
Reims 2022

CUDA and Applications to 
Task-based Programming

B. Kerbl, M. Kenzel, M. Winter, and M. Steinberger

In this second part of the tutorial, having explored the basic CUDA programming model in
part one, we will now take a closer look at how the programming model maps to the
underlying hardware architecture and discuss various low-level aspects that are crucial for
performance.
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example.cu

25.04.2022

__global__ void add_vectors_kernel(float* c, const float* a, const float* b, int N)
{

int i = blockIdx.x * blockDim.x + threadIdx.x;

if (i < N)
c[i] = a[i] + b[i];

}

void add_vectors(float* c, const float* a, const float* b, int N)
{

constexpr int block_size = 512;
const int num_blocks = (N + block_size - 1) / block_size;

add_vectors_kernel<<<num_blocks, block_size>>>(c, a, b, N);
} CPU code

GPU code

The first step in mapping CUDA to the underlying hardware is translating CUDA C++
code into machine code. So let’s start by having a look at the process via which a CUDA
program is compiled into an executable that runs code on the GPU. A good understanding
of this process can be very helpful when it comes to diagnosing build problems or just
deciding how to best structure a codebase that uses CUDA.

A typical CUDA program consists of two kinds of code: host code that’s meant to run on
the CPU, and device code that’s meant to run on the GPU. The simple example program
here computes the sum of two vectors. We have a kernel function that performs the actual
computation on the GPU as well as a host function that can be called on the CPU side in
order to kick off the computation on the GPU by launching the kernel.

2



Reims 2022

simplified view*

__global__ void add_vectors_kernel(…)
{

unsigned int i = …;

if (i < N)
c[i] = a[i] + b[i];

}

void add_vectors(float* c, const float* a, const float* b, int N)
{

constexpr int block_size = 512;
const int num_blocks = (N + block_size - 1) / block_size;

__cudaLaunch(…);
}

__global__ void add_vectors_kernel(float* c, const float* a, const float* b, int N)
{

int i = blockIdx.x * blockDim.x + threadIdx.x;

if (i < N)
c[i] = a[i] + b[i];

}

void add_vectors(float* c, const float* a, const float* b, int N)
{

constexpr int block_size = 512;
const int num_blocks = (N + block_size - 1) / block_size;

add_vectors_kernel<<<num_blocks, block_size>>>(c, a, b, N);
}
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CUDA Build Process*

example.cu

nvcc.exe

cudafe++.exe

host C++ compilerhost code

device code

device compiler

ptxas.exe

.obj

Linker example.exe

add_vectors_kernel<<<num_blocks, block_size>>>(c, a, b, N);

.obj

.ptx
(intermediate language)

.cubin
(machine code)

fatbinary.exe

When compiling our example source file with nvcc, the first step nvcc will perform is to
run the CUDA C++ front end cudafe++ on the input source file. This tool splits the input
source code into separate source files, one with code to be compiled for the CPU and one
with code to be compiled for GPU. It will also replace CUDA-specific syntax constructs
like kernel launches with CUDA runtime library calls. The resulting CPU-side code is then
simple standard C++ that can be fed into the normal host C++ compiler in order to obtain a
normal object file.

Device code is instead fed into a device C++ compiler that generates PTX assembly, an
intermediate representation for GPU code similar to, e.g., LLVM. This PTX code can then
be assembled by the ptxas tool into a CUDA binary that contains actual machine code for a
particular target GPU architecture. Both the PTX as well as precompiled binaries for
various GPU architectures are then packed into an object file via the fatbinary tool.

Finally, the object file with the CPU-side code as well as the object file containing the
GPU binaries can then be linked to form an executable. At runtime, the generated CPU-
side code will call into the CUDA runtime libraries in order to perform work on the GPU.
The CUDA runtime libraries take care of loading GPU binaries as needed using either one
of the available precompiled GPU binaries or falling back to JIT compilation of the PTX if
no suitable precompiled binary can be found.
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Parallel Thread Execution (PTX)

• virtual GPU architecture
• intermediate language target

• translated into actual machine code
• by ptxas.exe
• by driver at runtime (JIT)

• analogous to LLVM, SPIR-V, DXIL, etc.
• somewhat high-level
• well-documented
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.visible .entry _Z10add_kernelPfPKfS1_j(
.param .u64 _Z10add_kernelPfPKfS1_j_param_0,
.param .u64 _Z10add_kernelPfPKfS1_j_param_1,
.param .u64 _Z10add_kernelPfPKfS1_j_param_2,
.param .u32 _Z10add_kernelPfPKfS1_j_param_3

)
{
Lfunc_begin0:

ld.param.u64 %rd1, [_Z10add_kernelPfPKfS1_j_param_0
ld.param.u64 %rd2, [_Z10add_kernelPfPKfS1_j_param_1
ld.param.u64 %rd3, [_Z10add_kernelPfPKfS1_j_param_2
ld.param.u32 %r2, [_Z10add_kernelPfPKfS1_j_param_3]

Ltmp0:
mov.u32 %r3, %ctaid.x;
mov.u32 %r4, %ntid.x;
mov.u32 %r5, %tid.x;
mad.lo.s32 %r1, %r3, %r4, %r5;
setp.ge.u32 %p1, %r1, %r2;
@%p1 bra LBB0_2;

cvta.to.global.u64 %rd4, %rd2;
Ltmp1:

mul.wide.u32 %rd5, %r1, 4;
add.s64 %rd6, %rd4, %rd5;

Ltmp2:
cvta.to.global.u64 %rd7, %rd3;

Ltmp3:
add.s64 %rd8, %rd7, %rd5;
ld.global.f32 %f1, [%rd8];
ld.global.f32 %f2, [%rd6];
add.f32 %f3, %f2, %f1;

Ltmp4:
cvta.to.global.u64 %rd9, %rd1;

Ltmp5:
add.s64 %rd10, %rd9, %rd5;
st.global.f32 [%rd10], %f3;

There are two levels of assembly language one will encounter in CUDA. The first is
Parallel Thread Execution (PTX) which serves as an intermediate representation for GPU
code similar to, e.g., LLVM. PTX can be consumed by the CUDA driver directly or by the
ptxas command line tool in order to be turned into executable machine code for a given
GPU.

PTX is reasonably simple to read and well documented. While PTX is not what actually
runs on a real GPU, it has similarities to the real GPU instruction set architectures. PTX
does, however, contain higher-level constructs such as, e.g., functions, uses simplified
control flow mechanisms, and many of its abstract instructions ultimately map to complex
sequences of actual machine instructions. In order to fully understand the performance
characteristics of a given piece of CUDA, e.g., as part of the profiling and optimization
workflow, it is therefore often necessary to go further down to the actual machine code.
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SASS (Shader Assembly?)

