 lowest

pairs (middle). In the last picture (right) we show the part of the original field that cannot be constructed from

the 1000 lowest pairs of eigenfields.

This is visualized in Figure 1.10, right, where the part of the field is shown which can-

not be reproduced by the 1k lowest pairs of eigenfields (note that the LIC visualization

shows the structure of the field, but does not reveal its magnitude). When creating the

same plot for a more regular field, namely the ones shown in Figure 1.9, we can see that

we are able to reach an almost lossless compression by using the 2k lowest pairs of eigen-

fields. It is worth noting that quite a large number of eigenfields is required to get a low

L2-error, even for this fairly simple field, while a very small number of eigenfields is re-

quired to get visually indistinguishable results that preserve all the large features. The

compression of the field on the rocker arm yields the best results, where we get an es-

sentially lossless compression for k = 1100, which corresponds to a compression rate of

36.52 when comparing to the usual representation of two doubles per triangle.

In Figure 1.11 we show a snapshot of a time-dependent tangent field on the bumpy

torus (140240 faces), consisting of 500 fields, which amounts to a file size of 560,96 Megabyte

when representing the vectors in each face by two single precision floating point num-

bers (4 bytes). We compress the sequence using a basis of 500 eigenfields which amounts

to a file-size of exactly 1 Megabyte. On average we get a relative L2-error of 10 percent

between compressed and uncompressed frames, however, we found the two time series

to be visually indistinguishable.

The timings for the compression are very low, once the eigenfields have been com-

puted, which only needs to be done once per mesh (for timings see Table 1.1). Whenever

a new field on the mesh is to be compressed, all that needs to be done is to compute the

L
2-scalar products of the field with the 2 ·k eigenfields (0.67 seconds for the hand-mesh

and k = 1000). Recovering the usual representation of the vector simply requires a dense

matrix vector product of the matrix containing the eigenfields as columns with the co-

efficient vector (0.06 seconds for the hand-mesh and k = 1000, below 1ms when done

using the GPU).

1.9. CONCLUSION

We introduce a framework for spectral processing of tangential vector fields using a

Fourier-type representation of tangential vector fields that associates frequencies with
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Figure 1.11: Snapshot from the uncompressed (left) and compressed (right) time-dependent tangential vector

field on the bumpy torus.

tangential vector fields. To formulate the framework for piecewise constant vector fields

on surface meshes, we introduce a discretization of the Hodge–Laplace operator. We

demonstrate how techniques from spectral mesh processing can be transferred to tan-

gential vector field processing using this framework. We show results for spectral filter-

ing, analysis and compression. Moreover, we introduce a spline-like editor for modeling

tangential vector fields using interpolation constraints. Based on the spectral represen-

tation, we propose a computational scheme that enables modeling of tangential vector

field splines in real-time.
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2
INTERACTIVE MODELING OF

n-FIELD SPLINES

This chapter is based on the publication Modeling n-Symmetry Vector Fields using Higher-

Order Energies by Christopher Brandt, Leonardo Scandolo, Elmar Eisemann and Klaus

Hildebrandt, published in ACM Transactions on Graphics in 2018.

2.1. OVERVIEW

In the last chapter, we showed that the design, synthesis and processing of tangential

vector fields on surfaces is essential for various applications in computer graphics. Of-

ten, however, we are not dealing with classical vector fields, but with n-fold rotational

symmetry vector fields (or n-vector fields), like line fields (n=2) or cross fields (n=4). The

structure of n-vector fields differs significantly from that of classical vector fields. For

example, n-vector fields allow for more general singularities of fractional degree, and,

compared to vector fields, the calculus of n-vector fields is scarcely developed. There-

fore, the processing of n-vector fields poses challenging problems and promises reward-

ing benefits for the applications.

The goal of this chapter is to develop the techniques needed for a modeling tool for

n-vector fields on surfaces that includes the following features:

1. Hard interpolation constraints. This enables users to create smooth n-vector fields

by specifying a sparse sets of interpolation constraints.

2. Smooth dependence on the constraints. The constructed n-vector fields should de-

pend smoothly on the constraints. This allows users to edit n-vector fields by mod-

ifying the constraints as changing the constraints smoothly changes the n-vector

field that is modeled.

3. Local editing. To fine-tune results, the user should be able to mark a region and

only model the field inside the region without affecting the n-vector field outside

the marked region.
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4. Real-time responses. To enable modeling and fine-tuning of n-vector fields, imme-

diate responses are needed.

5. n-direction fields. The tool should allow modeling of n-direction fields, which are

n-vector fields consisting only of unit vectors.

For surface modeling and other modeling tasks, tools offering analogous to the first

four features proved to be effective. Therefore we are convinced that a modeling tool

for n-vector fields that combines these features is helpful for a variety of graphics appli-

cations. The fifth feature is important for applications in which directions rather than

vectors are needed and the magnitude of vectors is not relevant.

To realize the first three goals, we introduce n-field splines, a variational analogue

to the tangential vector field splines introduced in the last chapter. They offer a novel

approach for modeling n-vector fields and n-direction fields on surfaces. The basis of

this approach are novel higher-order fairness energies for n-vector fields: a biharmonic

energy and more generally m-harmonic energies. The n-vector field splines are defined,

analogously to the variational characterization of classical spline functions, as the min-

imizers of a higher-order fairness energy subject to constraints. The use of higher-order

energies enables us to integrate constraints that realize the desired modeling features to

the variational problem. Local editing and interpolation constraints at single points can

be enforced in the optimization and the higher-order energies ensure that the resulting

minimizers smoothly transition from the edited to the constrained region and behave

smoothly around the interpolation constraints.

To implement the concept of n-field splines, we developed several new techniques.

We introduce a biharmonic energy and more generally m-harmonic energies for piece-

wise constant (face-based) n-vector fields on triangle surface meshes. By applying a

principle for the design of quadratic fairness energies for direction fields proposed in [1]

to our setting, we extend the m-harmonic energies for n-vector fields to m-harmonic

energies for n-direction fields. Secondly, we integrate hard interpolation and alignment

constraints, as well as constraints for placing singularities to the minimization of the

higher-order energies for n-vector and n-direction fields. These approaches extend the

weak alignment constraints for the globally optimal n-direction field approaches intro-

duced in [1] and [2]. Thirdly, we propose an efficient approximation algorithm for n-field

splines that allows for real-time modeling. The n-field splines are solutions of sparse lin-

ear systems, and, therefore, they can be robustly computed.

However, for many applications, in particular for the modeling of n-fields, interac-

tive responses are desired or even necessary. To ensure that real-time editing is possible,

independently of the resolution of the underlying surface, a model reduction approach

for the computation of smoothest n-fields is required. Therefore, akin to the previous

chapter, we will make use of specific subspaces, acquired from a Fourier-like spectral

decomposition of the Laplace operator for n-fields. We restrict the modeled n-fields to

be linear combinations of the lowest frequency eigenfields of this operator, which addi-

tionally regularizes the fields. Since the quadratic fairness energies in the subspace are

represented by diagonal matrices, the computation of the reduced solutions is very fast.

After a preprocessing stage in which the eigenfields of the n-field Laplacian are com-

puted, we obtain computation times of few milliseconds for all meshes we tested and
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a speed-up of a factor up to 100 over solving the full linear system using sparse direct

solvers.

To emphasize the applicability of the n-field splines and the real-time solver, we ap-

ply the resulting modeling tool to two graphics problems: real-time editing of hatchings

of surfaces and interactive design of anisotropic BRDFs on surfaces. In addition to these

applications, we think that the proposed techniques hold potential for quad meshing

applications. For example, in [3] the computational cost of vector field design is named

as one of the factors that hinder interactive quad meshing via integer grid maps. Our

scheme could potentially remove this barrier.

2.2. RELATED WORK

Tools for designing n-fields are important for various applications in computer graphics.

They are used for texture generation [4–8], non-photorealistic line art [9] and painterly

rendering [10], image stylization [11], anisotropic shading [12, 13], quad-remeshing [14–

18] or hexagonal parameterization [19], and surface segmentation [20, 21] to name just

a few examples. The processing of n-fields poses challenging problems and much work

has been dedicated to establishing techniques that tackle these problems. In the follow-

ing, we outline approaches closest related to the proposed work. For more background

and further references, we refer to the recent surveys [22, 23].

The method presented in this chapter relates to spectral methods in computer graph-

ics and generalizes the design of tangential vector fields. We refer to Section 1.2 of the

previous chapter for references to related literature in these areas. In the following we

focus on literature specifically concerned with n-fields and higher order smoothness en-

ergies.

Variational n-field design In variational n-field design, n-fields are constructed as so-

lutions to optimization problems, which aim for the smoothest n-fields that satisfy de-

sign goals specified by the users. The smoothness of a n-field is measured by a fairness

energy, an objective that quantifies the variation of the field along the surface. To com-

pare the n-vectors of a n-vector fields at nearby points (e.g. neighboring triangles or ver-

tices), the n vectors at one point are parallel transported along the shortest geodesic to

the tangent space of the other point. One way to quantify the difference between two

n-vectors (once they are in the same tangent space) is to select an arbitrary vector from

both n-vectors and to measure the oriented angle between the selected vectors. Multi-

plying this angle by n, yields a quantity that, up to a multiple of 2π, is independent of

the choice of vectors. The cosine of this quantity agrees with the cosine of the smallest

angle between pairs of vector from the two n-vectors and one minus this cosine can be

used as a measure of the deviation of the n-vectors. Based on this idea, a fairness energy

for n-direction fields was introduced in [9]. This approach was extended by the concept

of the representation vector [14, 24], which is an alternative representation of n-vector

fields on meshes. Modulo π/n, the n vectors of a n-vector make the same angle to a

fixed coordinate direction in the tangent plane, hence, multiplying the angles by n yields

a unique representation vector. This concept allows to formulate design of n-vector or
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n-direction fields as an optimization of the representation vector fields [14]. In recent

work [1, 2], a n-vector field representation using complex numbers and fairness ener-

gies that are quadratic with respect to the complex representation are introduced. The

benefit of this approach is that globally optimal solutions can be computed by solving

sparse linear systems. The approach can be extended to the computation of optimal

n-direction fields. This is achieved by imposing a constraint on the L2-norm of the n-

vector field during optimization and pointwise normalization afterwards. For control-

ling the design, [1] use a weak alignment constraint to an input field, e.g. the principal

curvatures directions of the surfaces. In [2] this approach is extended by a stroke-based

design metaphor, in which fields weakly align with strokes placed by users. Globally op-

timal fields that weakly align with the strokes and an alignment field are computed and

runtimes of 1s for a mesh with 50k triangles are reported. We extend this approach. It

allows for spline-like modeling of n-vector fields including features like modeling with

interpolation constraints, local editing and real-time responses. Our biharmonic energy

for n-vector fields is also a quadratic energy, but compared to the Dirichlet energy of [1],

the corresponding Euler-Lagrange equation is of higher order, which is a prerequisite for

modeling with interpolation constraints and local editing.

Mixed-integer problems An alternative approach to using the representation vector is

to introduce explicit assignments, so-called matchings, between the n vectors at neigh-

boring triangles (or vertices depending on the discretization used). Once a matching

is fixed, differences between n-vectors can be measured using common measures for

comparing vectors. For n-vector and n-direction field design, all possible matchings are

introduced as variables to the optimization with the goal to find the best possible n-field

and matching [15, 16, 25]. This means that mixed-integer problems need to be solved for

n-field construction. Hard interpolation constraints have been used for mixed-integer

based n-field design. However, since mixed-integer problems need to be solved for field

construction, these methods do not provide real-time responses.

Real-time design Recently, Jakob et al. [26] introduced a method for real-time quadri-

lateral and hexagonal mesh generation. The scheme proceeds in two stages: n-field de-

sign and mesh generation based on the n-field. To obtain a real-time system, the n-field

design is not done by solving a global optimization problem, instead a multiresolution

hierarchy is set up and local optimization steps are performed on the different levels of

the hierarchy from coarse to fine. For efficiency, the objective for the local optimiza-

tion steps is an extrinsic fairness energy for n-fields that does not need parallel transport

of vectors. As a consequence, the objective depends not just on intrinsic properties of

the surface but also on its extrinsic curvatures. In [27] the extrinsic fairness energy is

further explored and the relations between extrinsic and intrinsic fairness energies are

analyzed. Since [26] is the only scheme that can construct n-fields at rates comparable

to our scheme, we include a comparison to their method to Section 2.9.

Polyvectors Polyvectors [28] extend the idea of a representation vector for rotational

symmetric n-vectors to arbitrary (non-symmetric) n-vectors. The idea is to assign to ev-

ery n-vector the complex polynomial that has the n vectors as its roots, where vectors in
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R
2 are identified with complex numbers. The space of polynomials of degree n is a vector

space and n-vector field design problems can be formulated using this representation.

A harmonic energy for polyvectors was introduced in [28] and additional objectives for

quad-remeshing in [29]. For a discussion of benefits and drawbacks of the different rep-

resentations of n-vector fields, we refer to the survey [23].

Controlling topology Singularities are salient features of n-fields. Methods for con-

trolling and editing singularities of vector, n-vector and n-direction fields and for gen-

erating fields from given sets of singularities have been proposed [2, 24, 30–34]. Our

approach combines variational field design with the enforcement of singularities. Sin-

gularities can be placed on the surface and the higher-order fairness energies ensure

smooth transition of the field around the singularities.

Higher-order energies Optimization problems involving higher-order energies, like

the biharmonic, thin plate or Willmore energy, have been used for example for fair-

ing [35, 36], variational surface modeling [37, 38], deformation-based mesh editing [39,

40] and the construction of skinning weights [41, 42]. One example of a benefit provided

by higher-order energies is more control over the boundary behavior. For example, bi-

harmonic problems allow to prescribe positions and derivatives (in normal direction) at

the boundary, which allow to create G1-continuous transitions at boundaries of surface

patches [35]. In contrast, using harmonic problems only G0-transitions can be obtained.

A second example is that interpolation constraints can be imposed at single points. For

example, the minimizers of the thin plate energy over a two-dimensional domain sub-

ject to interpolation constraints at single points exist and are uniquely defined [43]. In

contrast, minimizers of the harmonic energy over a two-dimensional domain subject to

point constraints in general are discontinuous, see [44, pp 50–51] for an example. For

applications like surface modeling and deformation it is desirable to be able to impose

constraints on single points. The biharmonic and m-harmonic energies we propose pro-

vide the benefits of higher-order energies for the modeling of n-vector and n-direction

fields.

2.3. BACKGROUND: n-VECTOR FIELDS

A n-symmetry vector (short: n-vector) in R
2 is a set {v1, v2, ..., vn} of n vectors with a 2π

n
-

fold rotational symmetry, i.e. rotations by 2π
n

map the set to itself. For example, a 1-vector

is an ordinary vector and a 2-vector is a pair {v,−v}, where v ∈R
2 is arbitrary.

Representation vector Consider the map that rotates any vector such that its argu-

ment, i.e. the oriented angle with the x-axis, scales by a factor of n and the length is

preserved. If this map is applied to a n-vector {v1, v2, ..., vn}, all elements vi have the

same image u, which is called the representation vector of {v1, v2, ..., vn}. Moreover, the

map from n-vectors to representation vectors is a bijection, which means that every n-

vector has a unique representation vector and every vector R2 is the representation vec-

tor of a n-vector. The representation vector provides additional structure that we will

use to work with n-vectors. For example, we can add n-vectors by converting them to
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representation vectors, adding the representation vectors and converting them back to

n-vectors. In combination with the natural scaling of n-vectors, we obtain a vector space

structure on the set of n-vectors.

For later use, we want to remark that the representation vector changes when moving

from one coordinate system to another. We consider a rotation of the coordinate system

by an angle of ϕ. Then the coordinates of the n-vector in the rotated system are given

by {R−ϕv1,R−ϕv2, ...,R−ϕvn}, where R−ϕ denotes the rotation by −ϕ. The representation

vector in the rotated coordinate system is R−nϕu. This means, the representation vector

u is rotated by −nϕ when the coordinate system is rotated by ϕ.

n-vector fields We consider tangential n-vector fields on triangle meshes that are con-

stant in every triangle. To work with such n-vector fields, we fix a coordinate system in

the tangent plane of every triangle and consider the vector u = (u1,u2, ...,u|F |) ∈ R
2|F |,

where ui ∈ R
2 is the representation vector of the n-vector of triangle Ti (with respect to

the coordinate system fixed in Ti ) and |F | is the number of triangles of the mesh. Explic-

itly, we choose one oriented edge in every triangle and use this as the x-axis of the coor-

dinate system. The vector u completely describes the n-field, e.g. we can reconstruct the

n-vectors of every triangle Ti from its representation vector ui . We will perform all com-

putations using the representation vectors. Only once we convert initial input, like an

alignment field, to representation vectors, and, after the computation is done, we covert

the result into a n-vector field for visualization or other applications like constructing a

hatching or BRDF on the surface. To simplify the presentation, we will sometimes re-

fer to u as the n-vector field and ui as the n-vector and rely on the context to make the

distinction between representation vector and n -vector.

The representation vectors, hence also the piecewise constant n-vector fields on a

mesh, form a vector space. On this space, we consider the L2-scalar product

〈

u,u′〉
L2 =

∑

i

area(Ti )
〈

ui ,u′
i

〉

and the corresponding L2-norm

‖u‖2
L2 = 〈u,u〉L2 ,

where u,u′ ∈R
2|F |.

n-direction fields n-direction fields are n-vector fields consisting only of unit-length

n-vectors. These fields are of particular interest as for many applications the magnitudes

of the vectors are irrelevant.

Transport of n-vectors The fairness measures, which will be introduced in the follow-

ing sections, compare the n-vectors of a n-vector fields in adjacent triangles. To do so,

one n-vector is parallel transported from its tangent plane to the tangent plane of the

other n-vector. In this paragraph, we discuss the transport of a n-vector from a trian-

gle Ti to an adjacent triangle T j . We fix coordinate systems in both triangles and de-

note by u = (ux ,uy ) the coordinates of the corresponding representation vector in Ti .
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If the x-axes of the coordinate systems in both triangles are aligned with the oriented

edge ei j that is common to both triangles, the transport is simply given by the identity

matrix, i.e. the coordinates of the transported vector in the triangle T j agree with the

coordinates u of the vector in Ti . In the general case, where the coordinate systems in

the triangles Ti and T j may not align to the common edge, we first transform to the

ei j -aligned coordinate system in Ti , then use the trivial transport to the ei j -aligned co-

ordinate system in T j , and, finally, transform to the (non ei j -aligned) coordinate system

in T j . Let ϕi j and ϕ j i be the oriented angles between the edges chosen as x-axis in Ti

and T j and the common edge ei j . Then, the representation vector transforms by multi-

plication with the rotation matrices R−nϕi j and R−nϕ j i . Altogether, the transport of the

representation vector from Ti to T j is given by a rotation

Ri j = Rn(ϕ j i−ϕi j ). (2.1)

In practice, it is convenient to precompute the rotations Ri j for every pair of adjacent

triangles.

We want to remark that the Ri j s form a discrete connection on the mesh, see [1, 33]

for more background on discrete connections. Since the Ri j s depend on n, the con-

nections differ for the different types of n-fields. For n=1, the Ri j s agree with the usual

parallel transport of vectors (discrete Levi-Civita connection) induced by the metric on

ambient 3-space.

Singularities The singularities of a n-vector field are of fractional degree ι
n

, where

ι ∈ N. Since we are working with vector fields that are discontinuous, the classical no-

tion of singularities cannot be applied. Therefore, the concept of discrete singularities

has been developed, see [32, 33] for more background. In our setting, the representa-

tion vectors and the discrete connection can be used to extract information about the

n-field singularities. To every vertex, we associate an index which equals the number of

full rotations of the vectors in the one ring around the vertex divided by n. Explicitly,

let T0, ...,Tk be the oriented triangle 1-ring (ordered clockwise) around some vertex and

u0, ...,uk the corresponding n-vector representatives in each of those triangles. We then

transport the vector u0 into the next triangle T1 and compute the signed angular differ-

ence ψ0 ∈ (−π,π] between the transported vector and u1. ψ1, ...,ψk are being computed

in the same fashion, where for ψk , we transport uk into the triangle T0. The sum of the

angular differences will be an integer multiple of 2π and usually 0. If it is different from 0,

we say the n-vector field has a singularity of index
∑

j ψ j /(2πn) at that vertex. The num-

ber singularities of a n-vector field is not arbitrary. The discrete Poincaré–Hopf theorem

for n-vector fields, [25], states that the sum of the indices over all vertices equals 2−2g ,

where g is the genus of the surface.

Polyvector fields Instead of restricting to rotational symmetric n-vectors, one can con-

sider other constraints or even n independent vectors. Such n-vectors can be described

as the roots of a complex polynomial, cf. [28]. The coefficients of the polynomial then

make up a representation analogous to the representation vector of rotational symmet-

ric n-vectors. We want to remark that the constructions proposed in this chapter can

be carried over to this setting. Only the addition of representation vectors is replaced by
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addition of complex polynomials and the absolute value of the representation vector is

replaced by a norm for complex polynomials of degree n.

2.4. HARMONIC ENERGY FOR n-VECTOR FIELDS

The basis of the globally optimal n-direction fields approach introduced in [1] are quadratic

fairness energies for n-vector fields. The benefit of using quadratic fairness energies for

n-vector field design over previous highly-nonlinear approaches is that the globally op-

timal solutions can be computed by solving linear systems. Whereas in [1] a space of

vertex-based vector fields is used for discretization, we are considering piecewise con-

stant face-based vector fields, a commonly used alternative setting, here. In [1], a one-

parameter family of quadratic energies is studied. The harmonic energy we consider

corresponds to the anti-holomorphic energy in their notation. In this section, we first

introduce a novel harmonic energy for piecewise constant n-vector fields on meshes.

Then we summarize how the harmonic energy can be used for n-vector and n-direction

field design with weak alignment constraints following the approach of Knöppel et al.

[1].

Harmonic energy for piecewise constant n-vector fields Since we are able to trans-

port n-vectors from a triangle to its neighbors via (2.1), we can quantify the difference

of vectors in neighboring triangles via ‖Ri j ui −u j ‖2. These differences can be used to

construct a harmonic energy for piecewise constant n-vector fields u =
(

u1, ...,u|F |
)

on

triangle meshes M = (V ,E ,F ):

EH (u) =
∑

(i , j )∈E

wi j ‖Ri j ui −u j ‖2 (2.2)

where wi j =
3l 2

ei j

area(Ti ∪T j )
,

with lei j
being the length of the common edge between triangles Ti and T j . This har-

monic energy is a natural extension to n-vector fields of the harmonic energy for face-

based, piecewise constant, tangential vector fields, see [45]. A full derivation of the en-

ergy, and the weights wi j in particular, can be found in Section 2.A. The energy (2.2) is

quadratic in u. Hence, there is a corresponding n-vector field Laplacian ∆ for piece-

wise constant n-fields, which is the self-adjoint operator 1 corresponding to the discrete

harmonic energy, i.e. it is defined via

∀ u : 〈∆u,u〉L2 = EH (u). (2.3)

In [28], a harmonic energy (called Dirichlet energy in their paper) for piecewise constant

n-vector fields was already introduced. In the following, we discuss the relation of the

two energies. In our notation, the energy introduced in [28] is given by

∑

(i , j )∈E

‖Ri j ui −u j ‖2.

1
∆ is self-adjoint means: 〈∆u,v〉L2 = 〈u,∆v〉L2 ∀u,v. This property is needed to uniquely determine the oper-

ator ∆ in eq. (2.3).
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Figure 2.1: Comparing the smoothest 2-fields on an ellipse mesh with irregular triangulation (the mesh is

shown on the left) using our harmonic energy (middle) and the harmonic energy proposed in [28].

The difference to the proposed harmonic energy is that no weights are used. In this

sense, this is a combinatorial harmonic energy that does not account for the geometry

of the triangulation. This leads to undesired results for meshes with irregular triangula-

tions. An example is shown in Figure 2.1, where we compare the smoothest, 2-direction

fields on a symmetric mesh using our harmonic energy and the combinatorial harmonic

energy from [28]. For the combinatorial harmonic energy, the singularities appear in an

unsymmetric pattern, i.e. the resulting fields depend on the triangulation. In contrast,

when using the proposed geometric harmonic energy instead, the four singularities ap-

pear in a symmetric pattern. This is the same pattern one obtains when using a regular

triangulation of the same shape.

n-direction fields The harmonic energy for n-vector fields cannot directly be used for

n-direction field design. As shown in [1], minimizing the harmonic energy over n-vector

fields with a unit-length constraints per vector is ill-posed. To get a well-posed problem,

they propose optimizing over all rescalings of the field and adding a single L2-constraint

on the field (i.e. ‖u‖2
L2 = 1) to prevent the solution u ≡ 0. The vectors of the resulting

vector field are then normalized to satisfy the pointwise unit norm constraint. Even if

pointwise unit-length is not desired, but no other constraints or alignment is prescribed,

the same L2-constraint would give a meaningful (non zero) solution to the problem of

finding a smoothest n-vector field. The solution to the minimization problem

min
‖u‖2

L2=1
EH (u)

can be readily acquired by finding the smallest eigenvalue to the eigenvalue problem

∆u =λu, (2.4)

which can be shown using the method of Lagrange multipliers.
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Field alignment Often, a balance between smoothness and the alignment to a given

n-vector or direction field u′ is desired. For example, smooth 4-direction fields that

align with estimated principal curvature directions, [46, 47], are used in applications.

For n-vector fields, the following energy can be used to obtain smoothest n-vector fields

aligned with some input field u′:

EH (u)+µ
∥

∥u−u′∥
∥

2
L2 . (2.5)

In the case of n-direction fields, the norm of the difference of u and u′ is no longer mean-

ingful since during optimization, the vectors of u are being freely rescaled as described

above. Thus, we want to compare the angular difference between the n-vectors of u and

u′, which can be achieved via the L2-product for n-vector field. In particular, the follow-

ing energy will be minimized:

EH (u)−2µ
〈

u,u′〉
L2 , (2.6)

again subject to ‖u‖2
L2 = 1. Due to the constraint on the L2-norm, the scalar product of u

and u′ is bounded and minimizing the negative scalar product favors fields u that align

with u′. The norm of the vectors of the alignment field, i.e. ‖u′
i
‖, can be used to control

the local weighting of alignment. In particular, in regions with u′
i
= 0, only smoothness

will be taken into account.

So far we have introduced harmonic energies for face-based, piecewise constant n-

vector and n-direction fields, and described how smooth fields that align to user spec-

ified n-vector or n-direction fields can be acquired by solving sparse linear systems.

However, field alignment only gives an approximate tool for designing n-fields as it is

oftentimes hard to specify the right weight µ and alignment vectors u′
i

such that the

field follows the user input satisfactorily. In the following, we will introduce higher-order

smoothness energies and describe how interpolation constraints on vectors and direc-

tions can be enforced.

2.5. n-FIELD SPLINES

Similarly to the concept of tangential vector field splines, introduced in Section 1.7, n-

field splines allow us to build spline-like modeling systems for n-fields. Again, the splines

are characterized as the minimizers of a fairness energy subject to constraints. To en-

sure fairness of the solution under constraints, the order of the fairness energy has to be

high enough. For n-fields on surfaces, the order of the harmonic energy derived in the

previous section is not high enough to support interpolation constraints. For functions

on two-dimensional domains it can been shown that minimizing the harmonic energy

subject to interpolation constraints at one (or more) points, yields non-continuous so-

lutions, see [44]. This effect can also be observed in mesh deformation and parametriza-

tion, when harmonic energies (or other energies with a second-order Euler-Lagrange

equation) and hard interpolation constraints at single points are combined; we refer

to [48] for examples. The same problem shows up in our experiments, an example of

this kind is shown in Figure 2.2. Hence, to enable modeling of n-fields with interpola-

tion constraints, a higher-order fairness energy is needed.
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Figure 2.2: Placing singularities in a 2-direction field spline by adding hard constraints as described in Section

2.5. On the left the harmonic energy is used and the hard-constraints lead to a discontinuous solution, which

does not converge under refinement (see insets). Using our higher order energy (right) allows the smooth

interpolation of such constraints, which remains consistent under refinement.
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m-harmonic energies The higher-order energies for n-vector fields, we introduce, are

constructed using the Laplacian and the L2-product for n-vector fields. We define the

m-harmonic energies as

Em(u) =
〈

∆
m u,u

〉

L2 . (2.7)

Of particular interest is the biharmonic energy, m = 2, which we denote by EB . The case

m = 1 yields the harmonic energy. The energies Em are quadratic and positive definite

by construction. The biharmonic energy of a field u equals the squared L2-norm of the

n-vector field Laplacian ∆ of u

EB (u) =
〈

∆
2u,u

〉

L2 = 〈∆u,∆u〉L2 = ‖∆u‖2
L2 ,

which follows from the self-adjointness of the n-vector field Laplacian. We want to re-

mark that starting from a discrete Laplace operator, m-harmonic energies for functions

on meshes have been constructed analogously to our construction of m-harmonic en-

ergies for n-vector fields. These higher-order energies are used for example for surface

modeling, fairing and deformation. For more background, we refer to the textbook by

Botsch et al. [49], in particular, to Appendix A1.

In the classical setting of spline functions over an interval, minimizers of the har-

monic energy under hard constraints yield piecewise linear functions and minimizers of

the biharmonic energy are cubic splines. One can also build fairness energies by com-

bining m-harmonic energies for different m. For example, in the classical case, minimiz-

ers of the weighted sum of the biharmonic and the harmonic energy are called splines

in tension. In the following, we will focus on splines defined as minimizers of the bi-

harmonic energy, for simplicity of presentation. Other types of n-field splines can be

constructed in the same manner, just the biharmonic energy needs to be replaced by

some other m-harmonic energy or a weighted sum of m-harmonic energies.