• actual machine instructions
• obtained by disassembling .cubin
• not really documented

• superficial documentation in CUDA Toolkit
• nvdisasm.exe
• some insights to be found in NVIDIA patents
• various reverse engineering efforts

25.04.2022 CUDA and Applications to Task-based Programming 5

_Z10add_kernelPfPKfS1_j:
MOV R1, c[0x0][0x20]
S2R R0, SR_CTAID.X
S2R R2, SR_TID.X
XMAD.MRG R3, R0.reuse, c[0x0] [0x8].H1, RZ
XMAD R2, R0.reuse, c[0x0] [0x8], R2
XMAD.PSL.CBCC R0, R0.H1, R3.H1, R2
ISETP.GE.U32.AND P0, PT, R0, c[0x0][0x158], PT
NOP
@P0 EXIT
SHL R6, R0.reuse, 0x2
SHR.U32 R0, R0, 0x1e
IADD R4.CC, R6.reuse, c[0x0][0x148]
IADD.X R5, R0.reuse, c[0x0][0x14c]
IADD R2.CC, R6, c[0x0][0x150]
LDG.E R4, [R4]
IADD.X R3, R0, c[0x0][0x154]
LDG.E R2, [R2]
IADD R6.CC, R6, c[0x0][0x140]
IADD.X R7, R0, c[0x0][0x144]
FADD R0, R2, R4
STG.E [R6], R0
NOP
EXIT
.L_1:
BRA `(.L_1)
.L_26:

The second assembly language one will encounter in CUDA is known as SASS. This
language is used to denote the actual machine instructions that run on a given GPU. The
nvdisasm tool can be used to disassemble a CUDA binary into SASS. In contrast to PTX,
SASS is unfortunately very poorly documented; even the name we can only assume to be
an acronym for “shader assembly”. What little is publicly known about SASS is based on
some very tight-lipped instruction listings found in the CUDA Toolkit documentation as
well as reverse engineering efforts. Some insight into the workings of the machine
instruction sets can also be gained from various NVIDIA patents relating to SIMT
execution.

Nevertheless, PTX does not reflect various important aspects of how programs are
executing on the GPU with a degree of accuracy sufficient for what some of the following
discussion requires. Thus, for the remainder of this presentation, we will be looking at
SASS code.

5



Reims 2022

CUDA Build Process: Summary

• factor CUDA C++ into host and device parts
• compiled separately

• generated host code
• takes care of loading matching GPU binary stored in .exe
• translate kernel<<<…>>>(…) syntax into API calls

• “Fat Binary” can contain both
• PTX for various compute capabilities

• allows the binary to target unknown architecture
• precompiled machine code for specific GPU architectures

• optimal performance on certain known devices
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GPU Architecture Recap

• maximize throughput

• Basic Premise: we have more work than we have cores.

• instead of waiting for long-running operation: switch to other task

• Prerequisites:
• enough work massively parallel workload
• very fast context switching
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From part 1, we remember that, contrary to CPU architectures which are designed to
minimize latency, GPU architectures are designed to maximize throughput. The basic
premise of GPU architecture is that we have so much independent work to get through that
instead of waiting for any long-running operation to complete, we can always just switch
to another task and, thus, hide the latency of long-running operations by doing other work
until their results are available. For this approach to be successful, we need both a
workload that is sufficiently large and parallelizable so that there is always enough
independent work to switch between, and a means of switching between the execution
contexts associated with different control flows very quickly.
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DRAM

GPU: maximize throughput

Control
ALU

ALU

ALU

ALU

Cache

DRAM

CPU: minimize latency

Instead of spending silicon on large caches, complex control logic for out-of-order
execution, and other mechanisms that aim to speed up how quickly a single control flow
can progress individually, GPU architectures spend silicon on building simple but many
cores with large register files in order to keep the execution contexts of many independent
control flows resident on chip to rapidly switch between. To further increase the fraction of
silicon going towards computation as opposed to control logic, GPUs also rely on a SIMD
approach. Each control logic is associated with multiple arithmetic logic units (ALUs),
allowing for the parallel execution of multiple control flows as long as they all execute the
same instructions just on different data.
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Taking a closer look at the organization of a typical GPU, we find what is essentially a
two-level hierarchy that consists of groups of groups of SIMD cores. The GPU itself
consists of multiprocessors. Each multiprocessor contains a number of warp schedulers.
Associated with each warp scheduler is a register file, a set of 32-bit integer (INT32), 32-
bit floating point (FP32), 64-bit floating point (FP64), and tensor core ALUs, load/store
units (LD/ST), and a special function unit (SFU). Each multiprocessor also contains a local
shared memory as well as a number of texture units that are shared among its warp
schedulers. Part of the local shared memory is used as an L1 cache (L1$), the rest can be
used to facilitate fast communication between threads that reside on the same
multiprocessor.
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Warp Scheduling

• warp: group of 32 threads

• each warp scheduler can schedule to a number of
• ALUs

• FP32, INT32, FP64, tensor cores
• special function units

• sqrt, exp, …
• load/store units

• thread context for multiple warps resident on chip
• latency hiding

• every clock cycle:
• warp scheduler elects eligible warp
• schedules instruction from that warp
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As already mentioned in part 1, the fundamental unit of execution on a GPU is a warp, a
group of 32 threads. In order to run a kernel on the GPU, each warp scheduler is assigned
a set of warps to execute. The execution context of all threads that are part of each warp is
kept locally in the register file associated with the warp scheduler responsible for the warp.
The warp scheduler’s job is to map execution of the threads in its warps to the hardware
unit (ALUs, etc.) it’s responsible for.

Whenever it could issue a new instruction (e.g., each clock cycle unless all of the
necessary resources are occupied), the warp scheduler will pick the next instruction from
one of its warps that are ready to run (i.e., not waiting on the result of a previous
operation) and schedule it to the appropriate hardware unit.

11



Reims 2022

Warp Scheduling: Latency Hiding

12
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Let’s look at a simple example. Suppose we have a warp scheduler that has four warps to
execute. Initially, all four warps are ready to run.
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Warp Scheduling: Latency Hiding
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At instruction issue time, the warp scheduler simply picks any one of the four ready
warps—in this case, warp 0—and schedules its next instruction.
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Warp Scheduling: Latency Hiding
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In this example, the first thing the kernel program did was perform some memory access.
Thus, execution of the first instruction resulted in a memory request. The next instruction
in warp 0 also depends on the result of the memory request. Thus, warp 0 is now
suspended as its next instruction cannot be issued until the memory request has been
served.
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Warp Scheduling: Latency Hiding
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However, while warp 0 is suspended, there are still three other warps that are ready to run.
Thus, in the next cycle, the warp scheduler can simply pick any of these three other warps
to issue instructions from. Let’s say it picks warp 1 in this case.
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Warp Scheduling: Latency Hiding
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As all four warps are running the same kernel program, execution of the next instruction in
warp 1 will result in a memory access as well. Thus, another memory request is now in
flight and warp 1 is suspended as well.
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Warp Scheduling: Latency Hiding

17

warp 0

Ready 
warps 

Executing 
warp 

Suspended 
warps 

Memory 
requests

warp 1

warp 2

warp 3

memory 0 memory 1

25.04.2022 CUDA and Applications to Task-based Programming

The same process repeats for the remaining two warps. We issue the next instruction from
warp 2.
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Warp Scheduling: Latency Hiding
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The instruction, again, results in a memory request, the corresponding warp 2 is
suspended.
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Warp Scheduling: Latency Hiding
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We still have one more ready warp, so we issue its next instruction.
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Warp Scheduling: Latency Hiding
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However, while we were busy executing instructions from the previous three warps, the
initial memory request spawned by warp 0 completes. Thus, as we are executing the next
instruction from warp 3, warp 0 becomes ready again since its next instruction now has its
dependencies satisfied.
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Warp Scheduling: Latency Hiding
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As with the other three warps, execution of the first instruction in warp 3 results in yet
another memory request and warp 3 is suspended.
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Warp Scheduling: Latency Hiding
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However, as warp 0 has become ready again in the meanwhile, we can issue its next
instruction. Thus, we were able to hide the latency of the memory request from warp 0 by
executing instructions from our other three warps while the memory request was being
served. Assuming the other memory requests will complete within a similar amount of
time, there is a good chance that at least warp 1 will be ready again by the next time warp
0 has to be suspended.
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Warp Scheduling: Control Flow