For interactive modeling, our tool will mainly use interpolation constraints. How-

ever, it is often effective to additionally use weak alignment to an existing field as a start-

ing point. Weak alignment constraints to some input field for the splines can be imposed

in the same way as describe in the previous section, only EH is replaced by EB in equa-

tions (2.5) and (2.6).

n-vector field splines For n-vector fields u, an interpolation constraint in some tri-

angle Ti can be enforced by a constraint of the form ui = di , where di is a prescribed

representation vector in Ti . To add or modify interpolation constraints in our interactive

modeling system, the users do not work with representation vectors because this would

be unintuitive. Instead they select a triangle and specify one vector in the triangle. The

system automatically adds the missing n −1 vectors. Internally, the system converts the

input vector into the corresponding representation vector di . However, the representa-

tion vectors are only used internally and not shown to the users.

The n-vector field splines are defined by the variational problem

argmin
u

EB (u)+
β

(area(M ))2
‖u−u′‖2

L2 (2.8)

subject to ui = di for all i ∈ I ,
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where u′ is an alignment field and I is the set of triangle indices for which an interpo-

lation constraint has been specified. The squared area of M is used as a factor to make

the energy invariant to rescaling of the surface. When no alignment field is given, the

term β/(area(M ))2‖u−u′‖2
L2 is removed from the problem. In addition to the interpo-

lation constraints, other types of constraints can be imposed. We discuss singularity

constraints below.

n-direction field splines In the following, we extend the approach to the modeling of

n-direction fields. As for the design of n-direction fields with weak constraints, see Sec-

tion 2.4, the principle is to minimize over the set n-vector fields with a constraint on the

L2-norm and obtain a n-direction field by pointwise normalization of the vectors of the

minimizer. To impose interpolation constraints in this setting, we need to formulate the

constraint in a way that only the direction, not the length of the vector, is prescribed. Let

di be the representation vector of a unit n-vector prescribed as a interpolation constraint

in triangle Ti . Then, we constrain ui to be orthogonal to Ji di (where Ji is the clockwise

rotation by π/2 in the tangent plane of triangle Ti ), i.e. 〈ui , Ji di 〉 = 0. The constraint en-

sures that ui is collinear with di . Since, we are working with representation vectors, we

need to avoid the case ui =−tdi for some t > 0. We prevent this case by using an align-

ment field u′ with u′
i
= si di for some sufficiently large si > 0. One wants to choose the si

as small as possible while still assuring that ui points to the right direction. Since solving

the system is inexpensive, it is valid to perform a binary search for best the parameters

si . In practice, a large enough constant for all si was sufficient in our tests to achieve the

correct alignment direction.

The n-direction field splines are defined by

argmin
u

EB (u)−2µ
〈

u′,u
〉

L2 (2.9)

subject to ‖u‖L2 = 1

and 〈ui , Ji di 〉 = 0 for all i ∈ I ,

where u′ is an alignment field, with modified entries at the hard constraints as described

above.

Constraints on singularities In addition to the interpolation and the weak alignment

constraints, further types of constraints can be imposed on the n-field splines. In the

following, we describe how we enforce singularities at vertices. Let T0, ...,Tk be the ori-

ented 1-ring of triangles around some vertex vi . Then, in order to enforce that at vi we

get a singularity with index m ∈
{

q · 1
n
| q ∈Z

}

, we add k−1 hard constraints, that enforce

the n-vector in T j+1 to be the n-vector in T j , rotated by 2πm
k

, for j = 0, ...,k −1. When we

express these constraints in terms of our n-vector field representation u, they have the

following form:

R j+1, j u j+1 −R 2πm
k

u j = 0. (2.10)

The constraints prescribe a precise rotation of the field around the singularity, and the

only degree of freedom left is the magnitude and orientation of one of the n-vectors

(which define the rest). This construction is a simple approach ensuring that singular
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vertices with the desired index are generated. However, it has some limitations. The ro-

tation of the vectors around the singularity is evenly distributed and all ui on the 1-ring

around the singularity are constrained to have the same magnitude. This matches our

desire to compute smooth fields but does not have to be optimal in general. On the other

hand, imposing the singularity constraint in a general form 2 would be highly non-linear

and therefore increase computation times. We want to highlight that imposing hard con-

straints on the singularities requires higher-order energies as introduced in this chapter.

Using the common harmonic energy in combination with the constraints (2.10) leads

to degenerated solutions that do not converge to a smooth optimum under refinement.

This will be made precise and shown by examples in Section 2.9.

With this type of singularity control we are able to enforce singularities at any vertex

Vi of absolute degree smaller than k/(2n), where k is the number of triangles around the

vertex Vi . This limitation is due to the way we define singularities in piecewise constant

n-vector fields, see Section 2.3. As described there, the sum of degrees of all singularities

in a field is prescribed by the genus of the underlying mesh. Thus, inserting singularities

will have global effects on the field. Alternatively singularity placement can be efficiently

controlled by using hard constraints, see Figure 2.3 for an example. Completely defining

the topology of a field is not a desired capability of our system since this is orthogonal

to the goal of providing intuitive design tools through hard constraints and higher order

smoothness.

Finally note, that this type of constraints to control the appearance of singularities is

limited to n-fold rotational symmetric fields and has to be adapted individually for any

other type of PolyVector field.

2.6. MATRIX REPRESENTATION

Computing n-field splines amounts to solving linear systems. Before we derive the linear

systems, we introduce the matrices representing the m-harmonic energies, the L2-scalar

product and the n-vector field Laplacian. First step is to fix a coordinate system in the

plane of every triangle. The matrices act on the vectors u ∈ R
2|F | listing the coordinates

of the representation vectors of all triangles. We denote the matrix representing the har-

monic energy by S. The matrix is defined as the symmetric matrix that satisfies

EH (u) = uT Su

for all u ∈R2|F |. Explicitly, S is the 2|F |×2|F | matrix which consists of the following 2×2

blocks:
(

S2i 2 j S2i 2 j+1

S2i+1 2 j S2i+1 2 j+1

)

=−wi j Ri j for i 6= j

(

S2i 2i S2i 2i+1

S2i+1 2i S2i+1 2i+1

)

=
∑

k∈N (i )

wi k I.

The matrix M representing the L2-scalar product is defined as the matrix that satisfies
〈

u,u′〉
L2 = uT Mu′ for all pairs u,u′ ∈R

2|F |. Explicitly, it is the diagonal 2|F |×2|F | matrix

2The most general constraint would force the sum of angular differences between the transported n-vectors

to be equal to a value that depends on the chosen singularity index.
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that repeats the area of each triangle twice. This matrix is often called the mass ma-

trix. The matrices representing the Laplacian and the m-harmonic energies can be con-

structed as products of S and M. The matrix L for the n-vector field Laplacian ∆ is given

by L = M−1S. The matrix B representing the biharmonic energy is

B = SM−1S,

and, more generally, the matrices for the m-harmonic energies are: S(M−1S)m−1. The

matrices representing the scalar product and the m-harmonic energies are positive def-

inite.

For later usage, we also introduce the 2×2 matrix that performs a rotation by π/2 in

the plane of a triangle. Since we use positively oriented orthonormal bases in the tangent

planes, the rotations have the same matrix representation in all tangent planes:

Ji =
(

0 −1

1 0

)

.

2.7. COMPUTING n-FIELD SPLINES

We now state the linear systems whose solutions are field-aligned, interpolating, higher-

order n-vector or n-direction field splines. In the following, let I = i1, ..., im be the set

of hard constrained vectors, ui = di , let u′ be the specified alignment field and µ the

alignment weight. d is the vector that stacks real and imaginary parts of the constrained

directions di1 , ..., dim .

n-vector fields Let F be the 2m ×2|F | matrix for which Fu = d is equivalent to ui = di

for i ∈ I . Then the optimization problem (2.8) is equivalent to solving

(

B+M FT

F 0

)(

u

λ

)

=
(

Mu′

d

)

(2.11)

where the vector λ stacks the 2m (rescaled) Lagrange multipliers.

n-direction fields We first modify the alignment field in order to enforce the correct

directions in the hard constrained faces, as described before, i.e. we set u′
i
= si di for

i ∈ I , while leaving the rest of the alignment field as is. Let D be the m ×2|F | matrix for

which Du = 0 is equivalent to 〈ui , Ji di 〉 = 0 for all i ∈ I . Then a minimizer of (2.9) can be

found by solving the linear system

(

B−λM DT

D 0

)(

w

γ

)

=
(

Mu′

0

)

, (2.12)

where λ takes the role of the parameter µ and has to be chosen in the range
(

−∞, λ̂2
1

)

,

where smaller λ means higher alignment. λ̂1 is the smallest eigenvalue of the n-vector

field bi-Laplacian ∆
2 restricted to fields which satisfy the hard constraints. This reformu-

lation is akin to [1]. A proof and a more precise statement regarding λ̂1 is postponed to

Section 2.B. The auxiliary variable γ stacks the m (rescaled) Lagrange multipliers. Once
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Algorithm 1 Computation of n-direction field splines

Input: The mesh (V ,E ,F ), the rotational symmetry index n, an alignment field u′,
the alignment parameter λ, the list of hard constraints di along with the indices of

constrained triangles I

Output: n-direction field spline interpolating the hard constraints and aligning to u′

First solve:

1. Modify the alignment field at the hard constraints: ∀ i ∈ I : u′
i
← si di , for suffi-

ciently large si .

2. Choose a basis for the tangent space in each triangle and compute the rotation

matrices Ri j as described in Section 2.3.

3. Set up the matrices S,M, L and B as described in Section 2.6 and the matrix D

which stacks the constraints 〈ui , Ji di 〉 = 0.

4. Factorize the matrix Vλ = B−λM.

5. Solve DV−1
λ

DT γ= DV−1
λ

Mu′ by using the factorization above to compute the ma-

trix V−1
λ

DT and the vector V−1
λ

Mu′.

6. Use the same factorization and γ from above to compute w = V−1
λ

(

Mu′−DT γ
)

.

7. The n-direction field spline u is now given by ui = wi

‖wi ‖ .

Updated constraints:

1. Only compute the columns V−1
λ

DT for the rows of D that are new or updated.

2. Recompute the multiplications DV−1
λ

DT and DV−1
λ

u′ and solve the two systems

from steps (5) and (6) above.

3. Output the n-direction field spline u as given in (7) above.
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w is computed, the desired n-direction field spline u, which interpolates the directions

di in triangles Ti and aligns to the field u′, is obtained by normalizing all vectors of w:

ui = wi

‖wi ‖ . The validness of this system and the relationship between λ and µ is discussed

in Section 2.B.

For both, n-vector and n-direction fields, the constraints (2.10) to enforce singulari-

ties can be readily appended to the matrices D and F to solve for smoothest constrained

n-vector or n-direction field splines respectively.

Implementation In our implementation the user can add and modify hard constraints

by selecting a face and dragging an arrow to specify a desired direction. The optimal field

is updated each frame depending on the current configuration of the constraints. This

allows for instant feedback when trying to adjust hard constraints in the design of n-field

splines. Note that when an existing constraint is modified, in the case of n-vector fields,

only the right hand side changes, so the full system (2.11) can be factorized once and

solved with the modified constraints. However, once new constraints are introduced,

the matrix F changes (new rows have to be added) and the matrix has to be refactorized.

In the case of n-direction fields, the hard constraints are encoded in the matrix D, so

changing and adding hard constraints both would lead to refactorization. To avoid fac-

torizing the large matrices in both systems every time constraints are added or modified,

we reorganize the equations. We will demonstrate the reformulation on system (2.12),

the steps to reformulate system (2.11) are identical.

Let Vλ = B−λM and multiply the first 2|F | rows of the system by DV−1
λ

from the left,

which amounts to the system

Dw+DV−1
λ DT γ= DV−1

λ Mu′

Dw = 0

and by subtracting the second set of equations from the first we get

DV−1
λ DT γ= DV−1

λ Mu′ (2.13)

where the left-hand side is still symmetric. We solve (2.13) for γ and then recover w via

w = V−1
λ (Mu′−DT γ). (2.14)

The advantage of this is that we only have to factorize Vλ once, and whenever new con-

straints are added or modified, we only have to solve the dense but very small (2m×2m)

system (2.13). To set up the left hand side of (2.13) we also need to solve a linear system

to obtain updates to those rows of V−1
λ

D, which have to be changed due to updated hard

constraints. This can be done using the factorization of Vλ. Note, that in practice hard

constraints will not be edited simultaneously, such that only one column of D is being

modified. Then, since we need to update the alignment field when we edit hard con-

straints, we need to compute the right hand side DV−1
λ

u′. After solving (2.13), we solve

for w in (2.14) using the same factorization. Timings when solving for a 4-direction field

with 30 hard constraints can be taken from Table 2.1 (right-most column). Note that
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those timings were computed as only one hard constraint has been modified. They in-

clude setting up and solving the dense system (2.13) and then recovering w via (2.14).

The time needed to factorize the matrix Vλ is listed separately since this is done at the

preprocessing stage and only needs to be repeated when the parameter λ is changed.

As can be seen, for small meshes this reformulation may be used in a real-time editing

setting, however, for larger meshes (or in case the parameter λ needs to be changed in-

teractively, in order to control the strength of alignment), we propose a change of basis,

under which the matrix Vλ diagonalizes. This will be described in the following section.

Algorithm 1 summarizes the computation of n-direction field splines.

2.8. REAL-TIME EDITING

In this section we describe our model reduction approach that allows for computing n-

field splines in real-time, independently of the mesh resolution. The benefit of using the

fast computation is that it ensures a fluid interaction and allows users to immediately get

feedback on how the constraints they have placed affect their design. As a trade-off to a

faster computation during a modeling session, a pre-computation has to be performed,

in which a basis for n-vector fields is computed. Timings for both pre-computation and

the reduced/unreduced solves for the n-field spline system are listed in Table 2.1 and

discussed in Section 2.9.

Using the eigenbasis of the n-vector field Laplacian ∆, we obtain a Fourier-type de-

composition of face-based, piecewise constant n-vector fields that associates a frequency

spectrum to a n-field. Unfortunately, as opposed to the basis from the previous chapter,

we do not get a natural division into some analogue of harmonic, divergence- or curl-free

n-fields. There, we were able to compute the eigenfields as gradients and co-gradients

of two different discretizations of the surface function Laplace–Beltrami operator. It is

unclear how to extend such a methodology to n-fields.

Here, the eigenfields and spectrum of ∆ are the solutions of the generalized eigen-

problem

Su =λMu. (2.15)

Since ∆ is self-adjoint, all eigenvalues are real and there exists an L2-orthonormal eigen-

basis.

The eigendecomposition enables the design of spectral processing tools, such as

compression and spectral filtering, for n-fields. For example, projecting a n-field to the

subspace spanned by the k eigenfields with the lowest eigenvalues, is a low-pass filter for

the n-field. Here, we will not explore this direction—but use the low-frequency eigen-

fields to derive a reduced-order scheme for the fast approximation of n-field splines.

The computation is split in an offline and an online stage. In the offline stage, the

first k eigenfields are computed and the relevant matrices are constructed. In the online

stage, the computations are restricted to the subspace spanned by the eigenfields. This

results in a reduced computational burden in the online phase and enables real-time

computation and interactive modeling of n-field splines for larger meshes.

In the following, we discuss the reduction of equations (2.11) and (2.12), which yields

fast approximation algorithms for n-vector and n-direction field splines. Let U be the

2|F |×k matrix which stacks the first k eigenvectors as its columns and let λi denote the
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Figure 2.3: The smoothest, curvature aligned (λ=−0.2), 4-direction field on the hand (left) is intuitively modi-

fied by merging two singularities using a hard constraint (right).

first k eigenvalues. Any n-field wU that is in the subspace spanned by U can be describe

by reduced coordinates w, which are given by wU = UT w. Since the eigenfields are L2-

orthonormal, UT MU = I, we have

UT VλU = UT (B−λM)U = diag
(

λ2
i −λ

)

=: Λλ. (2.16)

This means that solving the sparse 2|F |×2|F | system (2.14) to obtain a smooth n-vector

field in the unreduced case (which has to be done at least three times when constraints

are updated) is being replaced by the diagonal system ΛλxU = wU, which can be solved

by k multiplications with precomputed numbers. The reduced version of (2.13) is

DUΛ
−1
λ DT

Uγ= DUΛ
−1
λ MUu′

U, (2.17)

where u′
U = UT u′, DU = UT DU and MU = UT MU, which can be updated efficiently when

D changes since it is extremely sparse. Finally, wU can be recovered via

wU =Λ
−1
λ

(

MUu′
U +DT

Uγ
)

. (2.18)

Using this reduction, the cost for solving for n-field splines is independent of the res-

olution of the meshes, aside from multiplications with U. By storing U on a GPU and

computing multiplications there, we computed n-field splines in real time for meshes

with 300k triangles in our experiments (see Table 2.1).

2.9. EXPERIMENTS

Real-time n-field spline editor Using the higher-order energies, together with the re-

formulations of the involved linear system and spectral reduction described in the pre-

vious sections, we implemented a tool for real-time editing of n-field splines. It allows

users to click and drag on a mesh to insert hard constraints and specify their direction,

while the field and its visualization are updated in real-time. As a visualization we chose

to draw lines along the surface that follow one of the n directions along the n-field. To
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Figure 2.5: Visual comparison of the smoothest, curvature aligned (λ=−0.05), 4-direction field on the bunny,

subject to five hard constraints (pink crosses), when computing it using the full system (2.12) (left) and the

reduced system (2.17) (right), using a basis of 500 eigenfields. The fields possess 72 and 68 singularities respec-

tively.

Figure 2.6: Left: By adding four hard constraints, we are able to force the smoothest, curvature aligned

(λ = −0.5) 4-field to align to features that are not following the principle curvature directions. Right: Hard

constraints enable precise editing at small scale: the insets show how hard constraints can be used to align

to small features on a high resolution mesh with fine details. Such precise control can not be achieved via

least-squares alignment terms but requires hard constraints.
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Figure 2.7: Eigenvectors of the 4-field Laplacian. From left to right: 1st, 6th, 14th and 110th eigenfield. Singu-

larities with indices − 1
4 and 1

4 are marked in red and blue respectively.

force alignment satisfactorily, especially in areas where conflicting constraints are close

to each other: either one of the conflicting constraints dominates the shape of the field

in that region, or the field averages the influence of the nearby constraints. When us-

ing hard constraints, we can easily force the field to point in various directions (even

for directly adjacent triangles) and still obtain a smooth solution for the rest of the field.

In Figure 2.6, left we edit the smoothest, curvature aligned 4-field by adding three hard

constraints which force the flow lines to follow two features that do not follow the prin-

cipal curvature directions. It is intuitive to move, merge or produce new singularities by

placing appropriate hard constraints, a simple example for this is shown in Figure 2.3.

Direct control over the placement of singularities at desired vertices is also possible and

is treated in Section 2.5 and demonstrated in an experiment further below.

In Figure 2.7 we show some of the eigenfields of the 4-field Laplacian, ∆, which are

used as a reduced basis for interactive editing. It is remarkable how the singularities

are laid out symmetrically and appear consistently (for the first 108 eigenfields) at the

corners of the twisted, rounded bar. This indicates that a process that forces the field not

to place singularities at the corners will result in less smooth fields. Therefore, we think

that the pure number of singularities of field is not a reliable indicator for the smoothness

of a field.

The effects of using a reduced basis are shown in Figure 2.5 where the smoothest,

curvature aligned 4-field, altered by adding five hard constraints, is shown as an optimal

solution of the unreduced (left) and reduced (right) system. In the reduced case a basis

of the 500 lowest frequency eigenfields was constructed. While the general layout of the

field remains the same, some singularities moved and merged, which is due to the fact
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Figure 2.8: Comparing the harmonic (left) and biharmonic (right) energies in presence of boundary con-

straints: the blue part of the field was fixed and the rest of the field computed as smooth as possible, as defined

through the different energies. As can be seen, the higher order energy continues the clockwise rotation and in-

crease in size (i.e. the first derivative remains continuous), while the harmonic energy only ensures continuity

of the field and thus remains constant.

that the hard constraints and curvature alignment introduced high-frequency features,

which are not contained in the reduced basis.

As a numerical comparison, we generated twenty different 4-direction fields from a

random set of twenty hard constraints on the bunny mesh using the unreduced and re-

duced systems and kept track of the relative L2 distance between both solutions when

using between one and 2000 eigenfields in the reduced case. In Figure 2.4 we plot the

minimal, average and maximal L2 distances between each reduced and unreduced field

generated this way. The number of eigenfields that should be used depends on the ap-

plication. In order to keep the relative distance to a full solution consistently below 10%,

at least 1000 eigenfields should be used. We found, however, that about 500 eigenfields

are enough to achieve fields that are visually hard to distinguish from the unreduced so-

lution. Thus the proposed model reduction is well-suited as a technique that enables

interactive modeling of n-fields on larger meshes.

n-field splines By introducing higher order smoothness energies for n-fields, we get

the guarantee of continuous differentiability at constraints. To highlight this, we show

an artificial example in Figure 2.8, where we constrain a complete region of the 4-vector

field (lower part, in blue), while solving for the smoothest field under these constraints
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Figure 2.9: Local editing on the bunny mesh: to the smoothest (biharmonic energy), curvature aligned, 4-

direction field (left) we want to add a hard constraint to achieve diagonal quads around the eye. However, the

constraint has an undesired non-local effect (middle). This can be remedied by using our local editing scheme,

which allows for local changes to the field, while still yielding differentiable results (right).

using the harmonic energy EH , left, and the biharmonic energy EB , right. As can be seen,

using the harmonic energy results in a constant field on the upper half. The tendency of

the field in the lower half to grow in magnitude and the clockwise rotation are not con-

tinued, which corresponds to a discontinuity in the derivative in the continuous setting.

In fact, changing the blue part of the field does not have any effect on the variable, up-

per part, as long as the vectors in the boundary triangles remain the same. Using the

biharmonic energy smoothly continues the tendencies of the lower field.

This enables us to perform tasks such as local editing, see Figure 2.9: since con-

straints are interpolated in a differentiable manner, it is valid to constrain the field on

the whole mesh minus a small selected region. This is relevant in practice since hard

and soft constraints have a global influence on the layout of the field, which is undesir-

able when editing small features in isolated regions. For computational efficiency, one

can reduce the size of the system to be solved by discarding vectors that are constrained

and do not affect the unconstrained vectors. Explicitly, the vectors of triangles that are

not in the two-ring of any unconstrained triangle need not be included. Here two-ring

refers to the dual graph in which the triangles are the nodes and nodes are connected if

triangles share an edge. In this sense, the two-ring around the unconstrained triangles

specifies boundary conditions which determine the solution in the unconstrained area.

In Figure 2.2 we show n-direction field splines where we prescribed the placement of

four index 1
2

(yellow) and one index − 1
2

singularities in the field as described in Section

2.5. The main observation is that these types of hard constraints are not well posed under

the harmonic energy. The constraints only affect the vectors in the one-rings around the

placed singularities. Since a one-ring becomes smaller and smaller under refinement,

the solutions converges to a discontinuous field. This is illustrated in the insets in the

lower row, where the same hard constraints were used in a low and high resolution ver-

sion of the hand mesh. Using the biharmonic energy leads to a smooth solution, where

the singularity constraints have a global effect and the solution remains consistent un-

der refinement. This is another example for the importance of higher order smoothness

energies when posing hard constraints.
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Figure 2.10: Comparing the smoothest 4-direction fields on the double torus, in the presence of five hard

constraints, when using 4-field splines (top) or when using the harmonic energy (bottom). As can be seen in

the highlighted areas, the constraints are interpolated in a differentiable manner when using the biharmonic

energy.

The tendency to interpolate constraints in a differentiable manner when using n-

field splines can also be seen in Figure 2.10, where the curvature of the flow lines near

the constraints is continued in the regions on the side, away from any constraints, which

is not the case when using the common harmonic energy. Note that in this example we

did not use curvature alignment.

Timings In Table 2.1 we list the timings taken to solve the reduced and unreduced sys-

tems to compute smoothest n-fields subject to 30 hard constraints, using the harmonic

energy and biharmonic energy. We constructed 4-direction fields, and used the 500 low-

est frequency eigenfields of the corresponding Laplacian as a reduced basis. The timings

to construct those bases is listed as well. When measuring the computation time, only

one of the 30 hard constraints was assumed to have changed in the last frame, such that

only specific parts of the system have to be set up and updated. The reduction leads

to computation timings that are neither influenced by the resolution of the mesh, nor

by the order of the energy. The field can be updated about 200 times per second, such

that the visualization of the field and display of the mesh become the bottle-neck for

real-time n-vector field editing. In the unreduced case, we obtain computation times of

more than 100 ms for meshes with 70k triangles in our experiments. Times for adding or

removing new constraints are even longer. The trade-off for the fast computation times

in the reduced scheme is that the eigenfields need to be precomputed, which takes about

3 minutes for meshes with 70k triangles in our experiments.
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Table 2.1: Timings for the computation of smoothest, 4-direction fields without and with using the proposed

spectral reduction. In all examples we added 30 random hard constraints. We state timings for both the har-

monic and biharmonic smoothness energy. In the reduced case, we construct a basis from the 500 lowest

frequency eigenfields.

Model #faces Bases Reduced Setup & Solve Factorization of Unreduced Solve

Name setup harmonic \biharmonic ∆ \ ∆
2 harmonic \biharmonic

Twisted Bar 3276 5s 5ms \ 5ms 40ms \ 83ms 6ms \ 6ms

Hand 12184 24s 5ms \ 5ms 161ms \ 393ms 16ms \ 23ms

Rocker Arm 20088 44s 5ms \ 5ms 267ms \ 654ms 28ms \ 37ms

Bunny 69666 170s 6ms \ 6ms 1318ms \ 4413ms 138ms \ 194ms

Elephant 79946 181s 6ms \ 6ms 1249ms \ 3112ms 155ms \ 182ms

Armadillo 331904 15m30s 8ms \ 8ms 8155ms \ 28s 598ms \ 801ms

Comparison to Instant Field Aligned Meshes Jakob et al. [26] introduced a scheme for

computing smooth n-fields via a local averaging scheme on a multiresolution hierarchy

and parallelization in very low computation times. Since this is the only technique that

results in comparable timings, we want to put our framework into contrast.

The techniques used in their approach are fundamentally different from the methods

we propose. Our fields are globally optimal and are solutions of linear systems, while [26]

use parallelization, a multiresolution hierarchy and local operations to iteratively opti-

mize the fields. Their approach does not iterate until a minimum of an objective is found,

but terminates after a number of local smoothing steps on each level of the hierarchy

have been performed. In our experiments with their approach, we detected multiple

drawbacks resulting from this strategy when compared to our approach. Their results

are heavily affected by a changing the triangulation of a surface: Figure 2.12 shows the

smoothest, curvature aligned 4-fields produced with our technique (top row) and the

smoothest fields produced by Jakob et al. on three different triangulations of the rocker

arm mesh. While our singularity layout remains consistent (only some pairs of very close

singularities merge and cancel each other), the fields produced by Jakob et al. possess

inconsistent and globally different singularity layouts.

In [26], alignment to a globally defined field, such as principal curvature directions,

is handled via linearly interpolating the current n-vectors with the vectors of the align-

ment field in every optimization step. Since this has to be done on every level of the

multiresolution hierarchy, the constraint vectors have to be propagated along the hier-

archy as well, by iteratively merging the constraint vectors. It is not clear whether such

an optimization scheme minimizes a smoothness/alignment energy such as (2.9). As an

alternative to achieve curvature alignment, Jakob et al. propose to minimize an extrin-

sic smoothness energy by averaging the n-vectors in 3D world coordinates. However,

this approach does not allow for a weight between smoothness and alignment. In Fig-

ure 2.11, we show a comparison between curvature aligned fields using our framework

with the biharmonic energy and different weights for λ and fields using the framework

of [26], where we show both the extrinsically smooth field and fields produced by us-

ing the alignment method described above, using different interpolation weights. While

the extrinsically smooth field has comparable quality to our field for λ= 0.0001, it is not

aligned to many features of the elephant, such as the eye, or the right part of the visible

ear. There is no way to enhance the alignment when using the extrinsic energy. Us-
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Figure 2.11: Curvature alignment using our framework (top row) and [26] (bottom row). We used the bihamor-

nic energy and, from left to right, λ = 0.0001,0,−0.005,−0.1. Bottom row, left, shows the result when using

the extrinsic energy, and then, from left to right, alignment via local averaging using interpolation weights of

0.01,0.1 and 0.5.

Figure 2.12: Top row: The smoothest curvature aligned 4-fields on three different triangulations, computed us-

ing our system. The fields possess 51, 40 and 42 singularities, respectively, different numbers mostly resulting

from merged groups of nearby singularities. Bottom row: The smoothest 4-fields, using the extrinsic energy

and the system proposed by Jakob et al. [26]. The fields possess 22, 30 and 42 singularities, respectively, being

arranged in inconsistent structures.
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Figure 2.13: Left: Screenshot of a modeling session of a 2-field spline using hard constraints. The constraints

are edited via dragging the arrows and the field is updated and visualized at 60fps. Middle: Non-photorealistic

rendering of the rocker arm mesh when using the unedited smoothest 2-field aligned to the maximal principal

curvature. Right: Hatching rendering of the edited 2-field spline subject to six hard constraints.

ing the local averaging scheme to align to the principal curvature directions produces

visibly unsmooth fields, when the interpolation weights are high enough to guarantee

alignment to the aforementioned features. Our technique maintains global smoothness

while aligning to more features when using higher values of λ.