• SIMT/SIMD execution
• one control flow, multiple data paths
• spend more silicon on raw computation

• What about branches?
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So far, we have simply assumed that all threads within a warp always need to run the same
instruction next, allowing us to execute all threads of a warp in parallel in SIMD fashion.
This is of course only true if we assume no complex control flow such as, e.g., branches in
the individual threads. In general, we need to be able to handle such control flow, however.
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DISCLAIMER: The following presents our best educated guesses based
on what little information NVIDIA has disclosed about the features
we’re about to discuss in the form of documentation, technical reports,
and various patents combined with what others have discovered,
detailed on, and otherwise mentioned in various blog posts, articles,
and forum posts. It does, for the most part, not constitute official
information, there is some room for error. It should, however, serve
sufficiently well for the purposes of forming a working understanding of
how control flow is implemented at the ISA level.

24



Reims 2022

Control Flow Categories

• unconditional branches
• all threads jump to same target
• no problem

• uniform branches
• all threads conditionally jump to same target
• no problem

• non-uniform branches
• some threads jump to target, others don’t
• problem (Divergence)

25

if (blockIdx.x < 16)
{

…
}

if (threadIdx.x < 16)
{

…
}

f();

goto x;
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If we consider the different ways in which control flow may evolve within a warp, we find
that there are basically three categories of branches. First, we have the case of an
unconditional branch: all threads jump to the same target, e.g., a function call or goto.
Such control flow poses no problem; before and after such a branch, the next instruction
for all threads in the warp is the same.

Second, we have the case of a uniform branch: threads conditionally jump to a target, but
the condition evaluates to the same value for all threads within the warp. Since all threads
of the warp will go on into the same part of the branch, such control flow also poses no
problem; before and after such a branch, the next instruction is once again the same for all
threads in the warp.

Finally, we have the case of a non-uniform branch: threads conditionally jump to a target,
but the condition does not evaluate to the same value for all threads within the warp. Thus,
some threads jump while other threads don’t. Such a branch gives rise to a condition
known as divergence. Control flow no longer continues along the same path for all threads
of the warp.
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There are various further kinds of control flow one may want to consider
such as the case of indirect branches where all threads jump to a target,
but the target of the jump may be different for each thread. While the
exact circumstances via which divergence may arise vary, what is
ultimately of importance is simply whether control flow could diverge or
not, and whether control flow does diverge or not.

25



Reims 2022

Divergent Control Flow in SIMT

• instructions can only be issued for warp as a whole
• execution of divergent branches must be serialized

• loss of parallelism, underutilization of hardware

• reconverge after divergent section

26

if (threadIdx.x & 0x4)
{

A();
}
else
{

B();
}

C();
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As previously discussed, the warp scheduler can only issue instructions for the entire warp
as a whole. Thus, if control flow within a warp diverges, we are forced to serialize
execution of the two divergent branches by, e.g., first running the instructions for one
branch only for the threads that have taken this branch and then running the instructions
for the other branch only for the threads in that other branch.

During execution of each branch, only a subset of threads will be active, which means that
some of the hardware resources that could have been used to perform computation may
effectively go unused. Thus, divergence results in a loss of parallelism and potential
underutilization of the hardware. It is therefore generally desirable to reconverge the warp,
i.e., move back to a common control flow as soon as possible.

For the CUDA programmer, this means that divergent code should generally be avoided
and, where unavoidable, sections of code that need to be run in divergence should be kept
as short as possible.
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Divergent Control Flow: Predication

• most-basic mechanism to implement divergent control flow

• Instructions prefixed with guard predicate
• 1-bit register

• Instructions only take effect for threads with predicate set to 1
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The most basic mechanism by which we can implement divergent control flow within a
warp is predication. Instructions can be prefixed with a guard predicate that nominates a 1-
bit predicate register. When a predicated instruction is executed, its effects are only
materialized for the threads in which the corresponding predicate register contains a 1.
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Example 1

__global__ void test(int* arr)
{

int tid = blockIdx.x * blockDim.x + threadIdx.x;

if (arr[tid] < 0)
arr[tid] = 42;

}

https://godbolt.org/z/bdvnac3fo

Let’s look at a simple example. The kernel here replaces all negative elements in a given
array with the value 42. Since, in general, not all threads will be writing to their
corresponding elements in the array, we are indeed dealing with a divergent branch.
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Example 1: Predication

test(int *):
MOV R1, c[0x0][0x28] 

S2R R2, SR_CTAID.X
MOV R5, 0x4
S2R R3, SR_TID.X
IMAD R2, R2, c[0x0][0x0], R3
IMAD.WIDE R2, R2, R5, c[0x0][0x160] 
LDG.E.SYS R0, [R2] 
ISETP.GT.AND P0, PT, R0, -0x1, PT
@P0 EXIT
MOV R5, 0x2a
STG.E.SYS [R2], R5
EXIT

.L_x_0:
BRA `(.L_x_0)
NOP
NOP
NOP
.L_x_1:

__global__ void test(int* arr)
{

int tid = blockIdx.x * blockDim.x + threadIdx.x;

if (arr[tid] < 0)
arr[tid] = 42;

}

Looking at the assembly for the generated machine code, we note the EXIT instruction
prefixed with predicate P0. Threads for which the predicate register P0 contains a 1 will
stop executing when this instruction is reached. All other threads will go on, move the
value 42 into register R5, and store it from there to the global memory location at the
address previously computed in R2. The value of the predicate register is set up by the
ISETP instruction, which sets a given predicate register based on the result of an integer
comparison, in this case, a greater-than (.GT) comparison against the value -1.
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Example 2

__global__ void test(int* arr)
{

int tid = blockIdx.x * blockDim.x + threadIdx.x;

if (arr[tid] < 0)
{

if (tid % 2 == 0)
arr[tid] += 2;

else
arr[tid] -= 8;

}
}

https://godbolt.org/z/bc9x9vW84

This kernel presents a slightly more complex example. We are either adding 2 or
subtracting 8 from all negative elements in an array depending on whether the element
appears at an even or odd index within the array.
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Example 2: Predication

test(int *):
IMAD.MOV.U32 R1, RZ, RZ, c[0x0][0x28] 

S2R R0, SR_CTAID.X
IMAD.MOV.U32 R5, RZ, RZ, 0x4
S2R R3, SR_TID.X
IMAD R0, R0, c[0x0][0x0], R3
IMAD.WIDE R2, R0, R5, c[0x0][0x160] 
LDG.E.SYS R4, [R2] 
ISETP.GT.AND P0, PT, R4, -0x1, PT
@P0 EXIT
LOP3.LUT R0, R0, 0x1, RZ, 0xc0, !PT
ISETP.NE.U32.AND P0, PT, R0, 0x1, PT
@!P0 IADD3 R5, R4, -0x8, RZ
@!P0 STG.E.SYS [R2], R5
@!P0 EXIT
IADD3 R5, R4, 0x2, RZ
STG.E.SYS [R2], R5
EXIT

.L_x_0:
BRA `(.L_x_0)
NOP
NOP
NOP

__global__ void test(int* out, int N)
{

unsigned int tid = blockIdx.x * blockDim.x + threadIdx.x;

if (tid < N)
{

if (tid % 2 == 0)
out[tid] = out[tid] + 2;

else
out[tid] = out[tid] - 8;

}
}

Just like in the previous example, the generated machine code starts off by computing the
address of the array element to operate on, loads its value, and sets the predicate register
P0 depending on whether the value is larger than -1. If the array element was non-
negative, we exit. Otherwise, we go on, compute the bitwise logical AND of the array
index in R0 and the number 1 via the LOP3 instruction (this effectively computes the index
modulo 2), and set (.ISETP) predicate register P0 based on whether the result is not equal
(.NE) to 1.