Finally, we want to remark that since there are no guarantees on the optimality of

solutions and because of the necessity to merge n-vectors when navigating the multi-

resolution hierarchy in [26], one cannot expect a continuous dependence of the solu-

tions on the constraints. This is a key feature of a modeling tool. In our framework,

slightly changing the constraints leads to small changes in the field.

2.10. APPLICATIONS

In the following we will describe two applications that strongly benefit from our ability

to compute n-field splines in real-time in order to aid with artistic tasks, which require

immediate feedback and smooth alignment to user defined hard constraints.

Hatching Rendering a surface mesh to resemble a line drawing, often called hatching,

is a popular technique for stylizing 3D scenes, cf. [50–54]. In order to perform such a ren-

dering, directions on the surface have to be chosen, along which the lines can be drawn.

Often, as in [50, 51], these directions are somehow extracted from the principal curva-

ture directions. Principal curvature directions are not unique in flat or umbilic regions,

so directions in such regions need to be post-processed. Treating principal curvature di-

rections as direction fields, allows to smooth the directions and to impaint directions in

umbilic regions. For such smoothing processes, the principal curvature directions can

be treated as 4-direction fields, see [24]. However, for guiding stroke directions, we opt

for 2-direction fields, since it is the natural choice for the regions in which strokes are

being drawn in only one direction and not orthogonally.

Using the principal curvature directions as the stroke directions is just one of many

choices and often it is desirable to design stroke directions from scratch or modify ex-

isting directions, for example to hide singularities in highly lit or occluded places. This

leads to a direct application of our real-time framework for the design maximal curvature
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aligned 2-direction field splines, which can be enhanced via hard constraints. To illus-

trate this we implemented a real-time hatching system based on [51], which uses tonal

art maps to texture surfaces according to light intensity and direction information. We

enable the user to design a 2-direction field using our standard set of tools and directly

update the directional information for the hatching application in real-time, which pro-

vides the user with an instant result. In Figure 2.13 we show a comparison between the

2-direction field aligned to the maximal principal curvature directions and an edited 2-

direction field spline subject to six hard constraints. It can be seen how alignment to

curvature directions is not suitable in regions where many singularities are present or

the maximal/minimal directions suddenly exchange their roles. We provide the ability

to intuitively edit the field in such regions in order to enhance the quality of the render-

ing.

Anisotropic BRDF In physically-based rendering systems one describes the reflection

behavior of an object by using a bidirectional reflectance distribution function (BRDF)

[55]. The BRDF at a given point on a surface depends on the direction towards the light

and the direction towards the viewer and returns the color and intensity of the perceived

light. Many such functions can be designed and they result in different perceptions of an

objects material. Often, materials can be considered isotropic, meaning that their value

does only depend on the angle between viewing/light direction and the surface normal.

However, for anisotropic materials, like brushed metals, parameters have to be defined

across the surface which define the orientation dependent response of the material to

light. In Ashikhmin et al. [56] a BRDF model is proposed that takes (amongst others)

two parameters nu and nv , which describe the anisotropy of the light in the local coor-

dinate frame (u, v). By designing a 2-direction field, one can specify the two directions

of anisotropy by setting them to the direction of the field and its orthogonal direction

respectively, thus describing the local coordinate frames up to the sign (to which the

reflectance is indifferent).

Thus, using our framework for designing 2-direction field splines, provides control

over the reflectance properties of such materials. Again, the real time response to newly

imposed or modified hard constraints enables a direct feedback for the user, which is

important for performing artistic tasks. A screenshot from an anisotropic BRDF design

session using our framework is shown in Figure 2.14. There, we show a simple example

to visualize what kind of effect we are aiming at.

Alternatively one can directly control the shape of the highlights under a fixed view-

ing and light direction, as proposed in Raymond et al. [13]. There, a relation between

the BRDFs and the shape of the highlights is established, such that desired tangent di-

rections of potential highlights can be specified by the user and then the BRDFs are op-

timized to fit these highlights. In [13] several tools to design a field with these prescribed

tangent directions are offered. They are based on direct manipulation of a potential

highlight, thus do not take into account the geometrical structure of such 2-direction

fields and neglect the global structure of the field. Our tools offer an intuitive alternative

that allows for the design of globally smooth tangent directions of potential highlights.
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Figure 2.14: Editing BRDFs to manipulate highlights on a golf-ball. The BRDF parameters are consistently and

smoothly defined over the whole mesh as they are extracted from the 2-field spline, and so, highlights will be

consistent and smooth even when view and light directions change.

2.11. CONCLUSION

In this chapter, we introduced n-field splines: an approach for modeling tangential n-

vector and n-direction fields on surfaces. The approach enables modeling of n-fields

with hard interpolation and soft alignment constraints, placing singularities and local

editing. New fairness energies for n-fields, a biharmonic energy, forms the basis of our

approach. The energies are convex and quadratic so that n-vector as well as n-direction

field splines can be computed by solving sparse linear systems. Based on a spectral de-

composition of n-vector fields, we derive a reduced optimization scheme for computing

n-field splines in real-time. We apply our approach to controlling and editing of stroke

directions in line-art renderings and the modeling of anisotropic BRDFs on surfaces.

Limitations and challenges The discrete harmonic energy we introduce has one con-

ceptual limitation, which it shares with the discrete harmonic energies for n-vector fields

introduced in previous work. Only the trivial field is in its kernel. For surfaces of non-

trivial genus g , there should be a 2g -dimensional kernel of “discrete harmonic” n-vector

fields. For piecewise constant vector fields (1-fields) such structure-preserving discretiza-

tions are known, however, it remains a challenge to find such a structure-preserving dis-

cretizations for n-vector fields.

A limitation of our current implementation of the n-vector field modeling tool is that

the local editing is not integrated with the global editing. We use the local editing as a

last step in the modeling pipeline and cannot switch back to global editing after local

edits have been performed (without constraining the whole local region). Various ways

to address this problem are possible. However, it is not clear which one is the simplest

and most effective.

Another interesting direction of future work is to use the n-vector field splines for
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quadrilateral or hexagonal meshing.
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APPENDIX

2.A. DERIVATION OF THE DISCRETE HARMONIC ENERGY

The discrete harmonic energy for n-vector fields is defined as

EH (u) =
∑

(i , j )∈E

wi j

∥

∥Ri j ui −u j

∥

∥

2
(2.19)

where wi j =
3l 2

ei j

area(Ti ∪T j )
.

In the following, we will justify the weights wi j , as they emerge naturally in a face-based

discretization of the harmonic energy for vector fields. The harmonic energy of a smooth

vector field v is given by E smooth
H (v) = 〈∆v,v〉L2 , where ∆ is the Hodge–Laplace operator

∆=−(grad div+ J grad curl.)

Rearranging terms, we get

E smooth
H (v) = 〈∆v,v〉L2

=
〈

−(grad div+ J grad curl)v,v
〉

L2

=−
〈

grad div v,v
〉

L2 −
〈

J grad curl v,v
〉

L2

= 〈div v,div v〉L2 +〈curl v,curl v〉L2

where we used the equations
〈

div v, f
〉

L2 =−
〈

v,grad f
〉

L2 , curl v =−div Jv and 〈Jv,v〉L2 =
−〈v,Jv〉L2 , which hold for all smooth vector fields v and square integrable functions f .

For more background, we refer to [45]. In [31] and [57], a DEC-based discretization of

this energy is used for vector field design. We are dealing with piecewise constant vec-

tor fields that jump at the edges. In this setting, discrete divergence and curl operators

can be defined by testing a weak form of the divergence and curl with test functions. As

test functions, we are using Crouzeix–Raviart finite elements, which are functions on the

mesh that are linear polynomials in every triangle and edge-midpoint continuous. The

nodes of the Crouzeix–Raviart elements are located at the midpoints of the edges of the

mesh. The (non-conforming discrete) divergence and curl map piecewise constant vec-

tor fields to such edge-based functions. For more background on the discrete divergence

and curl, we refer to [45, 58]. The values at the edge-midpoints are given by

div∗ v(mi , j ) =
3

ATi∪T j

(〈

vi , Ji ei j

〉

−
〈

v j , J j ei j

〉)

, (2.20)

curl∗ v(mi , j ) =
3

ATi∪T j

(〈

v j ,ei j

〉

−
〈

vi ,ei j

〉)

, (2.21)

71
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where
(

v1, ..., v|F |
)

are the piecewise constant vectors of the field per face, mi , j is the

midpoint of the common edge between two adjacent triangles Ti and T j , Ji is the op-

erator that rotates a vector in the tangent plane of Ti by π/2 (following the orientation

of the surface), ATi∪T j
is the combined area of Ti and T j , and ei j is the non-normalized

directed (following the orientation of Ti ) common edge between triangles Ti and T j .

With these operators, one can discretize the harmonic energy:

EH (v) =
〈

div∗ v,div∗ v
〉

L2 +
〈

curl∗ v,curl∗ v
〉

L2

=
∑

(i , j )∈E

3

ATi∪T j

(

(〈

vi , Ji ei j

〉

−
〈

v j , J j ei j

〉)2

+
(〈

v j ,ei j

〉

−
〈

vi ,ei j

〉)2
)

(2.22)

=
∑

(i , j )∈E

3l 2
ei j

ATi∪T j

(〈

Ri j vi − v j , J j

ei j

lei j

〉2

+
〈

v j −Ri j vi ,
ei j

lei j

〉2)
(2.23)

=
∑

(i , j )∈E

3l 2
ei j

ATi∪T j

∥

∥Ri j vi − v j

∥

∥

2
(2.24)

In (2.22), we simply inserted the definition of the operators and canceled the squared

area factors in div∗ and curl∗ with the area factors coming from the sum that com-

putes the L2 scalar product for the Crouzeix–Raviart elements. In (2.23), we used that
〈

vi ,ei j

〉

=
〈

Ri j (vi ),ei j

〉

. (Ri j is the connection for 1-fields) and the linearity of the scalar

product. Finally, in (2.24), we used that 〈v, w〉2 +〈v,Jw〉2 = ‖v‖2 for any pair of an arbi-

trary vector v and a unit vector w . Then, since for n = 1, when using the same tangent

space bases for the vectors and their n-vector representations, the vectors vi coincide

with the n-vectors ui , so that (2.24) coincides with (2.2).

Since we end up with a weighted sum of finite differences, we can extend this energy

to arbitrary n by taking the differences of the ui representing the n-vectors by transport-

ing them into a common tangent space. This leads to the generalized harmonic energy

(2.19).

As discussed in Section 2.11, the discrete harmonic energy does not have a kernel

of “discrete harmonic” n-vector fields for surfaces of non-trivial genus. For vector fields

such a discretization can be obtained by combining conforming and non-conforming

finite elements, see [45]. However, it remains an open question how this construction

can be carried over from 1-vector fields to n-vector fields.

Finally, we want to remark that in addition to the harmonic energy and the Hodge–

Laplace operator, one can consider the Bochner–Laplace operator and the correspond-

ing quadratic energy. For more background, we refer to [1, 2]. In the notation used in

these papers, the harmonic energy is called the anti-holomophic energy. The construc-

tion of a discrete Bochner Laplace operator for piecewise constant vector fields on trian-

gle meshes remains an interesting open problem.
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Relation to Finite Volumes We want to remark that in addition to the derivation de-

scribed above, the discrete harmonic energy (2.19) can be interpreted as a finite volume

discretization. The control volumes are the triangles and each summand wi j

∥

∥Ri j ui −u j

∥

∥

2

of the discrete harmonic energy measures the diffusive flux through the edge (i , j ) be-

tween adjacent triangles. The weights wi j are the transmissibilities.

For more background on finite volume methods, we refer to [59]. The discrete har-

monic energy (2.19) is analogous to the discrete harmonic energy (or squared discrete

Sobolev H 1
0 semi norm) for piecewise constant functions on triangulations of compact

domains in R
2, compare [59, Chapter 9, eq. (9.12)]. In contrast to their setting, we are

working with vector fields and curved surface meshes, this is why the transport of vector

fields Ri j is needed for evaluating the fluxes. Based on this analogy, we could use the

weights that are commonly used for finite volume discretization of the harmonic energy

with piecewise constant functions for our purposes. These are

2

cotαi j +cotbi j
,

where αi j and bi j are the angles opposite of the edge (i , j ) in the two adjacent triangles.

The problem with these weights is that they may be negative, which can be avoided by

requiring the triangulation to be Delaunay. The weights we propose are positive for any

triangulation by construction. To the best of our knowledge, the weights we are propos-

ing have not been used in the context of finite volume methods. It is an interesting task to

further explore the properties of these weights and their use for finite volume methods.

2.B. LINEAR SYSTEM FOR n-DIRECTION FIELD SPLINES

In this section, we derive the linear system we solve to compute n-vector field splines

and discuss the relationship between µ and λ. Our proof re-uses arguments from [1],

however, since we use hard constraints and different objectives and discretizations, some

modifications need to be made, and we will verify correctness for our specific system.

We will show that u = w
‖w‖

L2
, for w being a solution of the linear system from Section

2.7

(

B−λM DT

D 0

)(

w

γ

)

=
(

Mu′

0

)

, (2.25)

is a minimizer of the previously stated n-vector field spline problem

min
u

EB (u)−2µ
〈

u,u′〉
L2 (2.26)

subject to ‖u‖L2 = 1

and 〈ui , Ji di 〉 = 0 ∀ i ∈ I

To this end note that (2.25) can be rewritten as

Bw−µ‖w‖L2 Mu′ =λMw−DT γ (2.27)

and Dw = 0,
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where µ= 1
‖w‖

L2
. Multiplying (2.27) by 1

‖w‖
L2

, letting γ̃= γ
‖w‖

L2
and plugging in u = w

‖w‖
L2

we get

Bu−µMu′ =λMu−DT γ̃ (2.28)

and ‖u‖L2 = 1

and 〈ui , Ji di 〉 = 0 ∀ i ∈ I

since 〈wi , Ji di 〉 = 0 ⇔ 〈ui , Ji di 〉 = 0. These are the necessary conditions for the con-

strained optimization problem (2.26), where the Lagrange multipliers are 2λ and 2γ̃.

Since the minimized functional is quadratic in u, this is sufficient to show that u is a

feasible minimizer.

To determine the relationship between λ and µ, we first make a change of basis w =
Cŵ, where the image of C ∈ M(2|F |×2|F |−m) is the vector space of all fields that satisfy

the hard constraints, i.e. Dw = 0 ⇔ w ∈ Image C and CT C = I. Then (2.25) is equivalent

to solving

CT (B−λM)Cŵ = CT Mu′, (2.29)

since u′ satisfies all hard constraints by construction and so u′ ∈ Image C. Let Û be a full

eigenbasis of the constrained bi-Laplacian V̂ := CT
(

LT ML
)

C which is mass-orthonormal,

i.e. ÛT CT MCÛ = I. Then (2.29) is equivalent to

(Λ−λI)ŵÛ = ÛT CT Mu′, (2.30)

where ŵÛ = ÛT ŵ and Λ stacks the eigenvalues λ̂i of V̂ ordered by magnitude (note that

the eigenvalues are all positive as the frequency of hard constrained fields can only be

higher than those of an unconstrained field). Now note that
(

ŵÛ

)

i =
(

ÛT CT Mu′)
i

(

λ̂i −λ
)−1

.

So, when λ→ λ̂1,
(

ŵÛ

)

1 goes to (plus or minus) infinity. This implies ‖ŵ‖ →∞, and so

µ= 1
‖w‖ → 0. Conversely, when λ→−∞ we have that

(

ŵÛ

)

i → 0 for all i and so µ→∞.



3
HYPER-REDUCED PROJECTIVE

DYNAMICS

This chapter is based on the publication Hyper-Reduced Projective Dynamics by Christo-

pher Brandt, Elmar Eisemann and Klaus Hildebrandt, published in ACM Transactions

on Graphics in 2018.

3.1. OVERVIEW

Figure 3.1: Our Hyper-Reduced Projective Dynamics method is able to handle different types of constraints si-

multaneously (volume preservation for tetrahedrons and strain resistance for boundary triangles) for complex

geometries (52k vertices) in real-time. During the simulation we change the target volume of the tetrahedrons,

which causes a balloon-like blowup effect. We resolve ground collisions and allow user interaction by click

and drag. The simulation runs at 62 fps including rendering. The total precomputation time of our method is

21 seconds.

The simulation of deformable objects is an important factor in various entertain-

ment and training applications of computer graphics. Of particular interest are real-time

simulations since these allow the user to interact with the simulation and thereby greatly

enrich the experience in games, virtual reality, artistic applications and medical training.
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The combination of the nonlinear nature of deformable objects and the geometric com-

plexity of objects in these scenarios make real-time simulation a challenging problem.

In addition to efficiency, robustness is important for real-time simulation since interac-

tivity leads to unforeseeable states of the system.

Projective Dynamics, introduced in [1, 2], is a simulation framework that is general,

since it allows for the simulation of different types of deformable objects (solids, shells

and rods) and materials. It is robust, as it capable of adequately handling large time

steps, large deformations and degenerate geometries, and it is fast. On the technical

level, a variational implicit time integration scheme is used and the resulting optimiza-

tion problem is solved by an alternating local/global approach. The local steps in the

optimization can be executed in parallel, and for constraint-based potentials, the system

matrix of the linear system to be solved in the global steps is constant, allowing for the re-

use of a sparse factorization of the matrix. While this makes Projective Dynamics highly

efficient for real-time simulation, it is still limited to objects that can be represented by

coarse geometric models.

We propose a specific model reduction approach for Projective Dynamics, hyper-

reduced Projective Dynamics, that enables the real-time simulation of deformable ob-

jects with complex geometry. The scheme is designed such that the computational cost

for time integration is independent of the complexity of the mesh representing the ob-

ject. It proceeds in two stages. First, a subspace to which the simulation is restricted is

constructed. In contrast to Chapter 1 and 2, this step reduces the degrees of freedom of

the simulation, but does not necessarily lower the cost for solving the optimization prob-

lem required for integrating the equations of motion. This is because the complexity for

evaluating the constraint projections, which describe the acting forces, is not reduced.

Therefore, a second level of approximation, a hyper-reduction, is needed. We introduce

a novel approach, the constraint projections fitting method, for this second stage. The

idea is to construct a second subspace during the preprocessing stage—not for vertex

positions—but for the constraint projections. Then, in the online stage, only a limited

number of constraints are evaluated and a fitting problem in the second subspace is

solved to obtain approximations of the constraint projections. This scheme is inspired

by the empirical interpolation method from applied mathematics and continuum me-

chanics [3, 4] (though our scheme is neither empirical nor interpolating) and is the first

application of this type of method for reduced simulation in graphics.

To implement the hyper-reduced Projective Dynamics framework, constructions for

the two subspaces are needed. We propose two subspace constructions that refrain from

using prior knowledge about the nature of the simulation (types of user interaction, ex-

ternal forces, collision constraints, etc.). Only the mesh and the types of materials to be

simulated are known. While this setting does not allow our method to profit from spe-

cialization to a specific scenario, the resulting benefits are an automatic and accelerated

preprocessing stage, which avoids costly probing of the simulation or modal analysis.

Our position subspace construction follows constructions of skinning spaces [5, 6].

However, instead of solving a systems for each basis function, we use compactly sup-

ported radial basis functions for the weights. As a result, subspaces of large scale (up to

the original size of the mesh) can be constructed efficiently and the resulting basis vec-

tors are sparse. We generalize the construction to obtain subspaces of constraint pro-
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jections. Since the subspace constructions are based on sampling, our subspace con-

structions make the assumption that the deformations vary smoothly along the object.

Note, however, that this is not a general limitation of the proposed hyper-reduction. For

example, subspaces constructed from snapshots (taken from a full simulation) could

add high-frequency deformations, like sharp bends, to the subspaces. The general as-

sumption for the hyper-reduced simulation is that the object remains close to a low-

dimensional submanifold in configuration space.

The resulting hyper-reduced system is highly efficient: In our experiments, we achieve

real-time rates of 60 fps for simulations in 4k-dimensional subspaces, which is an order

of magnitude higher than what is reported for recent hyper-reduced schemes like [7, 8].

Precomputation time for a mesh with 19k vertices is 6.8 seconds and one minute for a

complex geometry with 200k vertices. Our hyper-reduced system enables rich dynamics

and can plausibly resolve unexpected events, such as collisions, drastic user interactions

and online changes of the material stiffness and the geometry (e.g. the volume).

3.2. RELATED WORK

Our method combines the benefits of Position-Based and Projective Dynamics methods

with the efficiency offered by model reduction techniques. In the following, we provide

an brief overview of literature in these fields and embed our method into prior work.

Position-Based Dynamics Position-Based Dynamics [9, 10] were introduced as gen-

eral and efficient methods to enable the simulation of deformable objects in real-time.

They can be seen as extensions of Shape Matching Methods [11, 12]. Position-Based Dy-

namics omits the velocity layer and instead works directly on the positions. Inner forces

are expressed as equality or inequality constraints, which are being enforced in a Gauss-

Seidel-type fashion. This constraint projection step can be carried out in parallel and

heavily sped up via GPU implementations. Since then the method has been extended

in terms of robustness, convergence and generality [13–15]. Most recently the prob-

lem of controlling stiffness parameters independently of the iteration count has been

addressed [16]. The method has been extended to fluids [17] and continuum based ma-

terials [18, 19]. For a recent survey on Position-Based simulation techniques we refer to

[20].

Projective Dynamics Projective Dynamics [1, 2] is a method for implicit time integra-

tion of physical systems, which combines a variational integration scheme [21] with a

specific class of potentials modeling the inner forces, resulting in a highly flexible and

fast technique that is capable of simulating strings, cloth, elastic deformable objects and

recently fluids [22]. Narain et al. [23] and Overby et al. [24] apply the Alternating Direc-

tion Method of Multipliers (ADMM) optimization algorithm to the variational integra-

tion scheme and show that the resulting method closely relates to Projective Dynamics.

From this point of view, it can be extended to nonlinear constitutive materials and hard

constraints. Liu et al. [25] show that Projective Dynamics can be seen as a quasi-Newton

method for implicit variational time integration for certain types of potentials. This also

allows for a generalization of the method to handle a large class of materials, such as
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Neo-Hookean or spline-based materials. While both generalizations give rise to similar

reduced methods for nonlinear materials, our method is a hyper-reduction for the orig-

inal Projective Dynamics method, and we make use of specific properties of the system

to gain the efficiency shown in our results. Wang [26] presents a GPU implementation of

the Projective Dynamics method, where Chebychev iterations are combined with Jacobi

or Gauss-Seidel iterations to approximate the system in the global step. This enhances

convergence and reduces computation times for the Projective Dynamics time steps. It

allows, for example, the simulation of a complex 20k vertex mesh at 38 fps. However, be-

ing an unreduced method, the computation time for each iteration still depends on the

mesh resolution, such that real-time frame rates are only possible up to a certain num-

ber of vertices. In contrast, our Hyper-Reduced Projective Dynamics method achieves

computation times that are independent of the mesh resolution. For example, we are

able to simulate a mesh with 200k vertices in 60 fps, including collision handling and

rendering, using a CPU implementation on a consumer desktop computer.

Model reduction for deformables An early application of model reduction to the sim-

ulation of deformable objects in graphics is [27], in which a linearized simulation is

restricted to a subspace spanned by the low-frequency linear vibration modes. Since

the linear modes do not capture non-linearities well, techniques for augmenting linear

modal bases for nonlinear deformable object simulation have been developed: Choi and

Ko [28] proposed modal warping, Barbič and James [29] basis augmentation with modal

derivatives, Huang et al. [30] and Pan et al. [31] rotation strain coordinates, Tycowicz et

al. [7] basis enrichment via linear space transformations, and Yang et al. [32, 33] a linear

inertia mode technique. Since vibration modes are globally supported, modal bases con-

sist of dense vectors. Brandt and Hildebrandt [34] introduced a scheme for the compres-

sion of vibration modes resulting in sparse basis vectors. An alternative to using modal

analysis are empirical eigenmodes [29, 35], which collect snapshots of the systems to be

reduced and use principal component analysis for the construction of a reduced basis.

Neumann et al. [36] proposed a sparse PCA approach to get sparse empirical deforma-

tion bases. A third type of subspaces are skinning spaces. Skinning spaces constructed

by sampling the geometry were used for fast simulation, for example, by Gilles et al. [37]

and Jacobson et al. [38].

Hyper-reduced systems combine dimensional reduction with a scheme for fast re-

duced force approximation. For St. Venant–Kirchhoff materials, the elastic potential is a

quartic polynomial in the vertex displacements. Barbič and James [29] suggest the pre-

computation of the coefficients of this polynomial in the reduced space, which enables

exact evaluation of potential, forces, and the Hessian at a cost depending only on the

dimension of the subspace. For general materials, one needs to resort to approximation.

The optimized cubature, introduced by An et al. [39], approximates the subspace forces

by a linear combination of projections of a selection of local force vectors. The weights

and sample locations of local force vectors are determined by cubature training, in which

the approximation error against a set of snapshots of force vectors is minimized. Tycow-

icz et al. [7] introduced a non-negative hard thresholding pursuit solver that significantly

speeds-up cubature training. Yang et al. [33] further reduce the training time by an effec-

tive strategy for training data generation, which generates only the data required to reach



3.3. BACKGROUND: PROJECTIVE DYNAMICS

3

79

a given error margin. Kim and Delaney [40] and Harmon and Zorin [41] use importance-

based sampling to determine cubature point locations and optimize only the weights.

Wu et al. [8] propose a domain decomposition approach to improve performance of

cubature training and evaluation. Since for our hyper-reduction of Projective Dynam-

ics, approximations of constraint projections as opposed to force vectors are needed,

polynomial reduction and cubature cannot be applied. Conversely, the proposed fitting

method holds potential for other model reduction problems in graphics.

In addition to simulation, model reduction has been used for controlling and editing

the motion of deformable objects [42–45], interactive material design [46], sound syn-

thesis [47], clothing simulation [48], deformation-based shape modeling [6, 38, 49, 50],

elasticity-based shape interpolation [51, 52], curve processing in shape space [53], and

shape optimization [54, 55].

Coarse simulation An alternative to the methods considered in this work is to simu-

late a coarse mesh and couple the coarse mesh to the high-resolution geometry such

that deformations of the coarse mesh can be propagated to deformations of the fine

mesh [56–61]. To put these approaches in context with our model reduction scheme,

one can observe that the coupling of the coarse and fine mesh results in a specific sub-

space for the fine mesh, where the reduced coordinates are the vertex positions of the

coarse mesh. The simulations in the subspaces, however, differ significantly. Instead of

computing a coarse simulation, our hyper-reduced scheme aims at approximating the

dynamics of the high-resolution mesh. In Appendix 3.D we present a comparison of our

method and a coarse simulation.

3.3. BACKGROUND: PROJECTIVE DYNAMICS

For a mesh with time-dependent vertex positions q ∈R
n×3, the goal is to find trajectories

of the laws of motion

Mq̈ = fint(q)+ fext (3.1)

with initial conditions q(0) = q0 and q̇(0) = v0. Here fext are (possibly time-dependent)

external forces, such as gravity, and fint(q) =−
∑

i ∇Wi (q) are internal forces acting on the

mesh, such as elastic forces acting on deformable objects. Equation (3.1) can be solved

via implicit Euler integration in a variational manner by solving the following optimiza-

tion problem

q(t +h) = argmin
q

1

2h2

∥

∥

∥M
1
2
(

q−s
)

∥

∥

∥

2

F
+

∑

i

Wi (q) (3.2)

v(t +h) =
1

h
(q(t +h)−q(t )) (3.3)

where s = q(t )+hv(t )+h2M−1fext. The functional that is optimized in Equation (3.2) can

be read as a trade-off between the momentum potential, which expresses that the object

should follow its current trajectory (possibly altered by external forces), and the elastic

potential, which maintains the shape of the object.
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Projective Dynamics is particularly efficient for potentials Wi that have the following

form:

Wi (q) =
∑

j

λ j

2

∥

∥S j q−pj(q)
∥

∥

2
(3.4)

where p j (q) = argmin
p∈Ω

∥

∥S j q−p
∥

∥

2
(3.5)

where the triplets {λ j ,S j ,pj} are called constraints and

• λ j is a scalar weight denoting the stiffness of the constraint (and contains the area

or volume associated to the constraint).

• S j is a p×n matrix, which usually is a linear discrete differential operator comput-

ing deformation gradients, Laplacians, or other quantities for a certain element of

the mesh.

• p j , the constraint projection, is a, typically nonlinear, function from R
n×3 to R

p×3

that projects the differential property S j q onto a constraint manifold Ω.

With these types of potentials, one can model a variety of materials, e.g. they can be used

as bending and strain energies for thin shells, elastic energies for tetrahedral meshes,

spring energies, and unconventional energies such as example-based materials [21]. The

derivation and implementation of specific constraints can be found in the original Pro-

jective Dynamics paper [2]. Most importantly, these constraints admit a robust mini-

mization scheme for solving the optimization problem stated in Equation (3.2), which

is a local/global approach. In the local step, the constraint projections can be evaluated

independently in parallel, while in the global step, a system is solved that minimizes the

objective for fixed constraints. This system decouples into the spatial dimensions x, y ,

and z, such that it can be solved by three linear solves of dimension n in parallel. The

resulting method is listed in Algorithm 2.

Algorithm 2 Unreduced Projective Dynamics

Input: Current vertex positions q(t ) and current velocities v(t )

Let s = q(t )+hv(t )+h2M−1fext

Let q̂ = s

for i = 1 to numIterations do

Local step: Evaluate all constraint projections pi = pi (q̂)

Global step: Solve
(

M
h2 +

∑

i λi ST
i

Si

)

q = M
h2 s+

∑

i λi ST
i

pi

Let q̂ = q

end for

Output: Updated vertex positions q(t + h) = q̂ and velocities v(t + h) =
(

q(t +h)−q(t )
)

/h
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3.4. VERTEX POSITIONS SUBSPACE CONSTRUCTION

In order to reduce the degrees of freedom in the optimization problem stated in Equation

(3.2), we opt for a linear subspace U ∈ R
n×4k , such that vertex positions q ∈ R

n×3 can be

approximated as q ≈ Uq̃, where q̃ ∈ R
4k×3 and 4k ≪ n. Such linear subspaces have been

employed for many problems in computer graphics and specifically for the reduction of

simulation and modeling applications, see Section 3.2.