We then add -8 to our element value, store the result back to memory, and exit, all
predicated on the logical complement of the value in the predicate register P0. Next, we
add 2 to our element value, store the result back to memory, and exit. This effectively
implements the serialized execution of the two halves of the branch associated with the
inner if in the original C++ code. We first run code that implements the case of the odd
index and exit. The only threads that have not yet exited after this part of the sequence are
the threads with negative elements at even indices. The instructions implementing this last
part of our two nested branches can therefore simply be run without requiring a predicate.
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Divergent Control Flow: CRS Stack

• what about branches in branches?
• branches in branches in branches?

• …

• branches may still turn out to be uniform at runtime
• wasteful to always execute both sides

• Call, Return, Synchronization (CRS) Stack
• keep mask of currently active threads
• push active mask
• run branch(es)
• pop active mask to reconverge
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if (A)
{

if (B)
{

if (C)
{

…
}
else
{

…
}

}
else
{

…
}

}

With divergent branches implemented based on predication, the program simply executes
as one linear stream of instructions for the entire warp. However, control flow is forced to
pass over all instructions on both sides of every branch. Many branches, while potentially
divergent, will often actually be taken in unison by all threads in a warp. Having to still
pass over all instructions on the other side of a branch even if no thread in the warp has
actually taken this path is wasteful and can introduce significant overhead especially as
branches are nested more and more deeply.

In order to solve this problem, the hardware keeps track of a bitmask of the currently
active threads within a warp. Like with predication, instructions only take effect for the
threads that are marked as active in the current active mask. A Call, Return,
Synchronization (CRS) Stack is used to save and restore the set of active threads before
and after processing a branch. This allows for dynamic handling of nested branches and
also doubles as a call stack for function calls.
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Example 3

__device__ void A();
__device__ void B();
__device__ void C();

__device__ void test()
{

int tid = threadIdx.x % 32;

if (tid < 16)
{

A();
}
else
{

B();
}

C();
}

https://godbolt.org/z/becxaxY95

To illustrate how more complex control flow can be implemented efficiently via a CRS
stack, we will be using this example of a function that contains a divergent branch which
itself contains calls to other functions. The lower half of the threads calls function A, the
upper half calls function B, and, finally, all threads call function C.
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Example 3: Divergent Branch with CRS Stack

test():
S2R R0, SR_TID.X
SSY `(.L_0) 
LOP.AND.NZ P0, RZ, R0, 0x10
@!P0 BRA `(.L_1) 

.L_2:
JCAL `(_Z1Bv) 

.L_3:
SYNC

.L_1:
JCAL `(_Z1Av) 

.L_4:
SYNC

.L_0:
JCAL `(_Z1Cv) 

.L_5:
RET

.L_6:
BRA `(.L_6) 
NOP
.L_7:

FFFFFFFF  
FFFFFFFF  
FFFFFFFF  
FFFFFFFF  

FFFF0000 

FFFF0000 

0000FFFF  

0000FFFF  

FFFFFFFF  

FFFFFFFF  

FFFFFFFF .L_0
FFFF0000 .L_2

mask PC

__device__ void test()
{

int tid = threadIdx.x % 32;

if (tid < 16)
{

A();
}
else
{

B();
}

C();
}

CRS Stack

0000FFFF .L_4
⋮

FFFF0000 .L_3
⋮

FFFFFFFF .L_5
⋮

When called, the generated machine code for this function proceeds as follows: All threads
load their thread index into R0. The next instruction is a set synchronization (SSY)
instruction. This instruction pushes the current active mask as well as the instruction
pointer for where an upcoming branch will reconverge onto the CRS stack. The code then
sets predicate register P0 based on which half of the warp the thread is in (false for threads
0..15, true for threads 16..31). The following BRA instruction then branches to .L_1
predicated on P0. The branch instruction pushes the mask of the threads that did *not*
take the branch as well as the instruction pointer for where these threads would continue
onto the CRS stack. Only the lower half of the threads executes the branch instruction. The
active mask is updated accordingly and control is transferred to .L_1.

The next instruction at that point in the program is the call to function A. The current
active mask as well as the address of the instruction with which to continue after the call
are pushed onto the CRS stack. Control is transferred into the function. Eventually, the
function will return, popping the corresponding entry off the CRS stack. The active mask
will be restored to what it was before the call and control transferred to the return address
saved on the stack, i.e., the next instruction after the call.
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After calling function A, we execute a SYNC instruction. The purpose of a
SYNC instruction is to reconverge the warp. In order to do so, it pops the
topmost entry off the CRS stack, restoring the active mask to the mask
previously saved on the stack and transferring control to the associated
instruction pointer. In this case, the entry popped off the stack is the one
put there by the initial branch instruction. The active mask is updated to
the mask corresponding to the threads that did not take the branch, and
control is transferred to where these threads would have continued. Thus,
this SYNC instruction effectively now switches to executing the other half
of the warp that did not take the branch.

The reactivated threads of the other branch now execute their next
instruction, which is the call to function B. As before, the call will save
the active mask and return address onto the CRS stack before transferring
control into function B. Once the function call returns, the active mask
will be restored and the next instruction after the call executed, which is
another SYNC instruction. Since the topmost element on the CRS stack is
now the one pushed by the SSY instruction at the very beginning, this
SYNC now has the effect of reconverging the warp by restoring the active
mask to full and transferring control to the convergence point just after the
code for both branches.

Once reconverged, all threads call function C and then finally return,
restoring the active mask and transferring control to where the function
itself was originally called from.

Note: Older architectures used a pop sync flag (.S) that could be placed on
instructions (e.g.: NOP.S, MUL.S, etc.) instead of an explicit SYNC
instruction.
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Independent Thread Scheduling (ITS)

• keep track of branch tree

• schedule active branches instead of warps
• still can only issue instructions for one branch at a time, still loss of parallelism

• forward-progress guarantee for all branches

• potentially better utilization: one branch not ready  the other one might be
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if (threadIdx.x & 0x4)
{

A();
}
else
{

B();
}
__syncwarp();
C();
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With a CRS stack, information about active branches is implicit/hidden in the structure on
the stack. Active branches could appear arbitrarily far from the current top of the stack.
Even if we could discover other branches on the stack, we could not continue running
another branch past a point where it itself branches any further before the current stack has
been dealt with. Thus, in an approach using a CRS stack, we generally have to run one half
of a branch to completion before we can switch to the other half.

As a result, classic warp scheduling based on a CRS stack imposes restrictions such as that
threads in two separate parts of a branch in the same warp cannot synchronize with one
another. Many concurrent algorithms cannot be used, the SIMT programming model
becomes a leaky abstraction. Ideally, all threads would be able to make progress
independently from other threads, divergence would only be a matter of performance but
not correctness. Recent CUDAGPUs with Independent Thread Scheduling (ITS) explicitly
track the entire branch tree for a warp. Instead of just scheduling warps as a whole, the
warp scheduler can switch between active branches of warps. While execution of
divergent branches still has to be serialized, it can be interleaved. This not only removes
the restrictions concerning intra-warp synchronization by providing a forward-progress
guarantee for each thread but also unlocks additional opportunities for latency hiding
(larger set of potential work to choose from).
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The Memory Hierarchy

Memory tends to be *the* bottleneck in any modern system. And GPUs are no exception.
In fact, given the massive amount of parallel computation that is typically taking place on
a GPU at any given moment, the effect of memory on performance is arguably even more
pronounced on the GPU than we might be used to from working on the CPU. Thus, in
many ways, GPU programming really is all about making the most of the GPU’s memory
subsystem.
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As we’ve already seen, the GPU consists of a number of multiprocessors. On each
multiprocessor, we find SIMD cores as well as local shared memory and texture units. The
GPU is connected to video memory as well as system memory via PCIe. A level-2 cache
(L2$) is used between the chip and external memory. A portion of the local shared memory
on each multiprocessor is used as level-1 data cache (L1$). Data can be fetched into
registers to feed the cores via L1$ as well as from local shared memory and from texture
units. Data can be written out from registers either through L1$ or to shared memory.
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GPU Memory Hierarchy

• multiple paths to fetch from memory
• different trade-offs
• special-purpose hardware

• exposed in CUDA in the form of 
memory spaces
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CUDA Memory Spaces

• Global Memory
• shared by all threads on the device
• read and write
• cached (L2$ and L1$)
• general-purpose data store

• Local Memory
• private to each thread
• register spills, stack
• read and write
• cached (L2$ and L1$)

• Registers
• private to each thread

25.04.2022 CUDA and Applications to Task-based Programming 39

• Shared Memory
• shared by threads within the same block
• low-latency communication

• Texture Memory
• read-only
• spatially-local access
• hardware filtering, format conversion, 

border handling

• Constant Memory
• read-only
• optimized for broadcast access

In CUDA, these hardware resources are exposed in the form of a number of memory
spaces, each with different properties designed for different kinds of access patterns.
CUDA applications take advantage of the various capabilities found within the GPU’s
memory system by placing and accessing data in the corresponding CUDAmemory space.

We will now have a more detailed look at each one of these memory spaces and what they
have to offer.
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Global Memory

• general-purpose data store
• backed by device memory

• use for input and output data
• linear arrays

• relatively slow
• bandwidth: ≈ 300–700 GiB/s (GDDR5/6 vs HMB2)
• non-cached coalesced access: 375 cycles
• L2 cached access: 190 cycles
• L1 caches access: 30 cycles

⇒ crucial to utilize caches
⇒ access pattern important

40

device memory

L2$

L1$

registers

25.04.2022 CUDA and Applications to Task-based Programming

The most important memory space is global memory. It corresponds to device memory
and is accessible to all threads running on the GPU. As a result of this wide scope,
memory accesses potentially have to bubble all the way up to, or all the way down from
device memory. Making use of the available caches is, thus, vital for performance.
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Global Memory: Caches

• purpose not the same as CPU caches
• much smaller size (especially per thread)
• goal is not minimizing individual access latency via temporal reuse
• instead: smooth-out access patterns

• don’t try cache blocking like on the CPU
• 100s of threads accessing L1$
• 1000s of threads accessing L2$
• use shared memory instead

41

Example: high-end gaming GPU
68 SMs
2048 threads per SM
5120 KiB of L2$
128 KiB of L1$
 64 B L1$, 37 B L2$ per thread

25.04.2022 CUDA and Applications to Task-based Programming
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Global Memory: Transactions

• memory access granularity / cache line size
• L1$ / L2$: 32 B  / 128 B ( 4 sectors of 32 B )

• stores
• write-through for L1$
• write-back for L2$

• memory operations issued 
per warp

• threads provide addresses
• combined to lines/segments needed
• requested and served

• try to get coalescing per warp
• align starting address
• access within a contiguous region
• ideal: consecutive threads access consecutive memory locations

42

Sector 0 Sector 1 Sector 2 Sector 3

128 B L1 cache line

128 B alignment

32 B sector

25.04.2022 CUDA and Applications to Task-based Programming

One cache line is 128 bytes, which is split into 4 sectors of Size 32 bytes. Memory
Transactions are 32 byte long and only actually requested 32 byte sectors are read from
memory.
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Granularity Example 1/4

43

testCoalesced done in 0.065568 ms⇔ 255.875 GiB/s
thread id
0 1 2 43 5 6 7 8 10 12 14 15 169 11 13 17 18 2019 21 22 23 24 26 28 29 30 3125 27

0 1 2 43 5 6 7 8 10 12 14 15 169 11 13 17 18 2019 21 22 23 24 26 28 29 30 3125 27memory location

128 Bytes

__global__ void testCoalesced(int* in, int* out, int elements)
{

int block_offset = blockIdx.x*blockDim.x;
int warp_offset = 32 * (threadIdx.x / 32);
int laneid = threadIdx.x % 32;
int id = (block_offset + warp_offset + laneid) % elements;

out[id] = in[id];
}

25.04.2022 CUDA and Applications to Task-based Programming

Using this example of a simple kernel that copies data from one array to another, we
illustrate the importance of coalescing. In this first test, all threads of a warp access
consecutive memory locations.
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Granularity Example 1/4

44

Coalesced

25.04.2022 CUDA and Applications to Task-based Programming
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Granularity Example 2/4

45

testCoalesced done in 0.065568 ms⇔ 255.875 GiB/s
testMixed done in 0.068128 ms⇔ 246.26 GiB/s

thread id
0 1 2 43 5 6 7 8 10 12 14 15 169 11 13 17 18 2019 21 22 23 24 26 28 29 30 3125 27

0 1 2 43 5 6 7 8 10 12 14 15 169 11 13 17 18 2019 21 22 23 24 26 28 29 30 3125 27memory location

128 Bytes

__global__ void testMixed(int* in, int* out, int elements)
{

int block_offset = blockIdx.x*blockDim.x;
int warp_offset = 32 * (threadIdx.x / 32);
int elementid = (threadIdx.x * 7) % 32;
int id = (block_offset + warp_offset + elementid) % elements;

out[id] = in[id];
}

25.04.2022 CUDA and Applications to Task-based Programming

In this second test, consecutive threads within a warp don’t access consecutive memory
locations anymore. However, memory accesses within the warp still stay within a 128 B
cache line. We see that performance is comparable to the previous test.
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Granularity Example 2/4

46

Mixed

25.04.2022 CUDA and Applications to Task-based Programming
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Granularity Example 3/4

47

0 1 2 43 5 6 7 8 10 12 14 15 169 11 13 17 18 2019 21 22 23 24 26 28 29 30 3125 27

thread id
0 1 2 43 5 6 7 8 10 12 14 15 169 11 13 17 18 2019 21 22 23 24 26 28 29 30 3125 27