Subspace construction We opt for creating a subspace from skinning weights (see Ap-

pendix 3.B), similar to the subspaces used in [5, 6]. However, we define the required

weights in a way that produces compactly supported basis functions, is well suited for

scaling the trade-off between accuracy and performance, requires no user input, and

can be computed in a few seconds at most. On a conceptual level we want to introduce

degrees of freedom from affine transformations acting on equidistantly distributed han-

dles (or areas) on the mesh, with smoothly varying, localized influence on the nearby

vertices.

To this end, we first choose k sample vertices s j which are distributed approximately

equidistant over the mesh, using furthest point sampling. That is, the first vertex sample

is chosen randomly and then we iteratively add the vertex which has furthest distance

from all previously chosen samples on the mesh as the next sample. To ensure that the

sampling is fair, even in presence of complex details, it is important that distances are

measured as the lengths of geodesics on (or, in case of volumetric meshes, through) the

mesh. To quickly evaluate geodesic distances to all of the sample points, we use the

Short Term Vector Dijkstra (STVD) method proposed by Campen et al. [62], which is a

modification of the original Dijkstra algorithm that replaces the distance update with a

method that uses a stack of predecessor edges to compute good approximations of the

actual geodesic distances.

Preliminary weights for each vertex i and each of the k samples are then acquired

from radial basis functions around the handles. Specifically they are defined as w̃i =
(

Bs1,r (qi ), ...,Bsk ,r (qi )
)

, where r is a radius whose choice we detail below and By,r (x) =
br (d(x,y)) is a scalar function on the mesh vertices. On [0,r ], we choose br as the unique

cubic polynomial with br (r ) = b′
r (0) = b′

r (r ) = 0 and br (0) = 1 and define br (t ) to be 0 for

t > r . Other choices are possible, as long as they are smooth, monotone and interpolate

between 1 and 0 on [0,r ]. The final weights wi are then normalized as wi = w̃i ·(1./
∑

j w̃
j

i
)

in order to ensure reproducibility of the rest shape. To be able to evaluate the func-

tions Bs j ,r we need to evaluate the geodesic distances d(s j ,qi ) for all vertex positions

qi . For this, we also employ the STVD method, where the search can be terminated

early, since vertices with distance greater than r do not need to enter the queue (at the

end unvisited vertices receive the value Bs j ,r (qi ) = 0). This setup enables the compu-

tation of smooth and locally supported weight functions, while not relying on solving

box-constraint quadratic problems [5] or linear systems [6] on the mesh for every basis

function, which becomes costly for high resolution meshes.

The choice of the parameter r is crucial for two reasons: on the one hand, the sparsity

of the subspace matrix, which depends on this parameter, influences the performance

of the Hyper-Reduced Projective Dynamics algorithm, since the cost of updating sam-

pled vertex positions is tied to the sparsity pattern. On the other hand, r should be cho-
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of a precomputation step and several steps in the online phase.

• Precomputation: We construct a subspace for constraint projections V and select

s constraint samples to evaluate.

• Online Phase:

1. Evaluate the positions of all vertices that appear in any of the sampled con-

straints.

2. Evaluate the sampled constraint projections.

3. Solve a fitting problem to find a best approximating vector p̃ in the space

spanned by V.

4. Evaluate r := UT ST Vp̃. (S will be defined in (3.7) below.)

Also note that both the precomputation and the online steps are separated for each

type of constraint. For example, if both bending and strain constraints for a triangu-

lar mesh are present, different subspaces V are constructed, separate fitting problems

are solved and their contributions to the right hand side are evaluated individually and

then summed.

Subspace for constraint projections When approximating the term UT ∑

i λi ST
i

pi , one

would like to skip the costly evaluation of all pi (q), as well as prevent the large vector

matrix multiplication with UT . To address the first goal, we design a basis V that spans

a subspace of constraint projections, such that
(

p0(q),p1(q), ...
)

≈ Vp̃. The space needs

to be general enough that it contains good approximations of any such vectors that are

encountered during a simulation, but concise enough that solving a least-squares fitting

problem using a few constraint projections into this subspace yields these approxima-

tions. V can be constructed by using snapshots of forces (or, in our case, constraint pro-

jections) from full simulations (see e.g. the Discrete Empirical Interpolation Method [4]).

Specifically for high-resolution meshes, conducting full simulations in which enough in-

teresting states can be observed to construct a sufficiently rich space is a complicated

and time-consuming endeavor. Additionally, it requires knowledge about the type of in-

teraction, collision constraints and external forces that will be encountered during the

reduced simulation, which we do not want to assume in order to stay as general as pos-

sible. Note that in the reduced dynamics, the contribution of the constraint projections

to the right hand side will always be filtered by UT . This suggests that one might want

to use the columns of U directly to obtain vectors of constraint projections from these.

However, this can only yield a meaningful subspace if the columns of U directly corre-

spond to meaningful shapes or deformations, which is not the case for our construction,

and is an assumption we want to avoid. Thus, we propose a construction that is similar

to that of the positions subspace described in Section 3.4.

Again, we choose k ′ approximately equidistant sample vertices on the mesh and con-

struct weight functions w j with a limited support around each of the samples. For effi-

ciency reasons, we use the first k ′ vertices of the k vertex samples from the construction

of U (in all our examples we have k ′ < k). Thus, the corresponding weight functions
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can be also be reused, given that the radius was chosen large enough such that this sub-

set of weight functions still covers all vertices with sufficiently many non-zero weights.

The weight functions are then interpolated at the relevant elements for the current con-

straint type (i.e. at the triangles for surface strain constraints, tetrahedrons for volume

preservation constraints, etc.) and then normalized to sum to one at each element.

We then evaluate all constraint projections pi = pi (q0) of the rest shape q0 of the

mesh. Note that usually we have pi (q0) = Si q0 for the rest-shape (such that no inner

forces act on it). Note that for all types of constraints that have been introduced so far,

these projections are geometric quantities such as mean curvature vectors (for bending

energies), transformation matrices (for strain or volume preservation energies) or simply

edges of the mesh (for spring energies). We can now think of these quantities as being

attached to the corresponding elements of the mesh. By replacing the role of the vertex

positions qi with the constraint projections pi , we can construct a subspace V from the

degrees of freedom offered by the weighted affine transformations of the quantities pi

according to transformations chosen at each of the k ′ handles and weights defined at

the elements. The implicit assumption in this construction is that the transformations of

the rest-shape’s constraint projections vary smoothly across the mesh when considering

deformations of the shape (note that we do not assume that the constraint projections

themselves vary smoothly, which is not the case). The explicit construction of this space

is explained in Appendix 3.C. As a linear subspace, we are unable to guarantee that all

constraint projections of the approximated vectors will be on the constraint manifold,

but by solving a fitting problem into this space (see next paragraph) we invoke this prop-

erty in a least squares sense.

To avoid redundancy in the fitting problem and take into account the geometry of

the mesh, we perform a weighted PCA on the space constructed above and only use the

most significant half of the principal component vectors as the final basis V. As weights

we use the length, area or volume associated to the elements of this constraint type.

Constraint projections fitting Since V is not built from snapshots of constraint pro-

jections vectors, but as a general purpose space, it is unsuited to compute a direct in-

terpolation from a very small number of carefully selected elements as suggested by the

DEIM method [4]. Instead, we solve a least-squares fitting problem from considerably

more entries in the vector of constraint projections than there are basis vectors in V.

Therefore we choose s ≫ k ′ approximately equidistant constraints via the furthest point

sampling method, starting with k ′ constraints next to the k ′ vertex samples used in the

construction of V. In our examples we choose between 800 to 1000 constraint samples,

contributing 9 entries in the constraint projections vector each, whereas the dimension

of the constructed constraint projections subspace is between 300 and 420, see Table 3.1.

Let J ∈R
p·s×p·e be the matrix that maps a vector containing all constraint projections

to a vector containing only the s sampled constraints’ projections (e is the total number

of constraints, and p denotes the number of rows of each constraint projection pi ), and

let

ST =
(

λi ST
1 λi ST

2 · · ·
)

(3.7)

be the summation matrix, which maps vectors p ∈ R
pe×3 of stacked constraint projec-

tions pi to the term
∑

i λi ST
i

pi .
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During precomputation a list of all vertices that appear in the evaluation of the con-

straint projections of the s sampled constraints is assembled. In the local phase, the first

step is to evaluate these vertices via qi = Ui q̃ for the current subspace coordinates q̃ of

the system. This can be done in parallel and the vector-vector product above is sparse

(due to our specific subspace construction). Then, for each sampled constraint i , we

evaluate the corresponding constraint projection pi (q) for the current deformation q.

We stack these in vectors ppartial ∈ R
ps×3. Thereafter, the least-squares fitting problem is

solved by minimizing the residual

∥

∥JVp̃−ppartial

∥

∥

2

F
(3.8)

which amounts to solving the three uncoupled linear systems

VT JT JVp̃ = VT JTppartial (3.9)

for each coordinate in parallel. Finally, p̃ is directly mapped to the approximation of the

term UT ∑

i λi ST
i

pi (q) via r = UT ST Vp̃, The matrix UT ST V can be precomputed and is

small (compared to the original dimension of the system).

3.6. HYPER-REDUCED PROJECTIVE DYNAMICS

After the subspaces U and V for vertex positions and constraint projections have been

constructed, the sampled constraints have been selected and the fitting problem has

been set up, we are able to use the hyper-reduced variant of Projective Dynamics listed

in Algorithm 3. There we use the notation ·̃ for quantities projected into the subspace,

such as f̃ext being the external forces projected into the space spanned by U.

The important differences to the original Projective Dynamics method are the modi-

fications to the local and global steps: instead of evaluating all constraint projections, we

evaluate a small subset and solve a least-squares fitting problem. Also, instead of solv-

ing a global system in the size of the number of vertices, we solve the reduced system to

obtain subspace coordinates.

For brevity, Algorihtm 3 does not include the possibility of adding additional, fully

evaluated constraint projections to the system. This is entirely possible and was used in

our experiments, for example when ‘hanging’ objects using a few position constraints.

These are all evaluated in the local step and added to the right hand side of the global

step individually, as in the unreduced method.

If the mesh needs to be displayed at the end of the time step, the updated subspace

coordinates need to be mapped to full coordinates. For complex geometries (>15k ver-

tices), we perform this step on the GPU. Additionally, partial position updates are per-

formed using the GPU, i.e. mapping the subspace coordinates to the positions of only

those vertices that appear in sampled constraint projections. Other than that we imple-

mented this method using only CPU operations. More details on our implementation

can be found in Appendix 3.A. There, we also specify how we perform the collision han-

dling and user interaction mentioned in Algorithm 3.

Relation to reduced finite element methods For the presented hyper-reduction of Pro-

jective Dynamics, we focused on a specific class of potentials, for which the method is
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Algorithm 3 Hyper-Reduced Projective Dynamics

Input: Current subspace coordinates q̃(t ) and subspace velocities ṽ(t )

Let s̃ = q̃(t )+hṽ(t )+h2UT M−1Uf̃ext

Modify s̃ according to user interaction and collision constraints.

Let ˆ̃q = s̃

for i = 1 to numIterations do

Local step:

Evaluate required vertex positions q̂partial = Upartial
ˆ̃q

Evaluate sampled constraint projections ppartial

Solve the fitting problem

VT JT JVp̃ = VT JT ppartial

Build the right hand side term r := UT ST Vp̃

Global step: Solve

UT
(

M
h2 +

∑

i λi ST
i

Si

)

Uq̃ = UT M
h2 Us̃+ r

Let ˆ̃q = q̃

end for

Output: Updated subspace coordinates q̃(t + h) = ˆ̃q and velocities ṽ(t + h) =
(

q̃(t +h)− q̃(t )
)

/h

particularly efficient. This limits the type of material response our method can achieve.

For example, we can simulate elastic solids with material parameters controlled by Lamé

parameters, such as the materials presented in [63], but we cannot handle general non-

linear materials. Reduced finite element schemes like [7, 8, 39] can deal with various

types of materials. Nevertheless, the benefits that we gain from our hyper-reduction

scheme for Projective Dynamics are:

• The matrix for the global step is sparse and constant, hence a sparse factorization

can be computed once and re-used throughout the whole simulation.

• The iterations for time-stepping do not involve a line search.

• For both linear solves appearing in our algorithm (constraint projections fitting

and global step), the x, y , and z-coordinates are decoupled; hence systems of

smaller size are solved in parallel.

As a result, we observe that our approach can achieve real-time rates of 60 fps in sub-

spaces that are roughly one order of magnitude larger than what is reported for recent

reduced finite element schemes [7, 8]. The larger subspaces allow us to gracefully handle

features like user interaction, ground collisions, and drastic changes of material stiffness

and volume to the real-time simulation. Another feature of the proposed scheme is the

fast precomputation stage, see Table 3.1. In addition, the method profits from the ro-

bustness and generality of Projective Dynamics.
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3.7. RESULTS

We implemented our Hyper-Reduced Projective Dynamics method for the simulation

of triangle and tetrahedral meshes, supporting spring, strain (triangle and tetrahedron),

bending, and position constraints, as well as collision handling and user interaction.

Details on the implementation can be found in Appendix 3.A. The resulting method is

capable of simulating highly detailed meshes with more than 400k vertices in real-time,

while handling collisions and user interactions.

In Figure 3.3 three frames of the same simulation using full Projective Dynamics and

using Hyper-Reduced Projective Dynamics are shown. The reduction parameters for this

visual comparison are listed in Table 3.1. When using small time steps and watching the

simulation in slow motion, differences in both simulations can be observed: in the full

simulation (left), individual fingers and ears show richer dynamics, but we found that

these differences are hard to spot once we choose a more realistic time step. While the

full method offers higher detail in the finer dynamics, it results in 3.7 fps and is unsuited

for real-time applications.

Additionally we simulated the dropping armadillo restricted to the degrees of free-

dom offered by our subspace, but without approximating the forces. The resulting dy-

namics are coarser than in the full simulation, but finer than in the hyper-reduced sim-

ulation. This shows that our subspace offers enough degrees of freedom to enable rich

dynamics. However, not employing a force approximation scheme results in the same

FPS as the full simulation: while the computation time of the global step is significantly

reduced (in this example from 3100 microseconds to 70 microseconds), the cost of the

evaluation of the right hand side term dominates the iteration times for both approaches.

Moreover, evaluating the term in the subspace-only-reduction requires evaluating the

current positions q = Uq̃ in every iteration as well as multiplying the vector
∑

i λi ST
i

pi by

UT . This means that the cost for the local step is larger in the subspace-only-reduction,

than in the full simulation. This shows the importance of employing a force approxima-

tion along with a dimension reduction.

Table 3.1 contains data for the experiments shown in Figures 3.1, 3.2 and 3.6. A full

explanation for each line of the table is given in the next paragraph. Thereafter, we dis-

cuss precomputation and online timings and the tradeoff between computation timings

and approximation errors when comparing simulations using our reduced method to

full Projective Dynamics simulations.

Table details In Table 3.1 we show – for the experiments illustrated in the figures of

this chapter – the type(s) of constraints used, the number of vertices of the mesh, the

position subspace dimension (i.e. the degrees of freedom for the vertex positions), the

original number of constraints, the number s of constraints that we evaluate for the con-

straint projections fitting method and the number of vertices whose position needs to be

available when computing these constraint projections. We then list the resulting pre-

computation times in seconds, both for our method as well as for the unreduced method

(factorization of the l.h.s. matrix), followed by the computation times (in microseconds)

of the local and global step of one iteration of the hyper-reduced method, as well as the

time it takes to evaluate the vertex positions of the vertices required to evaluate the sam-

pled constraints. The resulting fps for our hyper-reduced method (using ten iterations
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Figure 3.3: Visual comparison of simulation results from full Projective Dynamics (left column) and our

method using 1440 degrees of freedom (right column) both starting with the same initialization.

per frame) are shown with and without taking into account that all vertex positions have

to be evaluated once per frame if the mesh is rendered each frame. Finally, we show the

fps of the unreduced method. In the following two paragraphs, we discuss the precom-

putation and online timings in more detail.

Precomputation times The setup of the Hyper-Reduced Projective Dynamics method

encompasses

• the construction of the positions subspace, which includes

– sampling k approximately equidistant vertex samples

– constructing the k weight functions centered at those vertices

• the preparation of the constraint projections fitting method, which includes

– constructing the subspace of unassembled constraint projections from k ′ ap-

proximately equidistant vertex samples

– a PCA of that space

– choosing s sampled constraints
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Table 3.1: Data for the experiments shown in the figures of this chapter. See Section 3.7 for further details.

Name Glove Armadillo Armadillo Elephant Dragon Squid

(Fig. 3.2) (Fig. 3.3 & 3.6) (large subspace) (Fig. 3.1) (Fig. 3.2) (Fig. 3.2)

Constraints type Bend. & Tri. strain Tet. strain Tet. strain Tri. & Tet. strain Tet. strain Tet. strain

# vertices n 24370 19064 19064 52812 196577 439061

# iterations per frame 10 10 10 10 10 10

Position subspace dimension 540 1440 3960 1200 1200 2160

Constraint projections sub.dim. 300 360 360 360 420 360

# constraints 73106 71289 71289 277363 733649 1664908

s = # evaluated constr. proj. 2 · 1000 970 970 2 · 800 1000 1000

(# of evaluated vertices) 5771 3688 3688 3789 2741 3931

Precomputation (in seconds) 8.23 6.20 16.23 21.19 63.10 189.54

Local step (in µs) 546 337 660 612 643 483

Global step (in µs) 48 40 256 148 35 74

Partial update v. pos. (in µs) 435 412 678 468 394 524

fps (fps incl. display) 94 (89) 120 (112) 63 (60) 81 (62) 89 (60) 116 (37)

Precomputation unreduced (in s) 0.56 0.29 0.29 1.368 11.83 12.57

fps unreduced 2.39 3.7 3.7 0.68 0.20 0.08

– the evaluation of all constraint projections of the rest shape

– the construction and factorization of the left hand side matrix of the con-

straint projections fitting problem

• the construction and factorization of the left hand side matrix for the global step.

The precomputation timings listed in Table 3.1 include all of the above steps. The timing

depends on the number of vertices n of the original mesh, and the reduction parameters

k, k ′ and s. As the vertex count increases, performing the weighted PCA in the construc-

tion of the constraint projections subspace becomes the most time consuming task. The

precomputation times measured for the meshes in our experiments (ranging from 19k to

440k vertices) admit most types of applications and would rarely pose severe limitations.

Note that all precomputed quantities are suited for arbitrary user interaction, collision

constraints and external forces and the precomputation (for a specific mesh) only has

to be performed again, when the material type changes, or stiffness weights change in a

non-uniform way (i.e. by more than a constant factor).

Simulation times The online phase of our Hyper-Reduced Projective Dynamics method

is made up of three steps:

• The first step (not present in the unreduced method), in which we evaluate the

positions of the vertices that are required to evaluate the sampled constraint pro-

jections in the next iteration, since only subspace coordinates are available at that

point.

• The local step, which encompasses evaluating the sampled constraint projections,

solving a fitting problem and mapping it to the approximation of the right hand

side term required for the global step.

• The global step, in which we solve the reduced linear system.

When the mesh is being displayed after each time integration step, the full vertex posi-

tions need to be evaluated once per frame via q = Uq̃, which we perform on the GPU for





3.7. RESULTS

3

91

since the iterations are about 30 times faster. With higher resolutions of the mesh, this

speed up factor becomes larger, e.g. for the Squid mesh we get a factor of 1440, using the

reduction parameters listed in Table 3.1.

In all examples, we use 10 local/global iterations per time integration step. We find

that for our hyper-reduced method the differences between a simulation running with

10 iterations and a fully converged solution are very small since the coupling of material

stiffness and iteration count can only be observed at very low iteration counts.

Table 3.2: Normalized L2 errors when projecting the frames of the full simulation shown in Figure 3.3, left, to

subspaces of three different sizes constructed with our method.

Subspace dimension Mean Error Max. Error

360 0.0269 0.0513

1440 0.0106 0.0228

3960 0.0057 0.0112

Approximation errors When comparing the results of our hyper-reduced method to

those of the full Projective Dynamics method, there are two main sources of approxima-

tion errors:

1. Errors due to the reduced degrees of freedom offered by our subspace for vertex

positions.

2. Errors when approximating the constraint projections via our fitting method.

To measure the first type of approximation errors mentioned above, that is, to evaluate

the degrees of freedom offered by our subspace, we want to quantify how well defor-

mations of a mesh that is simulated in full detail can be approximated by our vertex

position subspace. Therefore, we project each frame of the full simulation of a dropping

armadillo (Figure 3.3, left) into subspaces constructed via the method described in Sec-

tion 3.4. In Table 3.2 we list the mean and maximal L2 differences between the full and

the projected shapes of all frames of the simulation for three different subspace sizes

(the original shape was normalized to have L2 norm 1). The mean error does not include

the first few frames of the simulation where the armadillo is still in its rest shape, which

results in an approximation error of zero. Note, that even when running the simulation

using our hyper-reduced method with the largest of the three subspaces, we still achieve

60 fps including rendering and collision detection (see Table 3.1).

The second type of approximation errors (approximated constraint projections) is

measured as the relative errors between the right hand side term
∑

i λi Si pi (q) to its

approximation SVp̃, acquired from our constraint projections fitting method (see Sec-

tion 3.5). We plot these errors for the dropping dragon simulation in Figure 3.5, where

we evaluate only 1000 of the 733649 constraints to approximate the right hand side term.

Generality One of the reasons that we chose to reduce the Projective Dynamics method

is its generality. It is able to handle thin shells, volumetric deformables, spring-based
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from a completely flattened state. Throughout our experiments we subjected the meshes

to large external forces, rapid user interaction and collision constraints. The simulations

showed stable behavior throughout.

Figure 3.6: We are able to interactively change stiffness parameters in a running simulation. From left to right

we scale the predefined weights by 1, 0.1, 0 and again 1. This also demonstrates that our method is able to

recover from a fully flattened state.

3.8. CONCLUSION

We presented a method for real-time simulation of deformables that combines the ben-

efits of Projective Dynamics and hyper-reduction techniques in one framework. The

resulting scheme is robust, general and efficient. It enables real-time simulation of high-

resolution meshes in specifically designed subspaces with up to 4k degrees of freedom

while keeping precomputation times low. We provide examples that include deformable

solids and shells, user interaction, collision constraints, external forces, varying material

stiffness, and recovery from degenerate configurations.

Limitations and challenges While we handle collisions with rigid objects, one limita-

tion of our current implementation is that self-collisions and collisions between multiple

deforming meshes of the deformable object are not handled. It would be interesting to

integrate techniques like collision certificates [64], bounded-normal trees [65] and pose-

space cubature [66] to the proposed approach.

The subspaces used for positions and constraint projections are not directly suited

for simulating cloth, since the assumption of deformations that vary continuously across

the mesh is no longer valid: When bending resistance is very low or not simulated at

all, sharp creases and noisy features start appearing, which can not be faithfully recon-

structed using the presented subspaces. Here, performing full simulations and creating

subspaces for positions and constraint projections from snapshots might prove benefi-

cial. Initial tests showed that such subspaces are very specific to the task that was per-

formed in the full simulation (i.e. how the cloth was grabbed and deformed and what
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collision constraints and external forces were present) and do not enjoy the generality of

our method.

The Projective Dynamics method has been generalized to handle fluids by Weiler et

al. [22], but the loss of any connectivity renders our reduction method unable to handle

particles. It is an interesting question whether the reduction can be adjusted such that it

can be applied to Projective Fluids.

Lastly, the recent generalizations of Projective Dynamics to nonlinear constitutive

materials in [25] and [23, 24] offer a direction to extend our hyper-reduced method in a

similar fashion.
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APPENDIX

3.A. IMPLEMENTATION DETAILS

We implemented our Hyper-Reduced Projective Dynamics method using C++, specifi-

cally the Eigen library [67] to handle all linear algebra operations, OpenMP [68] to han-

dle the parallel execution of constraint projections and CUDA [69] when mapping re-

duced coordinates directly to vertex positions in OpenGL buffers (this is only done for

meshes with more than 15k vertices). Constraint projections were implemented as de-

tailed in [2], with the exception of the bending projection, where we additionally ensure

that the dot product between the outer normal of a fixed adjacent triangle and the mean

curvature vector keeps the same sign throughout the simulation (this prevents the mesh

from permanently inverting along edges where heavy buckling occurs).

User interaction Instead of using position constraints to handle user interactions, we

simply modify the vector s (which can be interpreted as the desired positions in the

next time step, disregarding inner forces), by moving vertices close to the mouse par-

allel to the camera’s viewing plane when click and drag actions are performed. We ig-

nore vertices whose positions are not being evaluated (i.e. are not part of the sampled

constraints), such that this operation remains independent of the full resolution as well.

We then obtain the subspace vector s̃ by interpolating the positions of all vertices on

sampled constraints into the subspace. This method of handling user interaction also

prevents us from having to introduce inactive position constraints which unnaturally

change the system’s behavior.

Collision handling In presence of collision constraints, one tries to minimize the en-

ergy stated in equation (3.2) subject to inequality constraints on the vertex positions,

which come from anticipated collisions of the mesh with static objects. To circumvent

both the detection of collisions for every vertex of the mesh in every local/global itera-

tion, as well as adding temporary inequality constraints to the global step solve, we em-

ploy the following approximation of this optimization: In every frame of the simulation,

once the reduced coordinates of the desired vertex positions s̃ have been evaluated, we

check, for one vertex at each sampled constraint, if there are violated collisions for this

vertex and if so, compute the projection of this vertex to a collision free position. Note

that the actual positions of these vertices needed to be evaluated anyway, since they are

located at sampled constraints. In our reference implementation we used a simple pro-

jection method to obtain collision free positions for the vertices and to introduce repul-

sion and friction, we scale the tangential velocities and normal velocities to the collision

plane of vertices that were not collision free by constant factors. This keeps the com-

plexity all computation steps independent of the mesh resolution and offers an efficient

and visually convincing way to let the mesh interact with static objects. Collisions with

99



3

100 REFERENCES

thin features and sharp edges cannot be captured well by our approach, since the sub-

set of vertices for which we check and resolve collisions is too coarse to support them.

More involved collision resolving strategies and models for friction and repulsion can of

course be applied, and, if desired, they can exploit the benefit of handling these for only

a subset of the vertices and interpolating the effect via a projection to the subspace.

3.B. BLEND-SKINNING SUBSPACE CONSTRUCTION

Here we detail the construction of a subspace that mimics the degrees of freedom avail-

able in linear blend-skinning techniques. Given k handles with associated weights w
j

i

per vertex and handle, a skinning transformation of a rest shape q0 ∈ R
n×3 is obtained

via




q̂ x
i

q̂
y

i
q̂ z

i



=
∑

j

w
j

i
A j









q x
i

q
y

i
q z

i
1









, (3.10)

where the A j are the k chosen affine transformations (3×4 matrices) for each handle and

(q x
i

, q
y

i
, q z

i
) is the i -th row of q. From this, one can deduce the subspace matrix

U j =







q x
0 ·w

j
0 q

y
0 ·w

j
0 q z

0 ·w
j
0 w

j
0

q x
1 ·w

j
1 q

y
1 ·w

j
1 q z

1 ·w
j
1 w

j
1

· · ·






(3.11)

U = (U1 | · · · | Uk ) (3.12)

and interpret the entries of the affine transformations as subspace coordinates

q̃ =





AT
0

· · ·
AT

k−1



 (3.13)

Then, the transformations (3.10) can be concisely written as q̂ = Uq̃. In effect this means

that for each handle, or set of weights, we get 4 subspace vectors and 12 degrees of free-

dom, as the subspace naturally decouples x, y and z coordinates, which goes along well

with the decoupled system of the global step of Projective Dynamics.

3.C. SUBSPACE FOR CONSTRAINT PROJECTIONS

The construction above can be extended to subspaces for vectors of unassembled con-

straint projections. Here we assume the weights w
j

i
are defined at the elements associ-

ated to the constraints for which this construction is used (e.g. at the tetrahedrons for

volume preservation constraints). In addition, we have the evaluated constraint projec-

tions pi (q0) ∈ R
p×3 of the rest shape at each element, which now replace the role of the

vertex positions. That is, the subspace coordinates are given by the entries of k ′ trans-

formations matrices A j ∈ R
3×4, from which we get new constraint projections via the

transformations

p̂i =
∑

j

w
j

i
A j

(

pi

1

)

, (3.14)



3.D. COMPARISON TO SIMPLIFICATION SCHEMES

3

101

where

(

pi

1

)

is simply the (p +1)×3 matrix formed by attaching a row of ones to pi . Let

pi =







px,0
i

p
y,0

i
pz,0

i
· · ·

p
x,p−1

i
p

y,p−1

i
p

z,p−1

i






(3.15)

Then the subspace matrix V is defined as follows:

V j =















px,0
0 ·w

j
0 p

y,0
0 ·w

j
0 pz,0

0 ·w
j
0 w

j
0

· · ·
p

x,p−1
0 ·w

j
0 p

y,p−1
0 ·w

j
0 p

z,p−1
0 ·w

j
0 w

j
0

px,0
1 ·w

j
1 p

y,0
1 ·w

j
1 pz,0

1 ·w
j
1 w

j
1

· · ·















(3.16)

V =
(

V1 | · · · | V′
k

)

(3.17)

That is, V ∈R
ep×4k ′

, where e is the number of elements associated to the constraint pro-

jections, p is the size of the constraints and k ′ was the chosen number of handles. Then,

we can write the transformations (3.14) as





p̂0

· · ·
p̂e



= V





AT
0

· · ·
AT

k ′−1



 (3.18)

3.D. COMPARISON TO SIMPLIFICATION SCHEMES

In the following we want to highlight the difference of our hyper reduction scheme to an

approach in which the mesh is simplified, fully simulated and then the deformation is

mapped to the original mesh using an up-sampling matrix.