0 1 2 43 5 6 7 8 10 12 14 15 169 11 13 17 18 2019 21 22 23 24 26 28 29 30 3125 27memory location

128 Bytes

template<int offset>
__global__ void testOffset(int* in, int* out, int elements)
{

int block_offset = blockIdx.x*blockDim.x;
int warp_offset = 32 * (threadIdx.x / 32);
int laneid = threadIdx.x % 32;
int id = ((block_offset + warp_offset + laneid) * offset) % elements;

out[id] = in[id];
}

testCoalesced -> 255.875 GiB/s
testOffset<2> -> 134 GiB/s testOffset<4> -> 72.9 GiB/s
testOffset<8> -> 36.8 GiB/s testOffset<32> -> 17.2 GiB/s

25.04.2022 CUDA and Applications to Task-based Programming

By introducing a stride between the memory locations that consecutive threads access, we
spread the memory access for each warp out to cover multiple cache lines. As we increase
the stride, performance degrades roughly linearly with the number of cache lines each
warp has to fetch.
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Granularity Example 3/4

48

Coalesced 255.875 GB/s

25.04.2022 CUDA and Applications to Task-based Programming
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Offset<2> 134.123 GiB/s

Granularity Example 3/4

4925.04.2022 CUDA and Applications to Task-based Programming

Comparing to the baseline of perfectly coalesced access, we find that the amount of
memory transfer between the SM and L2$ does in fact increase exactly linearly with the
number of cache lines that need to be fetched. Despite each kernel accessing the same
amount of data, due to the holes in the memory access pattern, the efficiency of the
memory access degrades significantly.
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Granularity Example 3/4
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Offset<4> 72.9 GiB/s

25.04.2022 CUDA and Applications to Task-based Programming
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Offset<8> 36.81 GiB/s

Granularity Example 3/4
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Offset<32> 17.26 GiB/s

Granularity Example 3/4

5225.04.2022 CUDA and Applications to Task-based Programming
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Granularity Example 4/4

53

testCoalesced done in 0.0655 ms⇔ 255.875 GiB/s
testOffset<32> done in 0.972 ms⇔ 17.2605 GiB/s
testScattered done in 2.0385 ms⇔ 8.23 GiB/s

__global__ void testScattered(int* in, int* out, int elements)
{

int block_offset = blockIdx.x*blockDim.x;
int warp_offset = 32 * (threadIdx.x / 32);
int elementid = threadIdx.x % 32;
int id = ((block_offset + warp_offset + elementid) * 121) % elements;

out[id] = in[id];
}

25.04.2022 CUDA and Applications to Task-based Programming

A more or less random access pattern using a simple linear congruential generator to
compute the indices results in the worst performance.
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Scattered 8.23 GiB/s

Granularity Example 4/4

5425.04.2022 CUDA and Applications to Task-based Programming

However, the overall memory bandwidth usage is comparable to the version with 32
element stride. This is not surprising as in the stride 32 version, every memory access
already gave rise to a separate transaction, which is the worst possible scenario. The fact
that the random access pattern version is even slower than the stride 32 version is
explained by the more complex index computation used in the kernel.
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Granularity Example Summary

• testCoalesced 0.066 ms ⇔ 255.875 GiB/s
testMixed 0.068 ms ⇔ 246.260 GiB/s
testOffset<2> 0.125 ms ⇔ 134.123 GiB/s 
testOffset<4> 0.230 ms ⇔ 72.979 GiB/s 
testOffset<8> 0.456 ms ⇔ 36.812 GiB/s 
testOffset<32> 0.972 ms ⇔ 17.260 GiB/s 
testScattered 2.039 ms ⇔ 8.230 GiB/s

• access pattern within 128 Byte segment does not matter
• offset between data more requests need to be handled
• peak performance not met due to computation overhead
• more scattered data access slower with GDDR RAM

5525.04.2022 CUDA and Applications to Task-based Programming
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Vector Loads / Stores

• many kernels bandwidth bound
• ever copy operation consists of four steps

• compute load & store address (IMAD)
• load (LD) & store (ST)

56

__global__ void device_copy_scalar_kernel(int* d_in, int* d_out, int N) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
for (int i = idx; i < N; i += blockDim.x * gridDim.x) {

d_out[i] = d_in[i];
}

}

/*0058*/ IMAD R6.CC, R0, R9, c[0x0][0x140]
/*0060*/ IMAD.HI.X R7, R0, R9, c[0x0][0x144]
/*0068*/ IMAD R4.CC, R0, R9, c[0x0][0x148]
/*0070*/ LD.E R2, [R6]
/*0078*/ IMAD.HI.X R5, R0, R9, c[0x0][0x14c]
/*0090*/ ST.E [R4], R2

25.04.2022 CUDA and Applications to Task-based Programming

While many kernels are ultimately bandwidth bound, as we’ve seen before, scheduling
overhead can add significant cost on top of what should be a purely bandwidth-limited
operation. Before the memory request itself can be issued, we must first compute the
addresses to load from and store to, which adds latency that cannot easily be hidden since
the memory operations have a data dependency on their results while, at the same time, all
warps are most-likely waiting either on their memory requests to be served or their address
computations to be completed.
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__global__ void copy(int* __restrict d_out, const int* __restrict d_in, int N)
{

int idx = blockIdx.x * blockDim.x + threadIdx.x;

for (int i = idx; i < N; i += blockDim.x * gridDim.x)
d_out[i] = d_in[i];

}

25.04.2022 CUDA and Applications to Task-based Programming

A fist optimization we can make to our simple copy kernel is to annotate the input and
output pointer parameters with the __restrict qualifier. This instructs the compiler to
assume that the input and output will never point to overlapping memory regions. The
implication of this is that the writes through d_out can never affect the values that any of
the reads through d_in will produce. As a result, the compiler can potentially, e.g., fetch
input data through faster non-coherent caches.
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__global__ void copy(int* __restrict d_out, const int* __restrict d_in, int N)
{

int idx = blockIdx.x * blockDim.x + threadIdx.x;

for (int i = idx; i < N; i += blockDim.x * gridDim.x)
d_out[i] = d_in[i];

}

copy(int*, int const*, int):
MOV R1, c[0x0][0x28]
S2R R0, SR_CTAID.X
S2R R3, SR_TID.X
IMAD R0, R0, c[0x0][0x0], R3
ISETP.GE.AND P0, PT, R0, c[0x0][0x170], PT
@P0 EXIT

.L_1:
MOV R5, 0x4
IMAD.WIDE R2, R0, R5, c[0x0][0x168]
LDG.E.CONSTANT.SYS R3, [R2]
IMAD.WIDE R4, R0, R5, c[0x0][0x160]
MOV R7, c[0x0][0xc]
IMAD R0, R7, c[0x0][0x0], R0
ISETP.GE.AND P0, PT, R0, c[0x0][0x170], PT
STG.E.SYS [R4], R3
@!P0 BRA `(.L_1)
EXIT

.L_2:
BRA `(.L_2)

.L_25:

address to load from
load

address to store to

store

25.04.2022 CUDA and Applications to Task-based Programming

Looking at the SASS for our simple copy kernel, we find that there are 7 instructions that
have to complete before each store can be issued.