Specifically, we simplify the surface of the original mesh using an algorithm similar

to the method by [70], implemented such that all vertices of the simplified mesh lie on

vertices of the original mesh. Using this correspondence, we create a matrix that maps

displacements of the vertices of the simplified mesh to displacements of the vertices of

the original mesh. There are many options to choose this matrix, and we found that

no choice fixes the problems that we will address below. For the following experiment,

as an upsampling matrix, we use the base matrix of our subspace construction, using

the vertices of the simplified mesh as the samples on the original mesh from which the

weights are computed (as described above, they are in direct correspondence). Note that

we cannot add rotational degrees of freedom, since these are unknowns that cannot be

determined from the vertex positions of the simplified mesh directly. This means, that

the position of each vertex on the original mesh is a weighted combination of the posi-

tions of the vertices of the simplified mesh, where the weights are based on proximity to

those samples.

In Figure 3.7, we show frames of the simulations using our hyper-reduction scheme

and the simplification scheme described above. For our method, we use the parame-

ters listed in Table 3.1 for the squid mesh. To make the comparison as fair as possible,



3

102 REFERENCES

we used the same number of degrees of freedom for both our method and the method

described above. That is, we simplify the surface mesh, such that the tetrahedralized

version has 720 vertices (and 1490 tetrahedrons). This results in both methods having

almost identical computation timings per iteration: Our method has some overhead

compared to a full simulation on the same number of degrees of freedom due to solv-

ing the fitting problem (9), while the simulation on the simplified mesh has to evaluate

significantly more constraint projections (1490 as opposed to 1000 for our method).

The experiment clearly demonstrates the issues with approaches that rely on mesh

simplification. Firstly, the up-sampled results of the simulation on the simplified mesh

suffer from strong linearization artifacts. Since no rotational degrees of freedom are

solved for, and are thus unavailable, the linear relationship between the vertices of the

simplified mesh and the original mesh becomes obvious. In contrast, we carefully choose

degrees of freedom that can capture both local and global rotations and translations and

solve the variational problem directly in these coordinates. This leads to an optimal so-

lution to the equations of motion within the subspace, as opposed to an approximation

that relies on a simulation on a simplified mesh. Secondly, all details that are no longer

visible or well represented in the simplified mesh, will not be part of the simulation and

do not show any elastic behavior. Instead they are simply displayed as stiff extensions of

the rough features still visible on the simplified mesh. This is a fundamental difference

to our approach of approximating the dynamics of the original mesh via the proposed

constraint projections fitting method. This can be seen when closely the smaller features

of the squid mesh that still show individual and elastic dynamics in our hyper reduced

simulation.

Note, that our subspace construction is might not be the best suited method to gen-

erate a matrix for the up-sampling of vertex displacements and other approaches can

yield better results. One problem of our approach is that we use the same support radius

for the influence of each vertex of the simplified mesh. Therefore it is difficult to find

a good trade-off between local influence and global coverage of the weights. The con-

struction of a good up-sampling matrix is not trivial and not the goal of our approach.

Moreover, the issues addressed above will hold for any type of linear up-sampling ap-

proach: detail that is not available on the simplified mesh can never take part in the

reduced dynamics and a linear up-sampling approach can never be artifact free.
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Figure 3.7: Top: The original squid mesh with the edges and vertices of the simplified mesh embedded. Bot-

tom: Frames of the simulation using our hyper reduced scheme (left) and of the simulation using the simplified

mesh, up-sampled to the vertices of the original mesh (right).





4
GEOMETRIC FLOWS OF CURVES IN

SHAPE SPACE

This chapter is based on the publication Geometric Flows of Curves in Shape Space for

Processing Motion of Deformable Objects by Christopher Brandt, Christoph von Tycowicz

and Klaus Hildebrandt, published in Computer Graphics Forum in 2016.

4.1. OVERVIEW

Many problems in geometric modeling and more generally in graphics are dealing with

deformable, flexible or non-rigid shapes. The idea of geometric modeling in shape space,

introduced by Kilian et al. [1], is to equip the manifold of shapes relevant for a problem

with a Riemannian metric and to use the resulting geometric structure on such a shape

space for modeling tasks. A Riemannian metric on a shape space provides a quantita-

tive measure for the deformation of shapes and concepts from Riemannian geometry,

like the Riemannian exponential map and parallel transport, have been applied for de-

signing powerful tools for modeling tasks such as shape deformation and interpolation,

shape space exploration, deformation transfer, shape correspondences, and the design

of measures of shape similarity. Due to the non-linear nature of shape spaces, geometric

modeling in shape space leads to high-dimensional non-linear problems that have to be

solved. For example, evaluating the distance between two shapes requires computing a

geodesic in shape space. Therefore, efficient solvers for these optimization problems are

of central importance.

The main contributions of this chapter are twofold. The first contribution is a novel

approach for processing motion and animations of non-rigid shapes. We regard se-

quences of deformations of shapes as curves in shape space and use the geometric struc-

ture on shape spaces to transfer concepts from curve processing in R
n to the processing

of motion of deformable shapes. Following this principle, we introduce a geometric flow

for curves in a shape space of meshes. The flow smooths a curve by decreasing its length

in shape space. Our analysis of the flow shows that the limits are discrete geodesics in
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shape space (as defined in [2]). The definition of the flow involves elastic shape averag-

ing. In every iteration, every shape of the curve is replaced by a weighted average shape

of the shape itself and its predecessor and successor. Since the limits are geodesics, the

flow establishes a connection between shape averaging (or interpolation) and geodesics

in shape space.

Based on the flow, we devise a scheme for the fairing of curves in shape space. The

fairing scheme shortens the (shape space) length of the curve and thereby decreases the

energy stored in the deformations between consecutive shapes. This means that the

scheme is using knowledge of how elastic objects deform to faithfully filter the motion.

For example, artifacts, like shrinkage of parts of an object, are avoided because the for-

mation of such artifacts would require additional deformation energy. As of yet, no other

temporal filter for mesh sequences with such properties has been introduced. We apply

the scheme for removing jittering artifacts in motion capture data and for smoothing

non-differentiable transitions that occur when concatenating different motions of an

object.

The second main contribution is a model reduction approach for the efficient com-

putation the flow. After a preprocess, the scheme has a computational cost that is inde-

pendent of the (spatial) resolution of the meshes to be processed. Since the processing

of sequences of meshes results in high-dimensional optimization problems, this method

is essential for an efficient processing of curves in shape space. Moreover, the scheme

provides a novel algorithm for the computation of geodesics in shape space. Compared

to timings reported in previous work, this algorithm significantly accelerates the com-

putation. Additionally, it allows for computing geodesics with much higher temporal

resolution than previous approaches, which is due to the fact that our scheme performs

only local operations in the temporal domain and the dimensional reduction in the spa-

tial domain. Our experiments indicate that the combination of spatial reduction and

higher temporal resolution yields a better approximation of the continuous geodesics.

We use the fast computation of geodesics for constructing nonlinear “Bézier curves”

in shape space that are controlled by sets of poses. The curves are generated by applying

de Casteljau’s algorithm in shape space. This example follows the construction of Bézier

curves in shape spaces of images that was recently introduced by Effland et al. [3].

Using Riemannian geometry on shape spaces for geometric modeling tasks is a pow-

erful concept. Crucial for these methods is the efficient computation of geodesics. We

are convinced that the proposed reduced-order method (as it allows for faster compu-

tation and for higher spatial and temporal resolutions) is a step forward in this develop-

ment.

4.2. RELATED WORK

Riemannian metrics on shape spaces of curves proved to be effective for various prob-

lems in Computer Vision. We refer to the textbook of Younes [4] for an in-depth discus-

sion.

Riemannian metrics on the shape space of triangular surface meshes (with a fixed

connectivity) have been introduced by Kilian et al. [1]. These metrics measure the

stretching of the edges of the triangles, hence, the metric distortion of the surface. Heeren

et al. [2, 5] propose a metric that in addition to the metric distortion measures the change
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earized deformation models, like Poisson reconstruction [13, 14] and linear rotation in-

variant coordinates [15], or on non-linear deformation models [16–20]. Linearized de-

formation models are limited to small deformations, see [21] for a detailed discussion.

Fast approximation algorithms for the shape interpolation problem have been proposed.

Fröhlich and Botsch [18] use a combination of mesh coarsening and deformation-transfer

to avoid solving the shape interpolation problem for the fully-resolved surfaces. A model

reduction approach that yields real-time computation times for shape interpolation has

recently been introduced by von Tycowicz et al. [20]. Compared to the Riemannian struc-

ture on the shape space, shape interpolation is a simpler concept. For example, elastic

shape averaging does not lead to a distance measure that satisfies the triangle inequal-

ity [22]. A comparison of results of shape interpolation techniques and geodesics can

be found in Section 4.7. Since our discrete flow is based on shape interpolation and

has geodesics in shape space as its limits, this chapter establishes a connection between

shape interpolation and geodesics, which were separate concepts before.

Smoothing filters for mesh sequences are typically applied directly to the trajectories

of the individual vertices. Vlasic et al. [23] use bilateral filter in the temporal domain for

each of the vertex trajectories. Li et al. [24] smooth the frames of an animation using a

mix of constraints from points on the current, next and previous frames. These filters

smooth the motions of the individual vertices, but neglect the shape formed by the set

of vertices. Thus they are unable to prevent unnatural deformations of the shape. An

example is shown in Section 4.7.

Related to shape interpolation and geodesics in shape space is the problem of keyframe

interpolation in computer animation. The spacetime constraints paradigm, introduced

by Witkin and Kass [25], provides a variational framework for physically-based keyframe

interpolation. The goal is to help animators in creating plausible motion by combining

physical simulation with keyframe interpolation. Spacetime optimization of the motion

of deformable objects has been consider in [26, 27]. Recently, schemes for interactive

editing of simulations and animations [28, 29] and for creating motion using sets of par-

tial keyframes [30] have been proposed.

4.3. BACKGROUND: DEFORMATION ENERGIES AND SHAPE AV-

ERAGING

In this section, we briefly introduce deformation energies and the elastic shape averag-

ing. Our presentation restricts to the discrete case. For an introduction to elasticity, we

refer to [31] and for a background on elastic shape averaging to [20, 32].

Discrete deformation energies We consider a deformable object consisting of a hyper-

elastic material. A material is elastic if the (inner) forces acting on the object depend only

on the current configuration and are independent of the deformation path and speed.

This means that the forces can be described by a vector field on the space of configu-

rations of the object. The material is hyperelastic if this field is conservative. Then, the

function whose negative gradient equals the force field, is the deformation energy. This

function is only determined up to a constant. The constant is chosen such that the neu-

tral configuration stores no deformation energy.
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In this chapter, we restrict our attention to the discrete setting and consider triangle

meshes for representing elastic shells and tetrahedral meshes for elastic solids. After the

choice of materials and a discretization, the discrete deformation energy is a function

E : Rn ×R
n →R≥0.

Here n is the number of degrees of freedom of the discrete object. In our setting, we

keep the connectivity of the meshes fixed and n is three times the number of vertices.

The first entry specifies the neutral configuration and the second the deformed configu-

ration. The value E(x̄, x) measures the energy stored in the deformable object when it is

deformed from the neutral configuration x̄ to the configuration x. In our experiments,

we are using Discrete Shells [33]. However, other deformation energies like PriMo [34],

As-Rigid-As-Possible [35, 36], or finite elements discretizations of elastic solids or shells

could be used as well.

Elastic shape averaging We consider a set ofµ+1 example configurations {y0, y1, ..., yµ}

and positive weights {ω0,ω1, ...,ωµ}. Elastic shape averaging, introduced by Rumpf and

Wirth [32], provides a way to compute weighted averages of the examples. The weighted

average shape is defined as the configuration that minimizes the weighted sum of the

energies E(yi , y) and E(y, yi )

A(ω0, y0, ...,ωµ, yµ) = argmin
y∈Rn

µ
∑

i=0

ωi

(

E(yi , y)+E(y, yi )
)

. (4.1)

This is a non-linear and elasticity-based approach for shape averaging that has a num-

ber of desirable properties. For example, the scheme can deal with larger deformations

and the weighted average shape does not change if the example shapes are rigidly trans-

formed.

4.4. DISCRETE CURVE FLOW IN SHAPE SPACE

In this section, we introduce a curve smoothing flow in shape space and discuss its ap-

plication to the fairing of curves in shape space.

Curve smoothing flow in shape space We consider a discrete curve in shape space

given by a sequence of m+1 configurations (x0, x1, ..., xm). The curve can either be closed

or have a boundary. In the latter case, we fix the first and last configurations. In the case

of a closed curve, the indices are to be read modulo m +1.

The discrete curve smoothing flow is defined by the iterative procedure

x0
i = xi

xk+1
i = A(

τ

2
, xk

i−1,1−τ, xk
i ,

τ

2
, xk

i+1). (4.2)

The parameter τ ∈ (0,1] controls the size of the steps. It can be a fixed value or varied

in every step. As we will discuss in the next section, controlling the stepwidth allows to

guarantee that every step decreases an energy whose minimizers are discrete geodesics
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in shape space. In every iteration, the flow deforms every shape of the curve towards an

average of the shape itself and its two neighbors and thereby smoothes the deformations

between successive shapes of the curve.

Curve fairing in shape space The smoothing flow combines two smoothing effects. It

decreases the (shape space) length of the curve (this is discussed in the following sec-

tion) and it regularizes the parametrization by equalizing the lengths of the individual

segments. Decreasing the shape space length smoothes the curve in a way that avoids

the formation of artifacts (like linearization artifacts or shrinkage of parts of the shape)

because this would require additional deformation energy and hence make the curve

longer. For example, the limit of a closed curve is a static “mean” shape (Figure 4.2 il-

lustrates this). The second effect means that the curves evolve towards a more uniform

motion in which the deformations between successive shapes store the same amount

of energy. If this effect is not desired, it can be reduced by altering the weights for the

shapes xk
i−1

and xk
i+1

in (4.2). For example, one can use the weigths

τ li−1

li−1 + li
and

τ li

li−1 + li

where li =
p

E(xi , xi+1), in order to better preserve the original proportions of the energy

stored in the deformations between successive shapes.

4.5. ANALYSIS OF THE FLOW AND THE COMPUTATION OF GEODESICS

In this section, we analyze the relation of the smoothing flow and geodesics in shape

space. First, we show that the stationary points of the flow are discrete geodesics. Then,

we prove that the flow decreases an energy whose minimizers are discrete geodesics (as

defined in [2]). As a consequence, the discrete flow can be used for the computation of

discrete geodesics.

Stationary points of the flow As a first step, we characterize the stationary points of

the flow in the following lemma. By ∂1E(x, y) and ∂2E(x, y) we denote the derivatives of

the energy E with respect to the first and the second argument.

Lemma 3 A stationary point (x0, x1, ..., xm) of the discrete flow (4.2) satisfies

∂1E(xi , xi−1)+∂2E(xi−1, xi )+∂1E(xi , xi+1)+∂2E(xi+1, xi ) = 0 (4.3)

for all interior shapes xi .

Proof. Assume (x0, x1, ..., xm) is a stationary curve. This means

xi = A(
τ

2
, xi−1,1−τ, xi ,

τ

2
, xi+1)

for all (interior) i . Using (4.1), we see that xi has to satisfy

τ

2
(∂1E(xi , xi−1)+∂2E(xi−1, xi ))+ (1−τ) (∂1E(xi , xi )+∂2E(xi , xi ))

+
τ

2
(∂1E(xi , xi+1)+∂2E(xi+1, xi )) = 0.
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This implies (4.3) since E(x, x) = 0 for all configurations x. ä

Limits are discrete geodesics in shape space Different Riemannian metrics on the

spaces of shapes have been defined. We consider the physically-based metric introduced

by Heeren et al. [2]. It uses viscous dissipation required to deform physical objects for

measuring the distance of shapes. After a spatial discretization (which is the setting con-

sidered here) the discrete geodesics (x0, x1, ..., xm) are defined as the minimizers of the

functional
m
∑

i=1

(E(xi−1, xi )+E(xi , xi−1)) (4.4)

for fixed configurations x0 and xm and with respect to variations of the other configura-

tions xi . The relation of the energy (4.4) to the Riemannian distance on the (continuous)

shape space is that E(xi , xi+1) is a second-order approximation of the squared Rieman-

nian distance between xi and xi+1, see [2]. The Euler-Lagrange equation satisfied by the

minimizers of (4.4) is exactly equation (4.3), which is satisfied by the stationary points of

the discrete flow.

This shows that discrete geodesics are stationary points of the flow. However, this

does (in general) not guarantee that curves evolve towards geodesics. The following

lemma shows that for every configuration of the curve, a small enough step of the flow

decreases the energy (4.4). As a consequence, if we control the stepwidth, the limits of

the flow are discrete geodesics in shape space.

Lemma 4 For any non-stationary curve (x0, x1, ..., xm) and small enough τ > 0, an itera-

tion of the flow (4.2) decreases the energy (4.4).

Proof. Let us consider τ as a variable and denote the next iterate by (x+
0 (τ), x+

1 (τ), ..., x+
m(τ)).

To prove the claim, we show that the derivative

∂

∂τ
(x+

0 (τ), x+
1 (τ), ..., x+

m(τ)) (4.5)

at τ = 0 points into a descent direction of the energy (4.4). From the definition of the

flow, (4.2), it follows that (x+
0 (τ), x+

1 (τ), ..., x+
m(τ)) satisfies

τ

2
(∂1E(x+

i (τ), xi−1)+∂2E(xi−1, x+
i (τ)))+ (1−τ)(∂1E(x+

i (τ), xi ) (4.6)

+∂2E(xi , x+
i (τ)))+

τ

2
(∂1E(x+

i (τ), xi+1)+∂2E(xi+1, x+
i (τ))) = 0

We use these equations as an implicit function that determines x+
i

(τ). To compute (4.5),

we need the derivatives of the left-hand side of (4.6) at τ = 0 with respect to τ and x+
i

.

The former is

1

2
(∂1E(x+

i (0), xi−1)+∂2E(xi−1, x+
i (0)) (4.7)

+∂1E(x+
i (0), xi+1)+∂2E(xi+1, x+

i (0)))

and the latter is

∂1∂1E(x+
i (0), xi )+∂2∂2E(xi , x+

i (0)). (4.8)
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The configuration x+
i

(0) equals xi . Plugging this into (4.7) and (4.8), we see that (4.7) is

the gradient direction of (4.4) at xi . Furthermore, the matrices ∂1∂1E(xi , xi ) and ∂2∂2E(xi , xi )

are positive definite (modulo rigid transformation of the shape) because E(xi , xi ) is a

minimum of E for variations of the first and of the second argument. This implies that

(4.8) is positive definite. The implicit function theorem implies that the derivatives in

(4.5) satisfy

(∂1∂1E(xi , xi )+∂2∂2E(xi , xi ))
∂

∂τ
x+

i (0) (4.9)

=
1

2
(∂1E(xi , xi−1)+∂2E(xi−1, xi )+∂1E(xi , xi+1)+∂2E(xi+1, xi )) .

Since the right-hand side is the gradient direction of (4.4) and the matrix ∂1∂1E(xi , xi )+
∂2∂2E(xi , xi ) on the left-hand side is positive definite, ∂

∂τ x+
i

(0) points into a descent di-

rection of (4.4). This implies that for small enough τ an iteration of the flow will decrease

the energy (4.4). ä

4.6. EFFICIENT COMPUTATION OF THE FLOW

Integrating the discrete flow requires solving a number of shape averaging problems.

We use a reduced-order technique for this, which combines dimensional reduction in

the spatial domain and a scheme for the efficient evaluation of the reduced deforma-

tion energy and its gradient. Before we introduce the reduction strategy, we first discuss

an asymmetry in the elastic potential and its effect on the definitions of elastic shape

averaging and geodesics in shape space.

Remark on shape averaging and geodesics The elastic potentials are not symmetric

in their two arguments, i.e. in general we have E(x, y) 6= E(y, x). This means the energy

stored in an object with rest shape y that is deformed into configuration x is not the same

as the energy stored in an object with rest shape x that is deformed into configuration

y . Because of this asymmetry, we have defined the elastic shape averaging using both

terms E(y, yi ) and E(yi , y) in (4.1). As an alternative, one can use only one of the terms

to define the averaging. For example, in [20, 32] only the terms E(yi , y) are used. Then

the averaging is

A(ω0, y0, ...,ωµ, yµ) = argmin
y∈Rn

µ
∑

i=0

ωi E(yi , y). (4.10)

In the same spirit, we define the geodesics in shape space using E(xi−1, xi ) and E(xi , xi−1)

in (4.4). In [2], only the terms E(xi−1, xi ) were used to define geodesics. This introduces a

slight asymmetry in the definition. The discrete geodesic from shape x to y is not exactly

the same as that from shape y to x. However, the difference is small and reduces with

temporal refinement of the geodesic.

We have used the symmetric definitions involving both of the energy terms for shape

averaging and geodesics in shape space in Sections 4.4 and 4.5 because in this case the

connection between averaging and geodesics in shape space established by the pro-

posed discrete smoothing flow is exact. The geodesics are exactly the limits of the flow.

This makes the presentation simpler and easier accessible.
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In our experiments, we have not noticed significant differences between the results

obtained with the different definitions, which matches the observations reported in [32].

Experiments concerning the issue can be found in Table 4.2 in Section 4.7. The compu-

tation, of course, is faster if only one of the energy terms is used. Therefore, we used

(4.10) for shape averaging in most of our experiments.

Dimensional reduction For the dimensional reduction, we are restricting the varia-

tions of every shape to a low-dimensional affine subspace of Rn . We have used two sub-

space constructions for our experiments. If the input is a curve in shape space, a good

candidate is the affine span of all shapes of the curve. This space can be represented as

a linear space attached to one of the shapes. To further reduce the dimension, we select

one shape xσ and compute a principle component analysis (PCA) of the displacement

vectors to all other shapes. The new affine space is the d-dimensional linear subspace

spanned by the left singular vectors (of the matrix formed by the displacement vectors)

with the highest singular value attached to xσ. This affine space does not contain all

shapes anymore. Therefore, we use for every shape xi the affine span of this space and

the vector representing xi itself. To represent these spaces, we only need to store one

subspace basis, which is augmented with the missing vector (the difference of the shape

xi and xσ) for each shape at runtime. The additional vectors can be orthonormalized

against the basis in the preprocess.

If the curve to be processed is very coarse, e.g. less than 20 frames, using on the affine

span of the shapes would provide enough flexibility. In such a case, we use the flow tan-

gent directions, ∂
∂τ x+

i
(0) in equation (4.9) for every shape as an additional input for con-

structing the space. In the case, that only two shapes x and y are given and we want

to compute a geodesic joining them, we follow the subspace construction in [20]. The

starting point is the affine space spanned by the two shapes. This space is enriched with

additional vectors. First, two vectors, v1 and v2, obtained from linearizing the deforma-

tion from x to y and from y to x are computed. Then, further vectors are generated using

a Krylov sequences that involves the Hessians of the elastic potentials, the mass matrices

and v1 and v2. For details, we refer to the original work.

Energy and force approximation In addition to dimensional reduction, we are using

a scheme for the efficient approximation of the reduced energy and force. Since we are

working in a reduced space, the deformations of the individual vertices are correlated.

The approximation schemes aim at exploiting this structure. Different schemes have

been proposed in the literature.

We adapt the mesh coarsening technique introduced in [37] to our setting. The idea

is to create a coarse mesh and a subspace V̄ for the coarse mesh that is isomorphic to the

subspace V for the fine mesh. To approximate the energy at a point in V , the energy of

the coarse mesh at the corresponding point in V̄ is evaluated. To evaluate the gradient of

the energy, the gradient of the coarse mesh is projected onto V̄ . The corresponding vec-

tor in V is the vector that has the same reduced coordinates (however this vector is not

explicitly computed, as we only work with the reduced coordinates). Explicitly, we use

an edge-collapse scheme to generate a coarse version x̄σ of the selected shape xσ. Edge-

collapse schemes implicitly generate a map from the vertices of the fine to the vertices
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Table 4.1: Data for the experiments. |V | = size of subspace, Ts = seconds per step on average, Tp = seconds for

precomputation, ∗: flow with restoring force.

Animation #verts. #verts. ghost #shapes |V | #steps Ts Tp

Twisting Block 450 (not used) 6 24 10 0.26 3.44

Bending Block 450 (not used) 155 20 10/50/200 1.02 0.16

Centaur 15768 1252 138 15 50 2.13 12.08

Finger Geodesic (short) 2046 (not used) 5 14 214 0.03 3.51

Finger Geodesic (long) 2046 1252 81 7 115 0.17 3.48

Elephant Geodesic 39969 1246 256 14 270 1.09 82.18

Hand Linear Artifacts 6094 1252 49 14 100 0.92/0.94∗ 0.56

Hand Temporal Noise 6094 1252 49 14 100 0.91/0.94∗ 0.54

Motion Capture 2502 1252 91 20 50 1.81 0.34

of the coarse mesh, see [37] for details. We use this map to get subspace basis vectors for

the coarse mesh.

An alternative approach for reduced force approximation is the optimized cubature

[38, 39]. A second alternative is polynomial restriction [40], which allows for exact eval-

uation of a finite elements discretization of St. Venant–Kirchhoff materials for elastic

solids at costs depending only on the subspace dimension. By combining the dimen-

sional reduction and the reduced energy and force approximation, we obtain a compu-

tational cost for the integration of the flow that is independent of the resolution of the

meshes.

Solving the reduced problem To solve the reduced problems, we use the BFGS scheme

(see [41]). This is a quasi-Newton scheme that maintains an approximation of the in-

verse Hessian of the objective functional. Approximating the inverse Hessian avoids

costly solving of a linear system to get the Newton direction. It is efficient to initialize

the BFGS scheme with an inverse Hessian approximation to get a warm start. In the pre-

process, we once compute the inverse Hessian (of the energy of the ghost mesh) of the

mean shape of the predecessor and successor (on the initial curve) for every shape.

For the computation of the geodesic between two shapes, we use a coarse-to-fine

strategy in the temporal domain. Starting with the two boundary shapes, we perform

a two-step procedure. First the temporal domain is refined by inserting a fixed num-

ber (two or three in our experiments) of new shapes between every pair of successive

shapes xi and xi+1. These shapes are initialized as interpolating shapes between xi and

xi+1. Secondly, the geometric flow (4.2) is iterated until the squared norm of the reduced

gradient of (4.4) is below 1−8 times the degrees of freedom.

4.7. APPLICATIONS AND EXPERIMENTS

Details of the experiments conducted in this chapter and computation times are shown

in Table 4.1. The implementation was done in Java and the experiments were performed

on a custom laptop (Intel Core i7-4600U, 2.1GHz). The precomputation times shown

in the table (Tp ) include the construction of the subspace, the initialization of the de-

formation energies and the initialization of the minimizer (computing initial Hessian

approximations as a warm start for the BFGS minimizer). The precomputation time is
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Figure 4.2: A periodic curve evolves to a constant curve. Top: Original sequence, middle: after 1 smoothing

step, bottom: after 10 smoothing steps.

significantly lower when the subspace can be constructed from a PCA on the shapes of

the input curve, and not via the more involved subspace construction from [20]. For our

experiments, we used the Discrete Shells energy [33] as the elastic energy E , where we

set the parameters to kB = 1 and kL = kA = 1/2 (following the notation from that paper).

Basic examples The twisting block sequence (Figure 4.2) is meant as a simple demon-

stration of how a periodic sequence converges to a single point (or constant curve) when

we perform several smoothing steps, akin to the contraction of closed curves to single

points under the curve shortening flow. Since the original sequence consists of few

shapes, the limit is reached after a few iterations (explicitly after 10 iterations with τ =
0.6).

We demonstrate the ability of our smoothing technique to get rid of sudden jumps in

the object’s velocity (i.e. C 1-discontinuities in the temporal domain): the bending block

sequence shows a block starting from a bent-over position, getting into an upright po-

sition and back into a bent-over position, this time bending to a different direction (cf.

Figure 4.3). The animation has a visible jump in the velocity around the frame where the

block stands upright, since there is a sudden change in the direction of the motion. Ap-

plying smoothing steps to this animation leads to a smoother motion: the block does not
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Figure 4.6: Plot of the squared curve length (blue) and size of the gradient of functional (4.4) (orange) while

smoothing a sequence of 12 elephant shapes (initialized as the interpolation curve). The x-axis denotes the

number of smoothing iterations in both plots.

Figure 4.7: Plot of the length of the bending block geodesic (y-axis) with a varying number of intermediate

shapes (x-axis).

low for computing discrete geodesics with finer time discretizations: the finger geodesic

on 64 shapes leads to a computation time of 19.55s, the elephant geodesic (cf. Figure

4.1) on 256 shapes (40k vertices per shape) leads to a computation time of 376s.

To demonstrate the convergence of our flow to a geodesic, we plot the squared length

of the curve and the length of the gradient of functional (4.4) in Figure 4.6 for the compu-

tation of the elephant geodesic on 100 shapes, where we initialize the geodesic with 100

interpolation shapes right away (instead of using the adaptive scheme). The plot shows

that the length of the curve decreases monotonically.

While the loss of precision due to model reduction is very low, we actually gain accu-

racy by being able to compute discrete geodesics with more shapes. In Figure 4.7, we plot

the length of the geodesic between the bent over and upright block on a varying number

of shapes. The plot demonstrates that the length differs significantly when comparing

a geodesic with 10 to a geodesic with 100 shapes. This shows the benefit of computing

geodesics on many shapes.
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Figure 4.9: Applying our flow to animations exhibiting artifacts can remove them: An animation that con-

tains frames with strong artifacts (left, visible on the fingers). After smoothing the animation, the shape looks

artifact-free again, while the motion is kept intact due to the restoring force.

that is, in addition to the current shape and its neighbors, we take the original shape

into the local averaging processes. The parameter ρ ∈ [0,1] controls the strength of the

restoring force. The restoring force can be used for all shapes of the curve or just for

some selected shapes.

With this force, the animation is denoised, while articulation of the motion remains

intact. We perform a similar experiment with an animation obtained by linear blending

of a coarse set of keyframes (cf. Figure 4.9). By adding a restoring force to the keyframes,

we are able to remove the linear-blending artifacts, while keeping the overall motion

intact.

In addition, we tested our method on motion capturing data from Gall et al. [42],

which exhibits temporal and spatial noise. Again, using our smoothing technique with

restoring force, we are able to acquire a smooth animation, which at the same time keeps

its main characteristics. An advantage of using our smoothing flow to denoise motion

capturing data is that each smoothing step regularizes the motion of the whole mesh

instead of individual vertex positions. This implies that unwanted deformations and

artifacts due to strong noise can be filtered without smoothing the mesh itself.

Averaging operators As discussed in Section 4.6, we used the formulation (4.10) of the

shape averaging in most of our experiments to enhance computation speed. We observe

that the choice of the operator used for shape averaging, (4.1) or (4.10), does not lead to

significantly different geodesics. Table 4.2 shows the results of an experiment performed

in this regard: We computed three different geodesics using both formulations (4.1) and
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Figure 4.10: A frame of the smoothed centaur sequence. Left: Our technique. Right: bilateral filtering of the

vertex trajectories [23], where the head appears to be shrunken.

elements are rotated by more than 180 degrees. Also, linear interpolation of the vertex

positions leads to strong artifacts, even for very small deformations.

Comparison to other smoothing and denoising techniques Temporal filtering of the

vertex positions, as proposed in [23], also leads to a smoother motion, but since a lot of

filtering is required, the shape undergoes unnatural deformations, similar to lineariza-

tion artifacts, as can be seen in Figure 4.10.

4.8. CONCLUSION

In this chapter, we are proposing techniques for the processing of curves in shape space.

In particular, we introduce a discrete geometric flow for curves in shape space. The flow

iteratively computes local weighted average shapes and thereby decrease the magnitude

of the deformation between consecutive shapes of the curve. Based on the flow, we de-

sign a novel type of smoothing filter for motions and animations of shapes. In contrast

to previous work, the filter only smoothes the deformations between the shapes and

thereby minimizes the distortion of the shapes themselves. One application of this filter

is the smoothing of motions and animations of objects. We use the filter for reducing jit-

tering artifacts in motion captured data and for smoothing transitions that appear when

different motions are concatenated.

Our analysis shows that the flow converges to geodesics in shape space. To com-

pute the flow, we propose a reduced-order scheme that combines a dimensional reduc-

tion with a scheme for reduced energy and force approximation. The approach signifi-

cantly accelerates the computation of geodesics in shape space. In addition, it allows for

finer temporal discretizations, which improves the approximation quality. We think that

these two benefits are important for an effective processing of curves in shape space.

We demonstrate results obtained with our scheme for the computation of geodesics that

blend between two shapes as well as the computation of nonlinear “Bézier curves” in

shape space that are controlled by a coarse polygon in shape space.
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Future work We introduce techniques for the processing of curves in shape space. We

think that this is a promising direction for processing motion and animation and we

expect to see more algorithms that transfer techniques from the processing of curves in

R
n to curves in shape space. For example, analogous to the example of De Casteljau’s

algorithm, curve subdivision schemes like corner cutting could be transferred to shape

space. Another example is the fairing of curves in shape space. The proposed smoothing

filter is the first of this kind and we expect that more filtering techniques for curves in

Euclidean space will be transferred to filters for motion and animation of deformable

shapes.

Furthermore, we think that reduced-order modeling has a great potential for ge-

ometry processing in shape space and other applications using Riemannian metrics on

shape spaces. Fast approximation algorithms for shape space computations can be de-

signed and larger data sets can be processed.

With a growing market for devices which are able to directly capture deforming ge-

ometry, processing of motion and animation becomes more and more important. The

concept of curves in shape space provides powerful and theoretical sound tools for pro-

cessing this data (in particular for template-based approaches).
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5
COMPRESSED VIBRATION MODES

OF ELASTIC BODIES

This chapter is based on the publication Compressed Vibration Modes for Elastic Bodies

by Christopher Brandt and Klaus Hildebrandt, published in Computer Aided Geometric

Design in 2017.

5.1. OVERVIEW

Vibration modes and their frequencies are fundamental for analyzing and simulating

the dynamics of physical objects. For example, the modes can be used as a basis for

model reduction approaches. In this chapter, we introduce an approach for the com-

pression and localization of vibration modes of elastic bodies. The compressed vibra-

tion modes have a localized support while preserving properties of the natural vibration

modes, e.g. they form an orthonormal system in the space of configurations of an elastic

body and the low-frequency modes correspond to low-energy deformations. The degree

of localization can be controlled by a continuous parameter µ.

For applications, such as reduced-order simulations, the localization provides bene-

fits. As such, the introduced basis can be seen as a building block for model order reduc-

tion approaches for the simulation of hyperelastic materials.

The vectors describing the compressed vibration modes of a discrete object are sparse,

which results in less memory requirements for storing a basis and fewer arithmetic op-

erations for adding or scaling the vectors. In our experiments, we used the compressed

vibration modes for reduced-order simulation and deformation-based shape modeling.

A second aspect is that the localization of the vibration modes adds a novel aspect to the

modal analysis of deformable objects. Our experiments illustrate that the compressed

modes localize in a structured way. We see potential in exploring this structure for modal

and shape analysis and using it for applications. As a first step in this direction, we use

the compressed modes for shape segmentation into functional parts.

To define the compressed vibration modes, we first characterize the natural vibra-
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Figure 5.1: The first sixteen compressed vibration modes of an X-shaped mesh (µ= 10). We grouped the same

modes (up to symmetry) for each of the four ’legs’.

tion modes as the minimizers of an optimization problem, then we add a L1 regularizing

term to the objective to enforce compression. The idea of using L1 regularization to lo-

calize modes of variational problems was introduced in [1] and applied to Schrödinger’s

equation. The compressed vibration modes, we introduce, specialize this idea to the

localization of modes of vibration of elastic bodies. There are significant differences in

how we define and compute the compressed modes compared to [1] and other work on

the compression of modes like [2–4]. Whereas they compute all compressed modes in

one optimization, we devise a reformulation of the L1 regularized eigenproblem, which

allows for computing the modes sequentially. This results in computation timings that

scale linearly in the number of modes, whereas previous methods scale superlinearly.

Moreover, to compute the modes, we devise an algorithm for solving the L1 regularized

optimization problem, which involves a convexification of a constraint as well as a lin-

earization of the L1 term. The algorithm allows to stably compute a large number of

modes, as the runtime for each additional mode remains (almost) constant. The shown

experiments demonstrate the benefits of this computational method over the ADMM

method for the computation of compressed modes. An additional point is that our refor-

mulation of the compressed eigenproblem allows for solving the L1 constrained version

of the problem. This formulation has the benefit over the L1 regularized problem that

the L1 norm remains constant for all modes. This aspect has not been treated in prior

work and seems difficult to achieve with prior problem formulations.

5.2. RELATED WORK

Vibration modes Vibration modes are fundamental for describing, analyzing and sim-

ulating the dynamics of objects. The low-frequency vibration modes correspond to low-

energy deformations of an object, which makes spaces spanned by low-frequency vibra-

tion modes attractive for reducing the computational cost of simulations and optimiza-

tions. In recent work in graphics, vibration modes are used for reduced-order models
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for deformation-based editing [5], deformable object simulation [6–9], sound synthe-

sis [10, 11], and spacetime control of animations [12–15]. Besides the dimensional re-

duction of simulations and optimizations, vibration modes are used for the analysis of

objects [16, 17] and the segmentation of objects into functional parts [18]. One drawback

of using vibration modes for dimensional reduction is that the resulting basis vectors are

dense, which can be problematic when a large basis is used or applications, like games,

impose strict limits on the memory available for the reduced simulation. This problem

has been addressed in [19] by applying a data compression scheme for storing the basis

vectors. We present, for the first time, a localization of vibration modes, which allows

for creating bases of low-energy deformations that are sparse. One resulting benefit for

reduced-order methods is a reduced memory requirement.

L1 regularization for eigenvalue problems Compressed modes for variation problems

were introduced by Ozolin, s̆ et al. [1] and used for computing localized bases for Schrö-

dinger’s equation. For the numerical computation of the compressed modes, they used

a splitting orthogonality constraint (SOC) scheme. The approach was extended to the

computation of compactly supported multiresolution bases for the Laplace operator

on planar domains by Ozolin, s̆ et al. [20] and the sparse approximation of differential

operators in the Fourier domain by Mackey et al. [21]. Compressed eigenfunctions of

the Laplace–Beltrami operator of curved surfaces, called compressed manifold modes,

were considered by Neumann et al. [2] and used for mesh segmentation and func-

tional correspondences. For computing the compressed manifolds modes, they pro-

posed a scheme based on the alternating direction method of multipliers (ADMM, [22])

and demonstrated that it outperforms the SOC scheme. Boscaini et al. [3] used the

compressed manifold modes for building class-specific descriptors for non-rigid shapes.

Houston [23] proposed a natural ordering for the compressed manifold modes along

with an adaptation of the algorithm that is reported to significantly reduce the number

of ADMM iterations required in the optimization. Since the definition of compressed

modes includes a unit L2 norm constraint, the feasible set for the optimization is not a

linear space, but a curved manifold. A generic algorithm for L1 regularized minimization

problems over manifolds called the manifold alternating direction method of multipli-

ers (MADMM) was introduced by Kovnatsky et al. [4] and used for the computation of

compressed manifold modes. Concurrent to our work, Bronstein et al. [24] proposed a

discretization of the L1 norm for linear Lagrange finite elements on meshes and an it-

eratively reweighted least-squares scheme for computing compressed manifold modes.

In this chapter, we opt for a different approach for computing the compressed vibra-

tion modes using convexification of the constraints and linearization of the L1 term by

duplication of the variables.

ℓ0 regularized eigenvalue problems Sparsity in finite dimensional eigenvalue prob-

lems can be enforced by regularization with a ℓ0 “norm”, which counts the number of

non-zero entries in a vector. A recent scheme for solving the resulting sparse eigenvalue

problems is the truncated power method introduced by Yuan et al. [25]. In order to com-

pute sparse eigenvectors of a symmetric matrix with less than k non-zero entries, the

matrix is iteratively applied to some initial vector, and subsequently all but the k largest
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absolute values are set to 0. Unfortunately such a simple approach is not suited in our

scenario since we are interested in finding approximations of continuous functions with

localized support, and the ℓ0 “norm” of a vector representing such a function in some

discretization scheme does not measure the size of the support since the mapping be-

tween the function and the vector depends on the underlying mesh. If weights, which

consider the area associated to each vertex, are used to account for the underlying mesh,

the complexity of the problem rises and methods like the truncated power method are

no longer applicable.

L1 regularization for empirical eigenvalue problems Related to the construction of

subspaces using compressed modes is the problem of constructing localized bases that

span a given space of deformations. Meyer et al. [26] considered spaces specified by an

animator’s rig and compute localized, not necessarily orthogonal bases of the rig space

via Varimax rotations. It is demonstrated that the resulting basis vectors localize in a

structured way. Neumann et al. [27] introduced a scheme for compting localized bases

in a spaces of captured facial deformations using a L1 regularized principal component

analysis. In contrast to the approach proposed here, a large sequence of input shapes is

required and no elastic energies are taken into account. As a result, this method reduces

and localizes a set of input deformations, as opposed to producing a new set of previ-

ously unknown deformations based on an analysis of the elastic energy of an object.

Sparsity in geometry processing Sparsity enforcing regularization has also been used

in the context of shape deformation. Gao et al. [28] introduced localization encouraging

deformation energies. Specifically, they modify the As-Rigid-As-Possible energy by re-

placing terms measuring least-squares deviations from the rest configuration by terms

involving p-norms, which, for small p, tends to localize the deformations when using

the modified energy in modeling tasks (i.e. minimizing it under soft or hard constraints).

More examples, where ℓ1 or ℓ0 regularization has been employed for geometry process-

ing tasks, surface smoothing [29] and optimal spline approximation [30, 31]. For a recent

survey on compressed sensing for geometry processing, we refer to [32].

5.3. BACKGROUND: DEFORMATION ENERGIES AND VIBRATION

MODES

In this section, we introduce basic concepts concerning deformation energies and vi-

bration modes. Due to space restrictions, we consider only the discrete setting and the

concepts needed to define the compressed vibration modes in the next section. For more

background on elasticity and finite element discretization, we refer to the textbook [33].

In the following, we will deal with triangle surface meshes and tetrahedral volume

meshes with fixed connectivity M = (V ,E ,F ,T ) (vertices, edges, faces and, in case of

tetrahedral meshes, tetrahedrons) and initial vertex positions given by a vector x ∈R
3|V |.

We refer to the mesh with these vertex positions as the rest configuration. We express a

deformation of the mesh via a vector u ∈ R
3|V |, which stacks the displacements of each

vertex in world coordinates.
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respect to displacements of the object, i.e. Hi j = ∂2

∂ui ∂u j
EM ,x(0). At the rest configura-

tion, the Hessian is a symmetric and positive semi-definite matrix. The vibration modes

are the eigenvectors and the frequencies are the square roots of the eigenvalues of the

generalized eigenvalue problem

Hui =λi Mui . (5.3)

The problem can be re-written as the following sequence of optimization problems:

ui :=
{

argminu uT Hu

subject to uT Mu = 1 and ∀ j < i : uT Mu j = 0

We will use this definition as the starting point for defining the compressed vibration

modes.

5.4. COMPRESSED VIBRATION MODES

Vibration modes are in general global and thus a displacement in direction of any mode

deforms the whole object. Since reduced order methods need to store the whole sub-

space basis, this is a drawback for applications imposing strict bounds on the memory

requirements, e.g. when the GPU memory is shared for different computational tasks

(Games or VR) or larger bases or bases for multiple objects are needed (real-time sim-

ulation). Moreover, we found that localized deformations are interesting and natural

quantities of the mesh: they localize in a structured way and thus give a useful tool for

analyzing the mesh and exploring the space of deformations. Thus, we aim at finding

a sparse, i.e. localized basis for deformations of a mesh, which represent a trade-off be-

tween optimality w.r.t. the deformation energy EM ,x and sparsity, i.e. few non-zero en-

tries per vector.

(a) From left to right µ= 0,64,128,256,

512,2048,8192. For all but µ= 0,

the shown mode was one of the first

four modes.

(b) The first eight sparse eigenmodes with constant µ= 256.

Figure 5.3: Compressed vibration modes of a tetrahedral bar mesh.

To this end, we define the compressed modes as solutions ui of the following se-

quence of optimization problems:

ui :=
{

argminu uT Hu+µ‖u‖1

subject to uT Mu = 1 and ∀ j < i : uT Mu j = 0
(5.4)

Note that this is a direct extension of the iterative definition for natural vibration modes

as given above, with the addition of a sparsity regularizer: the term µ‖u‖1 represents a
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trade-off between minimizing the elastic energy introduced by the mode, and its spar-

sity. Higher µ results in more localized deformations, see Figure 5.3a. By iteratively

adding orthogonality constraints, the resulting modes cover a broad range of deforma-

tions, see Figure 5.3b. The compressed vibration modes strongly depend on the struc-

ture of the underlying object and thus analyzing their support reveals some of the struc-

ture of the object in return (this will be demonstrated in Section 5.7, where we use com-

pressed vibration modes for object segmentation). It is not obvious how to choose the

parameter µ such that a certain localization is achieved. We show several examples for

sets of sparse vibration modes and discuss the effects of different sparsity parameters µ

in Section 5.8. Additionally, we introduce an alternative definition for compressed vibra-

tion modes, where the L1 norm is being constrained instead of regularized, below.

The definition (5.4) for compressed vibration modes has several differences to the

previous definitions of compressed modes as given in [1–4] (aside from us looking at lo-

calized vibrations of elastic bodies for the first time). They look for a full set of vectors in a

single optimization problem, constraining the whole set to be orthonormal, whereas we

define them as solutions of a sequence of smaller optimization problems, while adding

an orthogonality constraint in each iteration. This has the advantage that each of the

minimization problems has a comparatively low number of variables. When trying to

compute a large number of modes for high resolution meshes, solving for all modes at

once becomes prohibitive. Note that for µ = 0 both formulations yield the solutions to

the generalized eigenvalue problem. Another advantage is that the choice of the spar-

sity parameter µ becomes consistent: the sparsity of the modes does not depend on the

number of modes K but only on µ, whereas in [2], the same choice of µ would lead to dif-

ferent sparsity for bases of different sizes. Another difference in our definition is that we

use a proper discretization of the L1 norm of piecewise linear displacements, as opposed

to the unweighted vector ℓ1 norm used in [2].

5.5. COMPUTATION OF COMPRESSED VIBRATION MODES

The optimization problem (5.4) is non-convex due to the constraint on the L2 norm of

u and the L1 term is non-differentiable. For solving this type of problem, a Splitting Or-

thogonality Constraint and an Alternating Direction Method of Multipliers scheme have

been proposed in [1] and [2]. A comparison of the two approaches in [2] indicates that

the ADMM scheme is more effective. In our experiments, see Section 5.8, ADMM did not

produce satisfying results for the computation of compressed vibration modes, neither

in terms of computation times, nor in terms of convergence to an acceptable minimum.

Therefore, we opt for a novel optimization scheme, which we refer to as iterated con-

vexification for compressed modes (ICCM). It combines a convexification of the problem

with the classical approach of turning the L1 term into a linear term and linear inequal-

ity constraints by duplicating the variables. We will describe both steps in detail below.

ICCM is parameter free and its implementation is straight-forward, given a quadratic

programming library.
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Convexification We replace the constraint uT Mu = 1, by a hyperplane constraint uT Mc0 =
1, where c0 is initialized as a random, normalized vector. Essentially this replaces the

constraint that the deformation should be on the unit sphere, with the constraint that

the deformation should be on a plane that is tangential to the unit sphere. After we find

a solution u with this constraint, we set c1 = u/‖u‖L2 and solve the optimization problem

again, this time with the hyperplane constraint uT Mc1 = 1. This is being repeated until

some convergence criterion is met. In our experiments we used a lower bound on the

deltas between the energy values of the last and current solution as the stopping crite-

rion. After finding a mode, we initialize the next optimization problem by again using a

random hyperplane constraint c0, which additionally has the property that the problem

admits a feasible solution, i.e. ∀ j < i : cT
0 Mu j = 0. While this convexification might lead

to finding a local instead of a global minimum, it provides a fast and suitably stable way

to solve a large scale, non-convex and non-differentiable optimization problem. The

performance and consistence of this convexification is being further analyzed in Section

5.8.

Linearization of the L1 term After convexifying the L2 constraint, each mode is com-

puted via solving a sequence of convex optimization problems. In order to turn these

into quadratic programs, we get rid of the non-differentiable part introduced by the

L1 regularizer by using non-negative variables, that is,

u = u+−u− u+,u− ≥ 0, (5.5)

where the inequality is meant component wise. This is a widely used approach, first pro-

posed in Tibshirani et al. [35]. With this change of variables the L1 term can be bounded

by a linear term

‖u‖1 ≤ 1T Mu++1T Mu−. (5.6)

After expressing the energy functional and all constraints in terms of u+ and u−, as well

as adding the non-negativity constraints (5.5) and employing the convexification above,

the optimization problem (5.4) turns into an inner and outer sequence of quadratic pro-

grams. In each inner iteration we adapt the convex hyperplane constraints until a con-

vergence criteria is met:

ui ,k :=
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(5.7)

ck+1 = ui ,k /‖ui ,k‖2.
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After that we add the last mode from this sequence to the set of computed sparse vibra-

tion modes, i.e.

ui := ui ,k /‖ui ,k‖2

and then start the inner iteration above again, with the additional orthogonality con-

straint induced by the new mode. Note that the linear term that bounds the L1 norm

from above, (5.6), is actually equal to the L1 norm for solutions of (5.7), since otherwise

one could trivially construct a feasible lower energy solution (see the Appendix 5.A where

we show this for the L1 constrained formulation). Thus, (5.6) is a valid, linear, replace-

ment for the non-differentiable term ‖u‖1.

Each inner iteration of ICCM amounts to solving a quadratic program which can be

done using highly efficient specialized solvers (in our implementation we used Mosek).

Typical iteration times and full times for computing a set of modes can be taken from

Figure 5.14 and Table 5.4. Table 5.3 shows a comparison to the computation times re-

sulting from ADMM as implemented in [2]. We will analyze the resulting compressed

vibration modes and discuss stability and computation times of the algorithm in more

detail in Section 5.8.

5.6. L1
CONSTRAINED VIBRATION MODES

In addition to using L1 regularization to enforce compression of the modes, we can con-

sider a L1 constrained formulation: we remove the term µ‖u‖1 from the objective func-

tional and instead add the constraint ‖u‖1 = s for some s ∈ R
>0. The resulting optimiza-

tion problem is only well-posed, if there are solutions with unit L2 norm and L1 norm

lower or equal to s. Whether feasible solutions exist for a given value of s can be checked

by a numerical optimization software such as MOSEK. Also note that the correctness of

the linearized L1 term used in our optimization has to be shown for the constrained ver-

sion, the proof can be found in Appendix 5.A. For the L1 constrained problem, the inner

iterations of ICCM remain quadratic programs and the algorithm results in comparable

computation times.

The attractiveness of the L1 constrained version becomes apparent when analyzing

the behavior of the elastic term uT Hu. For many meshes, the vibration modes have en-

ergy levels with vastly different magnitudes. Thus, the L1 regularizer has a different effect

on the sparsity of the support of the compressed vibration modes: While the first modes

have the desired sparsity pattern, later modes might have a dense support when using

the same value of µ. This can be seen in Figure 5.4 where, in the L1 regularized case

(µ= 255), the support of the first eight modes covers roughly one third of the mesh, but

higher frequency modes have a support that covers roughly 90% of the mesh. They are

essentially dense modes, which shows that the L1 term does not have significant influ-

ence on the optimization. If we fix the value of the sparsity term of the first mode in the

L1 regularized case and use it as the value s in the L1 constrained case (here s = 11.5), we

are able to compute a set of modes with consistent sparsity pattern. The plots in Figure

5.3b show the respective values of the L1 and elasticity terms. From this it can be seen

that a regularization is not suited since the elastic terms explode for higher frequencies.

This prevents us from having to search for a suited value of µ when computing each

mode, which would be infeasible given the computation times of the modes.





5.7. APPLICATIONS

5

137

(a) Eight of the first fifty compressed vibration modes on the

dinosaur model (tetrahedral mesh, St.-V.-K. energy, µ= 20).

(b) Eight of the first fifty compressed vibration modes on the

Victoria mesh (surface mesh, thin shells energy, µ= 0.0001).

Figure 5.5: Two sets of compressed vibration modes for different geometry types and elastic energies.

respectively, but we intuitively convey these parts as functional units of the mesh.

5.7. APPLICATIONS

Before we cover the analysis of our optimization scheme, compare to previous methods

and show examples for sets of compressed vibration modes, we will cover two appli-

cations that benefit from the localized deformations that have been introduced in this

Chapter.

Compressed deformation bases, elastic simulation and deformation A general ad-

vantage of compressed vibration modes is that they can be stored efficiently by storing a

list of the n non-zero indices along with the non-zero entries instead of storing all N ≫ n

entries. This results in a significant reduction of the space required to store the deforma-

tion basis, which becomes essential in applications that impose strict memory require-

ments, e.g. when the GPU memory needs to be shared by different processes (games or

VR) or when large or multiple reduced bases have to be stored at the same time (interac-

tive simulations). Moreover, mapping from the subspace given by a sparse basis to the

full space is cheaper (given a certain sparsity) than mapping from a dense basis to the

full space since sparse matrix vector products can be computed more efficiently. In Ta-

ble 5.4, we list the relative memory size of the sparse basis compared to the dense basis.

We store the sparse deformations as a list of integers representing the indices of the non-

zero vectors along with the three Doubles that represent the displacement vector. The

dense deformations are simply stored as N · 3 Double values representing all displace-

ment vectors.

This raises the question of whether in a reduced-order simulation a basis of com-

pressed vibration modes can compete with a dense basis of the same dimension. To test

this, first we used the compressed vibration modes in an elastic simulation setup. In the

following it is convenient to use the change of coordinates

û := M1/2u, (5.8)

under which the mass matrix becomes identity. Likewise, let Ĥ = M−1/2HM−1/2, i.e. the
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(a) Reduced deformation of an X-mesh, constrained vertices

shown pink in inset.

(b) Reduced deformation of the dinosaur mesh, constrained

vertices shown in pink. The rest shape is shown transparently

behind the deformed shape.

Figure 5.6: Reduced deformation using a basis of sparse and dense vibration modes respectively, for more

details see Section 5.7.

elasticity Hessian expressed in these coordinates.

We consider the linearized equations of motion induced by the elasticity Hessian,

¨̂u+βĤ ˙̂u+ Ĥû = 0, (5.9)

where β ∈ [0,1] is a damping parameter. We reduce (5.9) using the basis of compressed

vibration modes Û = (û1, ..., ûK ), that is, Û is the 3|V |×K matrix which contains the com-

pressed vibration modes, expressed in terms of the changed coordinates, as columns.

Let H̃ = ÛT ĤÛ and let Φ=
(

φ1, ...,φK

)

be the matrix containing the eigenvectors of H̃ as

its columns and Λ= diag(λi ) be the diagonal matrix containing the eigenvalues of H̃. We

then consider the reduced, decoupled system

ẍ+βΛẋ+Λx = 0. (5.10)

These systems can be solved, given appropriate initial conditions, by using the closed

form solutions for each dimension individually. As a post-processing step, we apply

rotation-strain warping, see [37], to the results of the linearized simulation. For our ex-

periments, we implemented a tool for interactive simulation, where initial velocities can

be injected into the system by clicking on vertices of the mesh. When comparing results

obtained in subspaces of the same dimension constructed from compressed and natu-

ral vibration modes, we obtain results of comparable quality, while the compressed basis

takes about 20% of the memory of the dense basis.

By design the compressed modes u induce low-energy deformations, i.e. uT Hu is

small. Due to the localization, the compressed modes are less efficient than the natural

vibration modes. However, we expect that the energy of the compressed modes con-

verges to that of the natural modes when µ converges to zero. We provide experimental

evidence in Figure 5.7, where we show that the energy uT Hu of the lowest compressed

vibration mode (blue) (which is constrained to be orthogonal to the linearized rigid mo-

tions) converges to the eigenvalue of the first natural vibration (again orthogonal to the

rigid motions) (orange) when µ goes to zero. A visual evaluation of this convergence can

be seen in Figure 5.3a.
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Figure 5.7: Convergence of sparse vibration modes to natural vibration modes as µ goes to 0.

As a second application of the compressed basis, we use compressed vibration modes

in a reduced deformation-based shape editing setup. In Figure 5.6, we compare the re-

sults of such modeling sessions, using a basis of compressed and dense vibration modes

of various sizes (10, 20 and 30 modes for the X-mesh; 20, 40 and 60 modes for the di-

nosaur).

Mesh # vertices K Energy using Energy using

compressed modes dense modes

X 1098 10 2137.93 424.82

20 287.33 292.27

30 109.01 192.17

Dinosaur 27664 20 53.76 372.20

40 20.47 152.46

60 12.12 43.93

Table 5.1: Energy values of optimized static state solutions for the deformations shown in Figure 5.6.

More precisely, we minimize a weighted sum of the St.-Venant-Kirchhoff energy and

a least squares term that drags a subset of the vertices to user specified positions. Instead

of minimizing this energy over the full space, we optimize over the subspaces spanned by

the compressed and dense vibration modes respectively. The compressed basis requires

about 35%/20% of the storage space of the dense basis for the X-mesh and dinosaur

mesh, respectively. The energy levels of the optimized solutions are listed in Table 5.1.

It is remarkable that in almost all cases a lower energy deformation was found in the

subspace spanned by compressed vibration modes.
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Elastic segmentation The compressed vibration modes provide us with information

about the dynamics of an object: the supports of the modes mark areas which are well

suited as segments of the object that undergo deformations while the rest of the shape

remains still. The size of these areas, i.e. the semantic level that should be covered by the

modes, can be controlled via the parameter of the L1 regularizer, as can be seen, for ex-

ample, in Figures 5.3a and 5.12. This makes the compressed vibration modes well-suited

to aid in segmentation tasks, where elastic behavior of the mesh should be considered.

We implemented a simple segmentation algorithm, where we segment the mesh accord-

ing to the supports of the modes by only considering a mode if there is not already an-

other mode that covers it by more than 90%. We decide whether a tetrahedron belongs

to the segment defined by a mode, if the deformation vector for this mode is larger than

that of other modes that cover a nearby segment. Results of this segmentation scheme

can be seen in Figure 5.8, where we show its performance on a volumetric and a surface

mesh, using the modes from the experiments shown above. In both cases, K = 50 com-

pressed modes were produced and the steps above lead to the depicted segmentations.