58



__global__ void copy4(int4* __restrict d_out, const int4* __restrict d_in, int N)
{

int idx = blockIdx.x * blockDim.x + threadIdx.x;

for (int i = idx; i < N / 4; i += blockDim.x * gridDim.x)
d_out[i] = d_in[i];

}

59

address to load from
load

address to store to

store

copy4(int4*, int4 const*, int):
MOV R1, c[0x0][0x28]
S2R R0, SR_CTAID.X
ULDC UR4, c[0x0][0x170]
USHF.R.S32.HI UR4, URZ, 0x1f, UR4
S2R R3, SR_TID.X
ULDC UR5, c[0x0][0x170]
ULEA.HI UR4, UR4, UR5, URZ, 0x2
USHF.R.S32.HI UR4, URZ, 0x2, UR4
IMAD R0, R0, c[0x0][0x0], R3
ISETP.GE.AND P0, PT, R0, UR4, PT
@P0 EXIT
BMOV.32.CLEAR RZ, B0
BSSY B0, `(.L_1)

.L_2:
MOV R3, 0x10
IMAD.WIDE R4, R0, R3, c[0x0][0x168]
LDG.E.128.CONSTANT.SYS R4, [R4]
IMAD.WIDE R2, R0, R3, c[0x0][0x160]
MOV R9, c[0x0][0xc]
IMAD R0, R9, c[0x0][0x0], R0
ISETP.GE.AND P0, PT, R0, UR4, PT
STG.E.128.SYS [R2], R4
@!P0 BRA `(.L_2)
BSYNC B0

.L_1:
EXIT

.L_3:
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One way of improving this situation is by using vector loads and stores. These can load
and store up to 16 bytes at once (assuming the data is suitably aligned). While there are
still 7 instructions to complete before every store, since every store now moves a larger
amount of memory, the instruction overhead per byte moved is significantly reduced.
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Vector Loads / Stores

• improve performance by using vectorized loads and stores
• use vector data types (e.g. int2, float4, uchar4, …)

• require aligned data
• still 7 instructions

• but loads 2×/4× more data

• can help alleviate impact of suboptimal access pattern
• but slightly increase register pressure

• more data at once requires more registers to hold
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Constant Memory

• read-only
• ideal for data read uniformly by warps

• e.g.: coefficients, used to pass kernel parameters

• supports broadcasting
• all threads read same value -> data broadcasted to all 

threads simultaneously
• otherwise diverged -> slowdown

• limited to 64 KiB

61

device memory

L2$

constant$/tex$

registers immediates
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Kernel programs often need to access small amounts of read-only data such as
coefficients/parameters where, at every point, all threads always need to access the same
data element. In order to optimize for this common need, the GPU offers a dedicated
system of small caches that are optimized for read-only broadcast access. This part of the
memory hierarchy is exposed in CUDA as constant memory (analogous to
uniform/constant buffers in graphics APIs).
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Constant Memory

__constant__ float myarray[128];
__global__ void kernel()
{

…
float x = myarray[23]; //uniform
float y = myarray[blockIdx.x + 2]; //uniform
float z = myarray[threadIdx.x]; //non-uniform
…

}

When using constant memory, it is important to make sure that access to elements in
constant memory does indeed happen uniformly. The constant caches are designed for
broad cast access. Divergent access will result in a performance penalty.
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Constant Memory: Example

63

__constant__ float c_array[128];
__global__ void kernel(float* __restrict d_array, const float* __restrict dc_array)
{

float a = c_array[0]; // const cache 24cyc
float b = c_array[blockIdx.x]; // const cache 24cyc
float c = c_array[threadIdx.x]; // const cache  35cyc
float d = d_array[blockIdx.x]; // L2 cache 24cyc
float e = d_array[threadIdx.x]; // L2 cache 26cyc
float f = dc_array[blockIdx.x]; // L1 cache 23cyc
float g = dc_array[threadIdx.x]; // L1 cache 24cyc

}

https://godbolt.org/z/sc1GGTfse
25.04.2022 CUDA and Applications to Task-based Programming

By measuring access times to elements in both constant memory as well as global
memory, we demonstrate the importance of accessing constant memory uniformly. As long
as access happens uniformly, constant memory can provide very low access latencies.
However, as soon as the memory access diverges, a slowdown occurs. For divergent
access patterns, normal global memory can typically provide better access latencies due to
its different cache design (as long as the access hits the cache). We can also see that the
compiler will automatically fetch data through the read-only cache if it can be sure that the
data will not be modified during the run time of the kernel.
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Constant Memory: Conclusion

• only fast if all threads within a warp read the same value
• can be faster than global
• uses different cache hierarchy than global
• compiler can automatically fetch things through constant memory

• can also be done manually using __ldg() intrinsics
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Texture Memory

• cudaArray: image data laid out in memory to optimize 
data locality for spatially-local access

• e.g., accesses within 2D region should hit the cache

• Texture Object
• fetch from cudaArray or Global Memory
• filtering, border handling, format conversion
• read-only

• Surface Object
• read/write cudaArrays
• concurrent writing and reading as texture: undefined result

65

device memory

L2$

tex$/L1$

texture unit

registers
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In order to cater to their original purpose of accelerating rendering, GPUs come with a
sophisticated subsystem for accessing image data. This subsystem is exposed in CUDA in
the form of cudaArrays, Texture Objects as well as Surface Objects. A cudaArray
represents raw image data laid out in memory in a way that optimizes for cache utilization
under spatially local access patterns. Texture Objects provide the ability to sample image
data from a cudaArray (or Global Memory) with the hardware applying filtering as well as
border handling and format conversions. Surface Objects provide read/write access to the
image data in a cudaArray.
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RowAfterRow - 1D

6625.04.2022 CUDA and Applications to Task-based Programming

In order to illustrate the trade-offs of texture memory, we will perform a couple of simple
tests. In this first example, we simply launch blocks that read image data in such a way
that consecutive threads access consecutive pixels in a row-wise fashion.
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RowAfterRow: Texture vs Global

67

__global__ void deviceLoadRowAfterRow(const uchar4* data, int width, int height, uchar4* out)
{

uchar4 sum = make_uchar4(0,0,0,0);

int tid = blockIdx.x * blockDim.x + threadIdx.x;
int rowid{0}, colid{0};

while(tid < (height * width))
{

rowid = tid / width;
colid = tid % width;
uchar4 in = data[rowid * width + colid];
sum.x += in.x; sum.y += in.y; sum.z += in.z; sum.w += in.w;
tid += (blockDim.x * gridDim.x);

}
out[blockIdx.x*blockDim.x + threadIdx.x] = sum;

}

uchar4 in = tex2D(myTex,colid,rowid);

const uchar4* __restrict data

25.04.2022 CUDA and Applications to Task-based Programming

Both kernels are the same except for the fact that one accesses the image data via a pointer
into a global memory buffer while the other accesses the image data by sampling it
through a texture object. We also test one version that accesses the image data in global
memory through a __restrict pointer to const, which will trigger reading through the
read-only data cache.
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RowAfterRow: Texture vs Global

global linear (cudaMalloc) 445 GiB/s
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As we can see, access via global memory performs significantly better than access via
texture memory; access through the read-only data cache performs slightly better than
access through plain global memory. The reason for this is to be found in the memory
layout. Our image data in global memory is laid out in row-major fashion which, in this
case, results in a perfectly coalesced memory access pattern. The texture, on the other
hand, is laid out for a 2D spatially local access pattern, which results in a less optimal
cache utilization with a purely row-wise access pattern like in this example.
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RowAfterRow: Texture vs Global

global restrict (cudaMalloc) 464 GiB/s
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RowAfterRow: Texture vs Global

texture (cudaArray) 387 GiB/s
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ColumnAfterColumn - 1D
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In this second example, we launch blocks that read image data just like before, except that
we now perform the access in such a way that consecutive threads access consecutive
pixels in a column-wise fashion.
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ColumnAfterColumn: Texture vs Global