The number of segments depends on the parameter µ and the elastic properties of the

shape itself. For the dinosaur we end up with 10 segments, while for the centaur we get

18. In both cases, we can see some triangles and tetrahedrons that do not belong to any

partition, or segments with rough boarders. This could easily be fixed by extending the

steps above, but we wanted to highlight the simplicity of this algorithm which already

yields a useful segmentation that is based on elastic properties of the object.

Figure 5.8: A simple segmentation scheme using our compressed vibration modes applied to the dinosaur

(volumetric) and the centaur (surface) mesh. See Section 5.7 for details.

Segmentation using elasticity has previously been proposed by Huang et al. [18],

where the natural vibration modes of an elastic object were weighted and used in a vari-

ant of k-means clustering to partition the mesh. The goal of the segmentation is to be

able reproduce the ’likely, or typical’ deformations of the vibration modes by using rigid

transformations on each of the resulting segments. In contrast, we directly produce a set

of likely, or typical sparse deformations whose support we use as the segments.

5.8. EXPERIMENTS

Consistency of ICCM A property of ICCM is that it will always converge to some local

minimum, up to a desired precision: the sequence of functional values of the ûi ,k in (5.7)

is monotonically decreasing for each fixed i and increasing k. Indeed, when minimizing
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Figure 5.9: Comparison between the compressed manifold modes produced by our scheme (left) and Neu-

mann et al. [2] (right). Both methods yield the same results up to the ordering and sign changes, while the

computation times of our method are significantly lower.

Figure 5.10: Compressed vibration modes produced by using ADMM for µ= 10,20,30,50,75. See Figure 5.1 for

the output of our method.

the functional to find ûi ,k , the previous solution ûi ,k−1 is within the hyperplane to which

the search space is restricted in that iteration, by construction. If a mode with lower

energy value is found within the hyperplane, the functional value of the normalized so-

lution will be strictly smaller since the functional is strictly convex. Moreover, each of

the sub-problems can be solved robustly and up to a desired precision since the interior

point methods provided by solvers like MOSEK offer various optimality guarantees for

quadratic programs with inequality constraints. For ADMM, such convergence guaran-

tees are not available, and indeed, as stated above, the density, size and structure of the

matrices, as given in our setting of compressed vibration modes, prevented ADMM from

converging to a meaningful solution for simple models, which brought up the necessity

to develop an alternative optimization scheme.

Forµ= 0, the compressed vibration modes coincide with the natural vibration modes

that are solutions of the generalized eigenvalue problem Hu = λMu. In this case, our al-

gorithm can be seen as a scheme that uses convexification to solve an eigenvalue prob-

lem and it is important to verify that the solutions of our approach coincide with the

ground truth (which can be obtained using reliable eigen-solvers). Indeed, for all meshes

used in our experiments, we were able to find the first 20 vibration modes among the

first 25 modes produced using our minimization scheme. The reason that we do not get

a one-to-one correspondence to the ground truth is that we use a convexification that

approximates the constraint ‖u‖2 = 1. This may lead to finding a local minimum, in-

stead of the global minimum. In our experiments, we were still able to find consistent

sets of compressed vibration modes, by computing slightly more modes and cutting off

the highest frequency modes.
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In case µ > 0, we first compare to the compressed manifold modes shown in Neu-

mann et al. [2]: in Figure 5.9 we show the output of their adapted ADMM optimization

scheme and our proposed ICCM scheme. We were able to reproduce the same modes,

up to changes in the order in which they were found. This, in combination with the en-

hanced computation timings shown below, shows ICCM is a valid alternative to ADMM

for the problem of finding compressed modes. Moreover, ADMM did not converge after

20000 iterations to any suitable solution when solving for compressed vibration modes:

we used the elasticity Hessian and the corresponding mass matrix in the ADMM imple-

mentation of Neumann et al. [2] and received the modes shown in Figure 5.10, which

aren’t meaningful solutions to the optimization problem. See Figure 5.1 for a compari-

son to the output of our method.

Note that for K > 1, ICCM and ADMM try to solve two slightly different optimiza-

tion problems (computing a sequence of modes or computing all modes at once), so the

following quantitative comparison of the two algorithms was performed for K = 1. Ad-

ditionally, for this comparison only, ICCM used the unweighted L1 norm, such that the

objective values will be comparable. We performed the comparison on various meshes

and different triangulations. The values of µ were chosen such that the resulting modes

had a support of about 20% of the mesh area. We used a randomized mode for both

methods as an initialization (in ICCM we need an initial hyperplane constraint, ADMM

needs an initial value to start an iterative procedure) and ran both algorithms 100 times

with different random initializations. In Table 5.2 we list both the average as well as the

best objective values found. From those values we conclude that in setups where ADMM

does converge (which is not always the case, see above), both algorithms perform equally

well. Thus, we met our goal of creating an algorithm that is able to compute vibration

modes consistently and whose computation times scale linearly in the number of modes

that should be produced.

Mesh # vertices µ Obj. value of Obj. value of

optimum for ICCM optimum for ADMM [2]

(average,best) (average,best)

Hand 868 0.0001 4.1755E-4, 5.5042E-4 4.2055E-4, 6.0002E-4

Hand 4054 0.0001 9.4314E-4, 1.4113E-3 9.4731E-4, 1.1586E-3

Fertility 4994 0.0002 2.1663E-2, 2.5329E-2 2.1683E-2, 2.6280E-2

Fertility 9994 0.00005 1.2519E-2, 1.3222E-2 1.2531E-2, 1.3815E-2

Bunny 34834 0.0001 5.1078E-2, 6.4719E-2 5.1078E-2, 7.0158E-2

Table 5.2: Comparison of objective values of the optima computed using our algorithm (ICCM) and using

ADMM as proposed and implemented in Neumann et al. [2].

Lastly, note that ADMM requires the choice of a penalty parameter, for which Neu-

mann et al. use an automatic adjustment strategy. It is unclear whether different strate-

gies might lead to meaningful results the examples where ADMM did not converge. Our

proposed algorithm is parameter free and converged in all examples for all choices of

sparsity regularization and number of modes.

Compressed vibration modes and compressed manifold modes are unstable in their
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order: usually there is a large set of compressed vibration modes with almost the same

objective value, so small changes of the mesh, even isometric deformations, lead to a

different order of the sparse eigenmodes. Therefore, none of our applications rely on

a precise ordering of the modes. Note, however, that the modes can always be ordered

after a certain number has been computed. [23] provides a natural ordering for com-

pressed manifold modes that can be extended to compressed vibration modes as well.

In our experiments, we always computed about 10%-25% more modes than required,

ordered them and cut off the superfluous modes. This way we were able to get a consis-

tent set of the K lowest compressed vibration modes.

In Figure 5.1, we show the first sixteen modes of an X-shaped volume mesh. The

modes were computed in the order that is shown there, and putting them into groups of

four shows how the symmetry of the mesh is properly reflected in the modes: each mode

appears four times, once for each leg of the X.

Sparsity control Examples for compressed vibration modes, where the sparsity term

was used as a regularizer are shown in Figures 5.1, 5.3a, 5.3b, 5.12, 5.5a and 5.5b. In

Figure 5.3a, we show how the bar can be segmented into parts of arbitrary size (limited

by the mesh resolution) by tuning the sparsity parameter µ. For each of those parts, we

get multiple vibrations that span a space of deformations for that part of the mesh. In

case of the dinosaur mesh shown in Figure 5.5a it is remarkable how the support of the

modes is concentrated around parts of the skeleton that we would intuitively categorize

as segments.

While for the rest of the experiments we used tetrahedral volume meshes with the

St.-Venant-Kirchhoff energy, in Figures 5.12 and 5.5b we show that our method is not

limited to this setup: there, compressed vibration modes for triangle surface meshes are

shown, where the discrete shells energy was used as the underlying deformation energy.

Figure 5.12 also demonstrates how we can localize the modes in different levels of scal-

ing: for µ = 0.01 we get deformations of single fingers as compressed vibration modes

and for µ= 10−4 we get deformations of the legs and arms.

Figure 5.11: Sparsity constrained vibration modes of a hand mesh.

In Figure 5.11, we show compressed vibration modes where we constrained the L1 norm

such that the first mode approximately covers one of the fingers. Shown are the first

ten modes. Higher modes exhibit more complicated vibrations of the fingers and other

parts of the hands are only covered by very high modes. This shows the tendency of
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Figure 5.13: The first five sparsity constrained vibration modes on a high resolution and low resolution version

of the dinosaur mesh (same value of s for both meshes).

tation of compressed manifold modes (i.e. sparse eigenmodes of the surface Laplacian).

We used the same custom laptop to measure computation times for both algorithms and

use the convergence criteria proposed in [2] for ADMM. When computing the modes

using ICCM, we stopped the inner iterations to find a mode, when the changes in the

objective functional were below 10−8 times the current value of the objective functional.

As shown before, in Figure 5.9, for the right values of µ in each algorithm the produced

modes are visually indistinguishable (after sign flips and reordering). The resulting tim-

ings are listed in Table 5.3. We provide visual comparisons of the computed modes in

Figure 5.9 and as inset images in Table 5.3.

For some models and values of K , ADMM did not converge after 20k iterations using

the convergence criteria given in the implementation by Neumann et al. [2], we marked

these timings in the Table. We get faster computation times in general for smaller mod-

els and have a better scaling in computation times when computing a larger number of

modes. For large meshes and low values of K , ADMM benefits from the fact that the iter-

ations can be performed at comparably low costs, but as the size of the problem grows,

Mesh # vertices times for K = 10 times for K = 40 times for K = 80

(us / ADMM [2]) (us / ADMM [2]) (us / ADMM [2])

Hand 868 2.26s / 4.17s 12.47s / 144.64s* 23.25s / 435s*

See Figure 5.9

Fertility 4994 32s / 30s 123s / 422s 254s / 899s

Bunny 34834 1007s / 312s 4072s / 3459.82s 8110s / 17205s*

Table 5.3: Comparison of computation times for compressed manifold modes when using ICCM (our scheme)

versus the modified ADMM algorithm, as proposed in [2]. The inset pictures show the first three modes of each

method, first ours, then ADMM.

*: ADMM did not converge after 20k iterations under the convergence criteria given in the implementation by

Neumann et al.



5

146 5. COMPRESSED VIBRATION MODES OF ELASTIC BODIES

Index of mode

5 10 15 20 25 30 35 40 45 50

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

s
)

10

15

20

25

30

35

40

45

50

55

Figure 5.14: Times for the computation of each individual mode of the dinosaur model shown in Figure 5.13,

lower row, when using ICCM.

each iteration becomes more costly, and more iterations are required for the method to

converge. Thus, ICCM eventually outperforms ADMM as the number of desired modes

grows. With our scheme, for each additional mode, we have to solve another sequence

of quadratic programs with an additional equality constraint (orthogonality to the last

mode). Whenever an additional equality constraint is added to the system, a change of

variables can be performed, such that the variables automatically fulfill the constraints.

As a result, the computation time per mode remains approximately constant, even for

higher modes. In contrast, when using ADMM, as proposed in [2], the number of modes

K that have to be computed has to be fixed before starting the computation and the

number of variables is N ·K , where N is the number of vertices of the mesh. During

minimization several steps are being performed that scale superlinear in the number of

modes. Additionally, in our tests, ADMM requires more iterations in order to converge

when the number of modes is high.

An overview of the computation times for several examples of compressed vibration

modes can be found in Table 5.4. The computation times strongly depend on the size

of the model and the number of modes, but also on the shape itself and the resulting

elasticity Hessian. However, as pointed out before, the time to compute each mode is

roughly the same, which means that computing a large number of modes is entirely

possible. This is shown in Figure 5.14 where we show the computation times for each

individual mode of the dinosaur mesh.

Computation of the Hessian Before (compressed) vibration modes can be computed

the matrix H has to be set up. In the following, we list several options on how to compute

the Hessian. For a general discrete elastic energy, once the evaluation of the energy with
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Mesh # vertices constrained? parameter average time avgerage # of rel. size of sparse

per mode iterations per mode versus dense basis

Bar (Fig. 5.3) 418 no µ= 512 1.97s 12.06 38%

Bar (Fig. 5.4) 418 yes s = 11.5 2.1s 11.02 38%

Centaur (Fig. 5.12) 2645 no µ= 0.01 16.13s 8 2%

Hand (Fig. 5.11) 2584 yes s = 6.46 14.72s 17.51 17%

Dinosaur lo-res. (Fig. 5.13, lower row) 4713 no µ= 20 25.17s 10.22 16%

Dinosaur hi-res. (Fig. 5.13, upper row) 27664 yes s = 6.5 518.5s 13.4 16%

Table 5.4: Computation times for different sets of compressed vibration modes when using our proposed al-

gorithm.

respect to a fixed rest-shape x and a variable displacement vector u is implemented as

a function that takes an array of 3|V | values and returns a single value denoting the en-

ergy associated to this displacement, one can use automatic differentiation (e.g. ADOL-

C, see [38]) in order to obtain the Hessian matrix. Often, however, the Hessian can be

evaluated faster by using explicit formulas. For energies that use discrete bending forces,

Tamstorf et al. [39] documented closed form expressions for the Hessian of the bend an-

gle, which allows explicit formulas for the energy Hessians of a large class of elastic ener-

gies. The Hessian of the discretized St. Venant–Kirchhoff energy for tetrahedral meshes

is available as part of the Vega FEM library [40]. Also note, that for our purposes, we only

require the evaluation of the energy Hessian at the rest configuration. A simple formula

for the Hessian at the rest configuration for a certain class of deformation energies is

detailed in [16].

5.9. CONCLUSION

We introduce compressed vibration modes of elastic bodies, which are orthonormal sys-

tems of displacements of objects that induce local and low-energy deformations. For the

computation of the modes, we devise a novel minimization scheme which proves to be

stable and the resulting computation time scales linearly in the number of modes, as op-

posed to previous methods. The compressed vibration modes are shown to be intuitively

controllable via either tuning the sparsity regularizer or imposing a sparsity constraint

(the latter of which has not been done before for comparable modes). The modes are

shown to be stable under refinement and a correction of the L1 term leads to invariance

of the triangulation.

We show how the modes can extend applications such as reduced elastic simulation

and deformation or mesh segmentation. Their compressible structure is attractive for

cases in which memory limitations are present (e.g. games and VR, where GPU memory

has to be handled efficiently). Moreover they tend to exhibit a semantic structure, in the

sense that the support of the modes is often located on intuitive parts of objects, such as

hands, arms, legs or fingers, depending on the choice of µ.

Challenges and limitations We are convinced that compressed vibration modes can

be a useful tool in various areas of geometry processing and we can see direct benefits

for simulation, shape space exploration and mesh analysis. While computation times
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scale linearly, the timings per mode for detailed meshes is quite high, and does not allow

for interactive re-computation of the modes, under different parameters or different rest

configurations. Thus, it might be worthwhile to further investigate alternative L1 opti-

mization schemes, or to provide a multi-resolution scheme for the proposed ICCM op-

timization.

Another direction of future work might be to exchange the L1 regularization by a

regularization that penalizes the volume of the support of the modes. This would lead to

a mass weighted ℓ0 problem. Solving such problem poses a challenging problem.
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APPENDIX

5.A. ANALYSIS OF THE ICCM SCHEME FOR THE L1
CONSTRAINED

OPTIMIZATION

As part of ICCM, we bound the weighted L1 norm of a mode u = u+−u− with u+,u− > 0

from above, via the linear term ℓ(u+,u−) = 1T Mu++1T Mu−. When computing sparse

vibration modes via ICCM, in case the L1 term is used as a regularizer, the minima found

in each iteration have an L1 norm that is equal to ℓ(u+,u−). In the following, we prove

that this also holds for the L1 constrained problem. Note that ‖u+−u−‖ = ℓ(u+,u−) if for

each i it is either u+
i
= 0 or u−

j
= 0, i.e. we need to show that for no coordinate both the

positive and the negative part of the variables are greater than 0.

In the constrained optimization, after having computed the first i −1 modes, the inner

loop of ICCM has the following form (where c is the current hyperplane, used to convex-

ify the L2 constraint):
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and u+,u− ≥ 0

and ℓ(u+,u−) = s

(5.11)

In the following we make the assumptions that there is indeed a feasible solution (in

particular s is large enough to allow

(

u+

u−

)T

M

(

c

−c

)

= 1) and that we choose s smaller than

the L1 norm of the solution of the same problem without the constraint ℓ(u+,u−) = s. We

will now show the following: either we have that ℓ(u+,u−) = ‖u+−u−‖1 or there is a mode

ũ with L1 norm smaller than s but with the same value for the quadratic term. Indeed,

suppose that there is j , such that u+
j
> u−

j
> 0 (the case u−

j
> u+

j
> 0 can be handled

equivalently). Let ũ = ũ+− ũ−, where ũ+
i
= u+

i
and ũ−

i
= u−

i
for i 6= j and ũ+

j
= u+

j
−u−

j

and ũ−
j
= 0. Note that ℓ(ũ+

j
, ũ−

j
) = ‖ũ+− ũ−‖1 and that ũ still satisfies all constraints from

(5.11) and that it has the same value for the quadratic term (this is clear by construction
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of the energy functional and constraints after splitting the variables into positive and

negative parts).

This however would imply, that in the optimization problem (5.11), when we replace

the constraint ℓ(u+,u−) = s by the constraint ‖u+,u−‖1 = s, this constraint would not be

active, which contradicts our assumption, that s was chosen smaller than the L1 norm

of the solution of (5.11) without the constraint ℓ(u+,u−) = s.



6
OPTIMAL SPLINE APPROXIMATION

VIA ℓ0-MINIMIZATION

This chapter is based on the publication Optimal Spline Approximation viaℓ0-Minimization

by Christopher Brandt, Hans-Peter Seidel and Klaus Hildebrandt, published in Com-

puter Graphics Forum in 2015.

6.1. OVERVIEW

In all previous chapters, we used triangular or tetrahedral meshes to approximate smooth

3d shapes. In this chapter, we will consider curve-like data, that is, d-dimensional data

that smoothly varies over a parameter. Examples are hand-drawn 2-dimensional curves,

3-dimensional outlines of CAD drafts or high dimensional motion data that varies in

time. While such data can be approximated by a polygonal structure like meshes, it is

often beneficial to consider analytic approximations of such data, such as splines.

Splines are widely used in graphics for the approximation of functions and parametrized

curves. They combine an efficient representation of “smooth” functions by few param-

eters and with good approximation properties: under refinement, interpolating splines

converge to a (smooth enough) function in various norms.

Here we consider the question of optimal approximating splines in a general set-

ting, where not only variations of the spline parameter, but also of the number of spline

segments and the locations of the knots are allowed. That is, we are looking for a com-

promise between approximation error and the number of spline segments. Splines with

a low number of segments offer reduced order descriptions of the original data, and as

such facilitate and accelerate the processing of it. As such, the optimal spline approxi-

mations considered in this chapter can be seen as a reduction approach for curve-like

data. The resulting description of the data not only reduces the dimensionality of sub-

sequent processing applications, but also facilitates the evaluation of functionals on the

data.
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In the following, we will derive a discrete version of the regularized optimal spline

approximation problem, in which the domain of the spline is uniformly sampled and

the feasible set is restricted to splines whose knots are grid points. We show that the dis-

crete problem can be written as an ℓ0-regularized minimization problem. In this setting,

splines are represented by their function values (and depending on the type of spline

also their derivatives) at the grid points. The main ingredient to our modeling of the op-

timization problem is a linear operator on the space of functions on the grid that has

the property that the ℓ0-norm of the image of a function agrees with the number of seg-

ments of the corresponding spline, which interpolates the function values. We show how

such an operator can be constructed for different families of splines including B-splines,

composite Bézier curves, splines in tension, and wiggly splines.

In recent years, the ℓ0-regularization of optimization problems has received much

attention and many efficient algorithms for approximating the solutions have been pro-

posed. Formulating the optimal spline approximation problem as an ℓ0-minimization

problem allows us to use this rapidly growing pool of algorithms for computing optimal

splines. Moreover, we see a connection between optimal spline approximation and re-

cent schemes for image and geometry denoising, which yield a similar type of optimiza-

tion problem. We have tested various algorithms for solving the ℓ0-regularized optimiza-

tion problem and propose a variant of the recent scheme by Patrascu and Necoara [1].

We tested our implementation for spline approximation of planar and space curves and

for spline conversion of motion capture data.

6.2. RELATED WORK

Optimal splines. The computation of optimal approximating splines comes at differ-

ent complexities depending on what parameters of a spline are varied. Typically, only

the parameters the spline depends linearly on are optimized, which leads to linear least-

squares problems. For B-splines, this means that a knot vector is fixed and the remaining

parameters are optimized. Latest solvers for this problem can compute highly accurate

solutions within few milliseconds even for a large number of points [2]. However, the

approximation can be greatly improved by treating the knots as free variables, see [3–5]

for some early work in this direction. The task is to find an optimal knot vector, in the

sense that the best approximating spline on this knot vector yields the lowest approxi-

mation error among all other splines with the same number of knots. Strategies to find

an optimal knot vector can be roughly classified in three categories:

• The knot vector is iteratively extended using heuristics, such as integrated dis-

crete curvature [6], largest accumulated L2 error on a segment [2], or others [7–9].

These methods often require initial knot vectors, user-defined error bounds and

other parameters.

• An existing spline gets simplified by iteratively removing knots from the knot vec-

tor (knot removal), see e.g. [10]. In each iteration, the knots get ranked via some

heuristic criterion and then greedily removed, while maintaining some prescribed

proximity to the input curve.

• The knots are regarded as additional free variables (subject to appropriate con-
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straints) and the approximation error of the best spline using these knots is mini-

mized. This, however, leads to a very involved minimization problem (cf. [3]), and

the latest attempts at solving it use genetic algorithms, which interpret the knot

vectors as populations which undergo mutations [11–14] or apply particle swarms

[15].

Our method differs from these approaches in that we are neither limited to B-splines

nor is there a need to use explicit geometric constructions or any heuristics in our for-

mulation to find the target set of points which we use to create the spline approximat-

ing the input curve. Furthermore, we do not need to fix the number of knots, but keep

it variable. By discretizing the parameter interval, we are able to reformulate the opti-

mal spline approximation problem as a ℓ0-regularized quadratic minimization problem.

This opens the door to using recent approximation algorithms for ℓ0-minimization for

optimal spline approximation. For arc splines—curves consisting of a finite sequence

of circular arcs and line segments—a geometric approach for approximating a sequence

of points by a G1-continuous arc spline with a minimum number of segments has been

recently proposed by Maier [16]. Contemporaneous to our research, Kang et al. [17]

proposed an equivalent reformulation of the optimal spline problem for the case of B-

splines in one dimension. However, they replace the ℓ0-regularized functional by an ℓ1-

regularized functional. We further discuss and compare the ℓ0- to the ℓ1-regularization

in Section 6.5.

Optimal polylines. Optimal approximation by polylines has a more local character:

changing the position of knots will have no global effect on the solution, as is the case

for splines, where differentiability conditions introduce global dependencies. This local

property of polylines (and other types of curve which are only demanded to be con-

tinuous) allows the use of Dynamic Programming algorithms, which can give optimal

approximations (given either a maximum number of segments, a cost per segment or a

maximum approximation error in the ℓ2 or ℓ∞ norm) by polylines [18, 19], line segments

and circular arcs [16, 20], or piecewise polynomials [21].

ℓ0-Minimization. Sparsity-regularized and constrained convex optimization problems

are the focus of recent research, see e.g. [1, 22, 23]. Though such optimization prob-

lems are known to be NP-hard, various efficient approximation algorithms have been

proposed in recent years, see [1, 24–27] and references therein. Whereas typically spar-

sity is demanded in the variable which is minimized, in our case, we want to apply the

regularization on a linear transform of the variable. This type of minimization has been

considered in recent sparse image processing [26, 28] and geometry processing [29] ap-

plications. The problem has been analyzed and several algorithms have been proposed

[26, 27, 30]. We applied, adapted and compared several of these recently proposed algo-

rithms to approach our specific ℓ0-regularized minimization problem.

6.3. OPTIMAL SPLINE APPROXIMATION VIA ℓ0-MINIMIZATION

Our approach for optimal spline approximation can be applied for various types of splines,

including B-splines and composite Bézier curves. In this section, we first outline a con-

tinuous version of the optimization problem and then introduce the ℓ0-minimization

problem, which is a discrete version of the continuous problem. We explicitly describe
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(a) λ= 50 ·10−9, 9 points, ℓ2-error ≈ 3.80 ·10−4 (b) λ= 1.05 ·10−9, 17 points, ℓ2-error ≈ 7.82 ·10−6

Figure 6.1: Cross section of a Beetle, 500 points, approximated using composite cubic Bézier curves generated

with our method.

the optimization problem for C 2 cubic B-splines and composite cubic Bézier curves. Fi-

nally we discuss the generalization to other types of splines.

Continuous problem. Let us consider a parametrized curve c : I → R
d . Here I is either

[0,1] in the case of curves with boundary, or [0,1]/0∼1 (the unit interval with identified

boundary) in the case of closed curves. Our goal is to construct a spline s : I →R
d that is

an optimal trade-off between the approximation of c on the one hand and the number

of spline nodes on the other hand (a node being an interpolation point together with the

corresponding parameter value). For this, we consider the functional

E (s) = ‖c − s‖2
L2

+λ ν(s) (6.1)

whereν(s) is the number of nodes of s andλ ∈R+. Then an optimal approximating spline

is a minimizer of the functional among the set of all splines of one type. The parameter

λ provides control of the complexity (number of nodes) of the spline. The optimal spline

has the property that there is no spline s̃ with ν(s̃) > ν(s) such that the approximation

error ‖c − s̃‖2
L2

is decreased by more than (ν(s̃)−ν(s))λ.

B-spline functions. We consider a discretized version of the optimization problem. For

simplicity of presentation, we describe the case of C 2 cubic B-spline approximation of

functions first, and generalize to other types of splines and the approximation of curves

in R
d later.

Let t1 < t2 < ·· · < tN be a dense uniform partition of the interval I . The data we want

to approximate is a set of N function values pi ∈R, with corresponding parameter values

ti ∈ I , e.g. a sampling of the continuous input function. A C 2 cubic B-spline can be char-

acterized as the unique (C 2-continuous) cubic spline that interpolates a set of Ñ nodes

(t̃i , qi ) ∈ I ×R and satisfies certain boundary conditions. Computing the corresponding

control points amounts to solving a linear system of equations. Here, we will represent a

cubic spline by the choice of the interpolating points and times. To be able to optimize

over a set of cubic splines with a variable number of segments and variable nodes, we

restrict the t̃i to be values of the aforementioned partition of I . With this restriction, any

cubic spline s can be represented by the vector q ∈ R
N listing the images qi = s(ti ) ∈ R

for all ti . For any q , we call those qi that are not nodes of the spline corresponding to q

the inner points of q .

The inner points can be characterized as follows: Let s(t ) be a cubic spline, interpo-

lating the nodes
(

ti , qi

)

, i.e. s(ti ) = qi , with some prescribed boundary conditions at t1

and tN , and now assume that s′′′(t ) is continuous at t = t j for some j ∈ 2, ..., N −1. Then

the cubic polynomials s(t )|t∈[t j−1,t j ] and s(t )|t∈[t j ,t j+1] are the same, since the values and

all three derivatives at t = t j agree. This means that the cubic splines interpolating the
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nodes {(t1, q1), ...(t1, qN )} and {(t1, q1), ...(t1, qN )} \ (t j , q j ) are the same. Conversely, if for

some t the third derivative s′′′ has a discontinuity, then s(t ) must be a node of s. So we

have that q j is an inner point if, and only if, the third derivatives of s from the left and

from the right of t j agree. This condition is linear in the coordinates representing the

spline, so there is a linear operator C : RN → R
N with the property that q j is an inner

point, if and only if (C q) j = 0. The operator C depends on the choice of boundary con-

ditions. In Appendix 6.A, we discuss the construction of this operator explicitly. Given a

vector q ∈ R
N , we can construct the resulting cubic spline by interpolating all nodes of

q (those for which (C q) j 6= 0) by a cubic spline s with appropriate boundary conditions.

Then, all inner points of q will lie on this resulting spline.

The number ν(s) of nodes of the cubic spline s corresponding to a vector q ∈ R
N

agrees with the ℓ0-norm of C q . Our discrete analog of the energy (6.1) is

E(q) =
∥

∥p −q
∥

∥

2
ℓ2
+λ

∥

∥C q
∥

∥

ℓ0
, (6.2)

where p ∈ R
N lists the input data points. Computing an optimal approximating spline

amounts to minimizing (6.2) over all q ∈ R
N and computing the cubic B-spline s corre-

sponding to the minimizer q . In the case that the interval is I = [0,1], one can addition-

ally enforce interpolation of the boundary, i.e. q1 = p1 and qN = pN . Boundary condi-

tions on the derivatives are incorporated into the operator C and the reconstruction of

the spline s from a vector q .

B-splines curves. To approximate curves in R
d , our construction remains almost un-

changed: the curve samples pi and our spline representation qi are elements of Rd and

we write the list of points p and q as N ×d matrices. This way, the energy (6.2) remains

the same except that the ℓ2 norm gets replaced by the Frobenius norm ‖·‖F , and the ℓ0

term is interpreted row-wise, i.e.
∥

∥C q
∥

∥

ℓ0
counts the number of rows of C q ∈R

N×d which

contain non-zero entries.

Composite cubic Bézier curves. For composite cubic Bézier curves (CCBC), the deriva-

tion is similar to that of B-splines. These curves are composed of cubic polynomials,

but instead of demanding the second derivative to be continuous, first derivatives at

all nodes can be prescribed. As for the B-splines, we represent CCBCs with a variable

number of nodes, by storing qi = s(ti ) for all ti of the uniform partition of I . However,

for representing the CCBCs, we additionally store the derivatives q ′
j
= s′(t j ). Then, any

CCBC whose nodes are a subset of the partition t1, t2, . . . , tN can be reconstructed.

For initialization, the q ′
i
s can be estimated from the input data p or explicitly computed

if the input is a parametrized curve. Then, we search for an optimized set of points

and derivatives (q, q ′), which means that the conditions for points to be inner points

are posed on q and q ′. The characterization of the inner points for CCBCs is similar to

that for B-splines. However, in contrast to the case of B-splines, the second derivative

is not guaranteed to be continuous, and thus we have to pose two conditions on inner

points, namely that the second and third derivatives are continuous at the correspond-

ing ti . Again, these conditions are linear and can be formulated via a linear operator

C : R2N →R
2N , such that p j is an inner point, if (C (p, p ′))k = 0 and (C (p, p ′))l = 0, where

k and l are the indices of the rows in C (p, p ′) which are associated to the condition that

the second and third derivatives are continuous at t j . The construction of the opera-

tor is discussed in more detail in Appendix 6.A. Using it, we can formulate the energy
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(qi , ti ) are minimizers of
∫1

0

(

f ′′(t )+δ f ′(t )+ξ f (t )
)2

, f ∈ C 2, subject to f (ti ) = qi , and

thus there is a corresponding matrix C characterizing inner points for wiggly splines.

To construct the matrix C for these types of splines, one first needs to find the matrix

A which maps the point coordinates to the coefficients of the interpolating spline. This

matrix will depend on the ti , the parameters (µ for splines in tension and δ,ξ for wiggly

splines) and possible boundary conditions. Since the energy characterizing the splines

is quadratic, it comes from a linear system of equations describing the relation between

interpolation points and spline coefficients. Then we get C = AT B A, where B maps the

spline coefficients c to the value of the energy via cT Bc.

Figure 6.3: Testing our method on splines in tension. In reading order, we set µ= 0, 0.1, 0.5 and 1. λ= 0.5 ·10−9

was used in all cases.

6.4. NUMERICAL OPTIMIZATION OF ℓ0-REGULARIZED PROBLEMS

In recent years, many approximation algorithms for ℓ0-regularized problems have been

developed. The classical ℓ0-regularized optimization problem is

qopt = argmin
q

f (q)+λ‖q‖ℓ0
(6.4)

where f (q) is a convex function [1, 22, 23]. In our case, however, we want to find solu-

tions where C q is sparse, i.e.

qopt = argmin
q

f (q)+λ‖C q‖ℓ0
(6.5)

where f (q) is the squared ℓ2 distance of q to the input points p, and C is a linear operator

which might not be invertible—as, for example, is the case for the matrices resulting

for cubic B-splines and CCBCs described in the previous sections—so algorithms which

solve equation (6.4) cannot be applied directly.

The optimization problem (6.5) is also similar to the optimization problem (5.4) from

Chapter 5, but important differences keep us from being able to apply the proposed al-

gorithm ICCM to the problem of optimal splines. Here, we want to minimize an ℓ0 regu-

larized functional, as opposed to an L1 regularized functional as in the case of localized
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Figure 6.4: Comparison of a CCBC generated by our algorithm to a CCBC on equidistant nodes on the outline

of Bahrain (2000 points).

vibration modes. Furthermore, ICCM was devised to optimize energy functionals in the

presence of manifold constraints. In their absence, ICCM reduces to a single quadratic

problem which can be efficiently solved directly. Approximating the ℓ0-term by an ℓ1-

norm will be discussed in the experimental comparisons in Section 6.5.

Luckily, energy functionals of the form (6.5) have received much attention in the

graphics and vision community, where they are used for sparse image recovery and smooth-

ing [26–28] and mesh denoising [29].

We implemented and compared several algorithms, including

• a method proposed by Xu et al. [26] (ℓ0-gradient-minimization), where an auxil-

iary variable is introduced and minimization is alternated between two modified

versions of (6.5);

• a majorize-minimize subspace algorithm with ℓ2–ℓ0 regularization [27], where the

ℓ0 term is replaced by a differentiable approximation term, and the functional

is then minimized using a subspace gradient-descent method with a majorize-

minimize step size search;

• a slightly modified hard-thresholding pursuit algorithm inspired by [24, 25], where

we performed a change of variables q̃ = C q , computed the gradient of f (C−1q̃)

by interpreting C−1q̃ as a least-squares solution of q̃ = C q subject to
∑

qi = 1,

and then finding the optimal spline through the points with the largest gradient

in these coordinates;

• a greedy matching pursuit algorithm [30], where we iteratively add a small group of

points as nodes (by removing the corresponding conditions (C q)i from a list of all
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constraints), which was best (in terms of the ℓ2 error) among a random selection

of point groups;

• a modified random coordinate-descent method inspired by [1], which we will cover

in more detail below;

For most experiments conducted in Section 6.5, the random coordinate-descent algo-

rithm yielded the lowest values of the energy functional. The algorithms that do not di-

rectly control which entries of C q are set to 0 (the first two listed) are problematic, since

it is difficult to decide which points to use as nodes in the end.

Thus, our proposed solver uses a modified version of the method introduced by Pa-

trascu and Necoara [1], who aim at minimizing (6.4) by a random coordinate-descent

method. Our modified algorithm—aimed to minimize (6.5)—is summarized in Algo-

rithm 4. We avoid a change of variables, since for our matrices C this results in an unsta-

ble algorithm. Instead we transform the minimization step in each iteration into solving

a linearly constrained quadratic program.

Algorithm 4 Our modified random coordinate-descent method for ℓ0-regularized opti-

mization
Input: Set of points p, sampling of the input curve.

Output: A minimizer popt of (6.5)

L ←− empty list of indices of vertices to be constrained

p̂ ←− p

while not converged do

Choose an index k ∈ {1, ..., N } \ L

L̂ ←− L

L ←− L∪ {k}

Solve popt = argminq ‖q −p‖2 subject to (C q)k = (0, ...,0) ∈R
d ∀k ∈ L

if ‖popt −p‖2 −‖p̂ −p‖2 <λ then

p̂ ←− popt

else

L ←− L̂

end if

end while

In our final implementation, we choose the random points from a shuffled list of all

points and stop after all points have been visited once. (As an optional last step, one can

revisit all still unconstrained points again and check if they can be constrained without

increasing the energy by more than λ.) This means that we have N steps, and in each

step a quadratic functional has to be minimized subject to at most 2N d linear equality

constraints. The method is straightforward to implement, and the constrained mini-

mization requires only solving a linear system. The quadratic programs to be solved in

each iteration are related since at most one equality constraint is added per iteration.

Therefore, instead of solving the whole problem in every iteration, information from the

previous iteration can be used to speed up the computation (e.g. updating of the matrix

factorization of the previous iteration instead of computing a new factorization). Such
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procedures are provided by various optimization libraries—we used MOSEK [36]. The

average times for solving the quadratic programs in different scenarios are listed in Table

6.3. Minimizing the ℓ0-regularized energy via a random coordinate-descent can be re-

garded as a variant of traditional knot removal techniques. However, this relation to knot

removal techniques is specific to the random coordinate-descent solver. In this sense,

the ℓ0-formulation we introduce opens a door for using solvers like matching pursuit

or ℓ0-gradient minimization for knot removal. This could be particularly helpful when

removing knots from a spline with a large number of knots since the number of itera-

tions required by the random coordinate-descent (as well as knot removal techniques)

depends on the number of samples of the input curve (knots of the input spline). In this

case, other solvers for the ℓ0 problem (e.g. ℓ0-gradient-minimization), for which the re-

quired number of iterations does not directly depend on the number of sample points,

are an alternative.

6.5. EXPERIMENTS AND COMPARISONS
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Figure 6.5: Results of using our method on a 150-point curve for λ ∈ [0,100 ·10−9], for cubic splines.

In our experiments, we scaled the curves to have unit arc length and sampled them

equidistantly, densely enough to preserve the details of the input curve. All relevant val-

ues of the depicted experiments can be found in Table 6.1. Additionally, in Figure 6.5, we

plot the ℓ2 error and the resulting number of points of the result of our method (using

cubic splines) against various values of λ. From this, it can be seen that λ determines the

degree of detail in the approximating curve as expected: the higher we set the cost per

segment, the fewer points we get, at the cost of higher ℓ2 errors.

Figures 6.1 and 6.6 show how our method smartly places points in order to reduce the

ℓ2 error. Figure 6.1 shows the effect of decreasing λ: as the cost per segment becomes

lower, more segments are placed in favor of improving the approximation of the input

curve. We found that λ = 10−9 gave a good balance between the number of points and

accuracy of the approximation for curves of unit arc length, but of course the value has

to be adjusted for specific tasks and depending on the demands of applications. While

it is possible to adjust the level of detail via controlling the desired number of nodes,

we found that it is more intuitive to set a cost per segment, since this is a measure that

transports over all curves of the same total length. Figure 6.6 compares cubic splines to

CCBCs when approximating a curve using our method with the same value of λ. Note
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Figure 6.6: Comparison of our approximation method for cubic B-splines (left, 42 points) and CCBCs (right, 27

points) on the silhouette of a bust of Max Planck, 300 points, λ= 4 ·10−9 for both spline types.

that CCBCs need considerably fewer nodes to achieve the same level of detail. However,

at each node we specify the position as well as the first derivative of the spline, instead

of just the position.

Name (Fig.) Type O R λ ·109 ℓ2-error ℓ∞-error

Beetle (6.1a) CCBC 500 9 50 3.80 ·10−4 0.00288

Beetle (6.1b) CCBC 500 17 1.05 7.82 ·10−6 0.00289

Max-Planck (6.6, l) Cubic 300 42 4 3.87 ·10−5 0.00318

Max-Planck (6.6, r) CCBC 300 27 4 2.82 ·10−5 0.00383

Silhouette (6.10, m) Cubic* 500 49 18 6.75 ·10−5 0.00510

Silhouette (6.10, r) Cubic 500 49 5 4.22 ·10−5 0.00758

Noisy Max-Planck (6.7, l) CCBC 300 18 60 2.11 ·10−4 0.00759

Noisy Max-Planck (6.7, r) Cubic 300 26 60 2.29 ·10−4 0.00759

Hiragana “wo” (6.8, m) CCBC** 500 29 1.5 8.34 ·10−5 0.00448

Hiragana “wo” (6.8, r) CCBC 500 39 4 3.50 ·10−5 0.00446

Rocker-Arm (6.9, m) CCBC** 500 26 2 6.11 ·10−5 0.00151

Rocker-Arm (6.9, m) CCBC 500 33 2 2.04 ·10−5 0.00237

3D Feature-lines (6.11) CCBC 2033 154 1000 6.24 ·10−6 0.00251
O = # pts of input curve, R = # knots of spline, *=weighted ℓ2 , **=w/ disc. in 1st deriv.

Table 6.1: Data for the experiments.

Our method is robust to noise: one can adjust λ such that it captures all desired

details but not the noise, and the interpolated points will be chosen and arranged such

that a smooth curve with minimal ℓ2 distance is achieved. This is demonstrated in Figure

6.7 for both CCBCs and cubic B-splines: no noise is visible in the results while most of

the curve’s characteristics are still intact.

Figures 6.8 and 6.9 show the flexibility of our method: by simply modifying the con-
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Figure 6.7: The silhouette of a bust of Max Planck with extreme noise (300 points) approximated by a cubic

B-spline (left) and a CCBC (right) using our method with λ= 60 ·10−9.

Figure 6.8: The Hiragana “wo” with 500 points and 9 points marked as discontinuities in the first derivative

(left). Composite cubic Bézier curves received from our algorithm with (middle, 29 points) and without (right,

39 points) these discontinuities. Both approximations have similar ℓ∞ error.



6.5. EXPERIMENTS AND COMPARISONS

6

165

Figure 6.9: A cross section of the rocker-arm model with 500 points and 17 points marked as discontinuities in

the first derivative (left). Optimized composite cubic Bézier curves with (middle, 26 points) and without (right,

33 points) these discontinuities, for the same value of λ.

straints of certain points (which means changes to the operator C ), we are able to specify

points at which we allow the CCBC to have discontinuities in the first derivative, which

is very useful if sharp edges need to be modeled, as in these examples. The results are

compared to the case where no discontinuities in the first derivative are allowed. In Fig-

ure 6.10, we used a weighted ℓ2 norm: some points were assigned a higher weight such

that in the resulting cubic spline we captured the details in these parts very closely, while

saving points by approximating the rest only roughly.

In Figure 6.11, we test our algorithm on a large set of three-dimensional densely sam-

pled curves which represent smooth feature lines on a scanned mesh. This example also

shows the advantage of the l0-regularized minimization: instead of having to choose a

fixed number of points for every curve on the mesh, we fix the parameter λ once and

obtain a comparable level of detail across all resulting splines.

As another application, we applied our algorithm to motion-capturing data. The data

describes the motion of a human performing capoeira over 400 frames (13.3 seconds at

30 frames per second). It contains the position of the midpoint and 3-dimensional an-

gles of 28 joints between various parts of the body, resulting in 89D data (cf. Figure 6.12).

First, we approximated the data using one CCBC for the position and one for each angle,

resulting in 29 3-dimensional splines. We chose λ such that the approximating splines

had 25 nodes on average, which led to an approximation error of 6.51·10−4 (the data was

normalized to have unit arc length as well). Visually, the animation generated by the ap-

proximating spline is almost indistinguishable from the input animation. Additionally,

we used our algorithm to smooth a part of the animation in which the human was visibly

trembling: after approximating 100 frames through one 89-dimensional CCBC with 20

nodes, the primary motion of the human was still completely intact while all trembling

was gone.
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Figure 6.10: Results of our method with weighted ℓ2 norm. Left: input with marked points in purple, middle:

cubic spline through 49 points using weighted ℓ2 (weight 100 at the marked vertices, 1 elsewhere), right: cubic

spline from 49 points using standard ℓ2.

Experimental comparisons. We compare the performance of different solvers for the

ℓ0-regularized optimization problem (6.2). In addition, we compare the results of the

ℓ0-minimization to results produced by alternative (recent and traditional) techniques

for knot optimization. For a set of input curves, we produce cubic splines with the same

number of knots using all the methods and measure the resulting ℓ2-errors. The results

are listed in Table 6.2. In addition to Algorithm 1, we used the following methods:

• A matching pursuit algorithm, where instead of iteratively removing knots, we

build the set of unconstrained nodes by greedily unconstraining the best (in terms

of lowest resulting energy functional value) cardinality k set, among m randomly

chosen cardinality k sets. For the comparisons we used m = 500,k = 3 through-

out. Note that evaluating the candidate sets in each iteration takes as long as m

full iterations in Algorithm 4, which is why this method is only feasible for a small

number of desired knots.

• We minimize energy (6.2) using the aforementionedℓ0 gradient minimization method

proposed by Xu et al. [26]. The direct results of this method often yield large clus-

ters of nodes, which we address by using a cleanup step after the optimization: we
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ℓ0 optimizer Other techniques

Input curve #pts #knots Algorithm 4 Match.Purs. ℓ0-gradient-min. ℓ1-reg. PSO [15] LSPIA [2] MATLAB OPTKNT

Max Planck (Fig. 6.6) 300 48 2.7587 ···10−5 3.6802 ·10−5 2.8661 ·10−5 5.4789 ·10−5 4.4474 ·10−5 3.6980 ·10−5 6.6168 ·10−5

Cross Section (Fig. 6.13) 500 48 1.8336 ·10−5 3.3407 ·10−5 1.3729 ···10−5 4.9466 ·10−5 4.2251 ·10−5 3.6252 ·10−5 6.1692 ·10−5

Silhouette (Fig. 6.10) 500 97 1.2066 ·10−5 1.3967 ·10−5 1.0834 ···10−5 1.2337 ·10−5 1.9649 ·10−5 1.2797 ·10−5 2.5114 ·10−5

Bahrain (Fig. 6.4) 2000 137 1.2070 ···10−5 1.6341 ·10−5 1.5947 ·10−5 3.0374 ·10−5 1.5633 ·10−5 1.2395 ·10−5 1.7437 ·10−5

Hiragana (Fig. 6.8) 500 52 5.6206 ·10−5 5.3876 ···10−5 6.9553 ·10−5 8.3407 ·10−5 5.7682 ·10−5 6.1827 ·10−5 7.2012 ·10−5

Table 6.2: Data for comparisons of different ℓ0-minimizers and other spline optimization techniques. For a set

of input curves, the ℓ2-errors to the resulting cubic splines are listed. In every row, all splines have the same

number of knots.

CCBC Cubic Cubic w/ lumped

mass matrix

250 pts. 3.2 10.4 2.0

500 pts. 7.4 33.6 4.6

1000 pts. 20.1 79.4 11.9

Table 6.3: Average times (in milliseconds) for solving the quadratic program in each iteration of Algorithm 4

• For the case of B-splines, our ℓ0 problem is addressing the free-knot optimization

problem, so it is natural to compare to recent techniques which aim at directly

minimizing the ℓ2-error over a fixed number of nodes. Galvez et al. [15] report

that this results in a difficult multimodal and multivariate nonlinear optimization

problem, and they try to find an optimal knot vector by using particle-swarm op-

timization (PSO). We apply their algorithm using the proposed parameter values,

namely 100 particles, 10 iterations, γ1,2 = 2, w = 0.9...0.4. While the PSO performs

well if the number of desired knots is small, it becomes infeasible for a larger num-

ber of knots.

• The refinement algorithm proposed in [2] that iteratively adds knots to an approxi-

mating cubic B-spline (starting from a cubic B-spline defined on a sparse knot vec-

tor) by placing them on the segment of the spline on which the ℓ2 error is largest,

specifically at the parameter value, where the accumulated ℓ2 error reaches half of

the total error on this segment. While performing comparable to our algorithm on

curves with fairly constant level of detail, it often produces knots at unnecessary

places (see Figure 6.13) for other types of curves.

• As a comparison to a traditional technique, we consult the MATLAB function OPTKNT

which computes an “optimal” knot sequence “in the sense of Micchelli/Rivlin/Winograd

and Gaffney/Powell” [37].

For all tested examples, one of the ℓ0-optimizers yielded the best result, which justifies

our reformulation of the optimal spline problem.

6.6. CONCLUSION

We introduce a new approach for computing optimal approximating splines, where spline

coefficients, positions of nodes, and the number of spline segments are variable. The ap-

proach can be used to optimize different types of splines including B-splines and com-



REFERENCES

6

169

Figure 6.13: A curve approximated by a cubic spline using our algorithm and using a refinement technique

from [2], such that both results produce similar ℓ2 error to the input curve. From left to right: input curve,

cubic B-spline from our algorithm with 65 nodes, cubic B-spline from the refinement method in [2] with 102

nodes.

posite Bézier curves. Our modeling of the optimization problem yields a ℓ0-regularized

quadratic problem for which we devise a solver based on the recent scheme of Patrascu

and Necoara [1]. We present results produced with our implementation for the approxi-

mation of planar and space curves, and spline conversion of motion capture data.

Limitations and challenges. One direction of future work is to find a convex approx-

imation of problem (6.2), e.g. using weighted ℓ1-norms. This could potentially lead to

a very fast tool for optimal spline approximation. A limitation of our current approach

is that for B-splines, it cannot deal with multiple knots. One idea of how to integrate

multiple knots is to allow for lower regularity than C 2 (for the case of cubic splines) at

nodes, but to penalize lower continuity. We leave this problem as future work. Our tool

could be used to convert curves (e.g. hand-drawn outlines of shapes) into CCBCs (or

other splines types), which can be used for curved editing. It would be interesting to

experiment with other norms for the approximation of the input curve. The ultimate

goal would be to design a norm such that our tool places the nodes in locations where

an artists would place them. Another direction for future work is to extend the approach

from curves to surfaces.
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APPENDIX

6.A. EXPLICIT CONSTRAINT OPERATORS

Cubic splines. We will now construct the operator C for cubic splines, which will have

the property that (C (q)) j = 0 if the point q j is an inner point. To this end, we need the

operator A which maps a set of points to some representation of a cubic spline. We

represent the cubic spline by its second derivatives q ′′
j

at the points q j (which deter-

mine the spline uniquely), since in this representation all involved operators have sim-

ple, precomputable forms. Therefore we define the stiffness matrix S as the circulant

matrix having h
6

(2,−1,0, . . . ,0,−1) ∈ R
N as its first row and the mass matrix M as the cir-

culant matrix having 1
h

(4,1,0, ...,0,1) ∈ R
N as its first row. Then, determining the second

derivatives q ′′ = (q ′′
1 , ..., q ′′

N ) at the points can be done via solving the system of linear

equations M q ′′ = −Sq . This system assumes that the ti are equidistant with step size

h, i.e. ti − ti−1 = h for i = 2, ..., N , and that the curve is closed, i.e. we want periodic

boundary conditions (other boundary conditions can be realized by changing the first

and last rows of the matrices M and S). The matrix A = 6
h2 M−1S will also be circulant

and its entries can be precomputed up to arbitrary precision. Now the cubic spline for

t ∈ [t j , t j+1) is given by

s(t ) = q j s1(t )+q j+1s2(t )+
h2

6
(q ′′

j (s3
1(t )− s1(t ))+q ′′

j+1(s3
2(t )− s2(t )))

where s1(t ) =
t j+1 − t

h
and s2(t ) =

t − t j

h

So for t ∈ [t j , t j+1) the third derivative of the resulting cubic spline is s′′′(t ) = 1
h

(

−q ′′
j
+q ′′

j+1

)

and as the condition for the left and right derivatives at t = t j to agree we get 2q ′′
j
−q ′′

j−1
−

q ′′
j+1

= 0. Thus, letting C = SM−1S, we get the desired linear operator, which has the

property that q j is an inner point iff (C p) j = 0.

CCBCs. In order to define the operator C which characterizes inner points for CCBCs,

we are going to represent CCBCs by their coefficients in the Bernstein basis (B 3
k

)k=0,...,3,

since this again leads to simple forms of the involved operators. It is B 3
k

(t ) =
(3

k

)

t k (1−
t )3−k and in case of equidistant sampling with step size h, the CCBC takes the piece-

wise defined form s(t ) = s j (t ) =
∑3

k=0
b

j

k
B 3

k

(

t−t j

h

)

for t ∈ [t j , t j+1). The coefficients are

directly given via the set of points and the prescribed first derivatives (we again assume

equidistant step sizes h):

b
j
0 = q j , b

j
1 = q j +

h

3
q ′

j , b
j
2 = q j+1 −

h

3
q ′

j+1, b
j
3 = q j+1
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and the second and third derivatives of s j (t ) for t = t j and t = t j+1 are given by

s′′j (t j ) =
6

h2
(b

j
2 −2b

j
1 +b

j
0), s′′j (t j+1) =

6

h2
(b

j
3 −2b

j
2 +b

j
1)

s′′′j (t j ) = s′′′j (t j+1) =
6

h3
(b

j
3 −3b

j
2 +3b

j
1 −b

j
0)

An inner point q j has to satisfy the conditions s′′
j
(t j ) = s′′

j−1
(t j ) and s′′′

j
(t j ) = s′′′

j−1
(t j ).

From this, for n = 1, we define C as the 2N ×2N matrix



































0 − 4h
3

1 −h
3

0 · · · · · · 0 −1 −h
3

4 0 −2 h 0 · · · · · · 0 −4 −h

−1 −h
3

0 − 4h
3

1 −h
3

0 · · · · · · 0

−2 −h 4 0 −2 h 0 · · · · · · 0

. . .

0 · · · · · · 0 −1 −h
3

− 4
3

0 1 −h
3

0 · · · · · · 0 −1 −h 2 0 −1 h

1 −h
3

0 · · · · · · 0 0 0 −1 −h
3

− 4h
3

0

−2 h 0 · · · · · · 0 0 0 −2 −h 4 0



































This matrix contains two rows for each point, which expresses the condition that the sec-

ond and third derivatives are continuous at this point. With this, q j is an inner point iff

(C (q, q ′))2 j−2 = 0 and (C (q, q ′))2 j−1 = 0, where (q, q ′) is the vector (q1, q ′
1, q2, q ′

2, ..., qN , q ′
N )

(or, if d > 1, a matrix where each column is a vector).
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CONCLUSION

We presented contributions to the domain of computer graphics in a variety of prob-

lems and applications. A central focus was the usage of model reduction approaches

to enhance and accelerate numerical algorithms for optimization, simulation and mod-

eling tasks. A goal of such approaches is to enable interactivity of computer graphics

applications and tools, independently of the size, complexity or resolution of the input.

Many other contributions were made, which are summarized in the conclusions of each

individual chapter. Here, we would like to briefly summarize the general ideas and of-

fer some thoughts on possible directions for future work that researches the interplay of

computer graphics and model reduction approaches, where we consider a very general

interpretation of model reduction.

Firstly, we would like to remark that virtually any problem in computer graphics can

benefit from reduction approaches. The nature of input data in this field is always dis-

crete: even for analytic representations, such as spline curves and surfaces, a set of con-

trol points is required. The amount of data grows with the complexity and level of detail

that is desired within the application. Without reduction approaches, this will always

limit the level of detail that can be processed interactively, or at least in feasible com-

putation times. Model reduction approaches shift this limitation to a trade-off between

accuracy and speed. For example, we showed how to simulate meshes of arbitrary reso-

lution in real time, by approximating the dynamics and thus sacrificing details of the mo-

tion of finer details within the mesh. Unless this detail can be observed (e.g. by watching

the simulation in slow motion or by placing the camera very close to such details) the

trade-off is invisible. With this in mind, we hope to see many more areas in computer

graphics to employ the benefits of reduction approaches. For example, multi-resolution

hierarchies and upsampling approaches are first steps of such techniques in the area of

shading and rendering, but a more methodical approach might greatly enhance accu-

racy and performance here.

The trade-off between approximation accuracy and computation speed gained from

175
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model reduction approaches can be steered. Which details should be preserved and

what can be sacrificed is determined by the specific dimensionality reduction and ap-

proximation schemes. For example, the tangent fields we model in Chapter 1 are re-

stricted to the lowest eigenfields of the Hodge–Laplace operator. Hence, we only pre-

serve low frequency details of the fields. In this case, this even regularizes the field, as

smoothness is the main indicator of quality in this application. If specific, classifiable,

high frequency detail is required, it can be added in the form of specific (possibly local-

ized) basis vectors, or artificially added in post processing steps.

In general, the question where to preserve detail and how much data should be added

in order to preserve it is complex. It requires us to distinguish desired features from

unnecessary (or unwanted) features and noise. This problem is explicitly addressed in

Chapter 6, where the user can specify the cost of an additional control point in a spline

in terms of errors in the approximation of the original curve. As discussed there, this

turns out to be a NP-hard optimization problem, which characterizes the nature of the

question.

A different type of approach tries to learn the distinction between noise and desired

detail by making use of additional information, provided in the pre-process. For exam-

ple, if a collection of exemplary deformations of the same shape is available, reducing

the dynamics of the shape to a subspace created from a POD of these examples has been

shown to achieve plausible dynamics for low-dimensional subspaces. However, such

sets of exemplary deformations are rarely provided along with the shape and creating

them is a time-consuming and complex endeavor.

In absence of such structured data, one can resort to more sophisticated machine

learning approaches that make use unstructured collections of data (as can be found on

the internet, where huge databases of shapes are available). Such approaches can try to

learn the classification of important and unimportant dimensions from the data by mak-

ing use of user-provided labels. This has been successfully demonstrated, e.g. for image

compression. One obstacle to carry such methodology over to the field of geometry pro-

cessing is the complex nature of the data describing geometry. For example, it is unclear

how to compare a collection of meshes found "in the wild", i.e. raw triangle meshes, as

their descriptions are not compatible. In contrast to images, there is no canonical order-

ing of the descriptors (vertices and triangles) of the data, such that feature descriptions

cannot be easily matched across several different geometries.

To further expand on the direction of machine learning, let us recall the second type

of approximation that appeared in many of the presented model reduction approaches

of this thesis. That is, the evaluation of elastic forces or other non-linear functionals that

appeared in simulation and modeling tasks. Here we can produce data by simply com-

puting pairs of input and output of such functionals. This data can be used in various

ways, for example one could learn the relation between partial deformation data and

the output of the functional that computes the elastic forces corresponding to the de-

formation. This would yield a reduced approximation for elastic forces. Note that the

input/output pairs correspond to a single geometry and thus we would learn to evaluate
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the functional on that specific shape. The cubature we used in the reduction approach

in Chapter 4 could be classified as one such learning method. It would be interesting

to explore, whether employing CNNs to learn these functionals has a positive impact on

performance and approximation quality.

Aside from machine learning, other examples for fields whose current development

will be beneficial for the construction of novel or enhanced model reduction approaches

are signal processing, in particular compressed sensing (by obtaining better approxima-

tions for the optimal choice of data points to keep), stochastics and statistics (by offering

better heuristic methods for the approximation of non-linear functionals) and dynami-

cal systems (by offering more insight on how to distinguish and classify important and

unimportant dimensions and terms for the long term behavior and general characteris-

tics of solutions).

More computation power gained by ever-growing technological development en-

ables the processing of larger amounts of data at interactive rates. Still, model reduc-

tion approaches remain fundamental to the field of computer graphics. For example,

with the advent of virtual reality on a consumer level, it becomes more important than

ever to enable real-time framerates with an immense level of detail. Model reduction

approaches can vastly benefit such applications.

We hope that these impulses, and the ideas provided within this thesis will help to

demonstrate the benefits of, and nourish the interest in model reduction approaches in

computer graphics.
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