72

__global__ void deviceLoadColumnAfterColumn(const uchar4* data, int width, int height, uchar4* out)
{

uchar4 sum = make_uchar4(0,0,0,0);

int tid = blockIdx.x * blockDim.x + threadIdx.x;
int rowid{0}, colid{0};

while(tid < (height * width))
{

rowid = tid % height;
colid = tid / height;
uchar4 in = data[rowid * width + colid];
sum.x += in.x; sum.y += in.y; sum.z += in.z; sum.w += in.w;
tid += (blockDim.x * gridDim.x);

}
out[blockIdx.x*blockDim.x + threadIdx.x] = sum;

}

uchar4 in = tex2D(myTex,colid,rowid);

const uchar4* __restrict data

25.04.2022 CUDA and Applications to Task-based Programming

The kernel is virtually the same as before except for the index computation that now
traverses the image in a column-wise manner.
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ColumnAfterColumn: Texture vs Global

global linear (cudaMalloc) 268 GiB/s

73

was 445 GiB/s

25.04.2022 CUDA and Applications to Task-based Programming

As we can see, global memory, which used to perform best in the previous test case, now
performs far worse than texture memory. The reason for this can again be found in the
access pattern. Given the row-major layout of the global memory image data, the column-
wise access in this example is the pathological worst case. The result is an incredibly low
transaction efficiency which manifests in the fact that memory transfer between the SMs
and L2$ is multiple times larger than the image itself. Texture memory, on the other hand,
performs virtually identical as in the previous test case. Again, this is owed to its memory
layout being optimized for 2D spatial access. While optimal for neither row-wise nor
column-wise access, it can handle both with similar efficiency.
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ColumnAfterColumn: Texture vs Global

global restrict (cudaMalloc) 270 GiB/s

74

was 464 GiB/s

25.04.2022 CUDA and Applications to Task-based Programming

74



Reims 2022

ColumnAfterColumn: Texture vs Global

texture (cudaArray) 368 GiB/s

75

was 387 GiB/s

25.04.2022 CUDA and Applications to Task-based Programming
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Texture vs Global: 1D Access

• row access is similarly efficient with all types of memory
• virtually no cache usage
• slighty better with linear memory layout vs textures

• column access significantly slower for global vs texture
• texture only slightly slower than row access

7625.04.2022 CUDA and Applications to Task-based Programming
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Random Access in vicinity

7725.04.2022 CUDA and Applications to Task-based Programming

Finally, we look at an example where each thread sums up a number of randomly-chosen
pixels within a certain neighborhood around each pixel of the image.
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Random Sampling: Texture vs Global

78

template<int Area>
__global__ void deviceReadRandom(const uchar4* data, int pitch, int width, int height, uchar4* out, int samples){

uchar4 sum = make_uchar4(0,0,0,0);
int xin = blockIdx.x*blockDim.x + Area*(threadIdx.x/Area);
int yin = blockIdx.y*blockDim.y + Area*(threadIdx.y/Area);

unsigned int xseed = threadIdx.x *9182 + threadIdx.y*91882 + threadIdx.x*threadIdx.y*811 + 72923181;
unsigned int yseed = threadIdx.x *981 + threadIdx.y*124523 + threadIdx.x*threadIdx.y*327 + 98721121;

for(int sample = 0; sample < samples; ++sample)
{

unsigned int x = xseed%Area;
unsigned int y = yseed%Area;
xseed = (xseed * 1587);
yseed = (yseed * 6971);
uchar4 in = data[xin + x + (yin + y)*pitch];
sum.x += in.x; sum.y += in.y; sum.z += in.z; sum.w += in.w;

}

yin = (yin + threadIdx.y%Area) % blockDim.y;
out[xin + threadIdx.x%Area + yin*width] = sum;

}

25.04.2022 CUDA and Applications to Task-based Programming
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Random Sampling: Texture vs Global

global linear (cudaMalloc) 1014 GiB/s
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As one would have expected, texture memory outperforms global memory in this example
since the memory layout of texture data is optimized precisely for this kind of access
pattern. The difference, however, is somewhat surprisingly small, which can be attributed
to a very effective L1$ on modern GPUs.
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Random Sampling: Texture vs Global

texture (cudaArray) 1170 GiB/s
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Texture vs Global: Conclusion

• prior to Volta
• Textures tend to perform at least as good, sometimes better
• put less stress on L2 cache
• L1 cache free for other tasks

• now
• advanced Unified Cache (L1 + Tex)
• Textures still perform best for spatially local access pattern
• but can also be slower if access pattern and cache hits favor linear memory

• unique features: filtering, border handling, format conversion
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Shared Memory

• shared access within one block (lifetime: block)
• located on multiprocessor  very fast
• limited size (32–164 KiB)
• crossbar: simultaneous access to distinct 32-bit banks

82

Thread 0

Thread 1

Thread 2

Thread 3

Bank 0 Bank 1 Bank 2 Bank 3

__shared__ int s[64]; s[32] s[33] s[34] s[35]
s[0] s[1] s[2] s[3]
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Shared Memory exposes the local on-chip memory that can be found on every SM to
CUDA programs. Shared Memory is limited in size but very fast to access and shared by
all threads within the same block, thus, facilitating low-latency local inter-thread
communication.However, in order to utilize Shared Memory effectively, one must once
again be careful about the memory access pattern. Shared memory is organized into 32
memory banks such that every 32 consecutive 4-byte elements are distributed among the
32 consecutive memory banks. Each memory bank can serve 4-byte loads and stores from
and to the addresses it’s responsible for. The 32 threads of a warp can access shared
memory through a crossbar connecting each thread to each memory bank. However, only
one thread can be connected to the same memory bank at the same time. If two or more
threads were to attempt to access addresses that are served by the same memory bank at
the same time, their accesses have to be serialized, resulting in reduced performance. Such
a situation where N threads are trying to access addresses served by the same memory
bank at the same time is called an N-way bank conflict. One notable exception is the case
where multiple threads try to read not just any address served by the same bank but all the
same address. In this case, they can all be served at once by broadcasting the result.
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Shared Memory: Bank Conflicts

83

Bank 31

Bank 9

Bank 8

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

…

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8
Thread 9

Thread 31 Bank 31

Bank 9

Bank 8

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

…

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8
Thread 9

Thread 31 Bank 31

Bank 9

Bank 8

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

…
Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8
Thread 9

Thread 31 Bank 31

Bank 9

Bank 8

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

…

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8
Thread 9

Thread 31
conflict free access conflict free access broadcast two-way bank conflict

(different words)
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__global__ void kernel(…)
{

__shared__ float mydata[32*32];
…
float sum = 0;
for(uint i = 0; i < 32; ++i)

sum += mydata[threadIdx.x + i*32]; //conflict free
…
sum = 0;
for(uint i = 0; i < 32; ++i)

sum += mydata[threadIdx.x*32 + i]; //32-way conflict
…

}

Shared Memory: Bank Conflicts
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0
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To illustrate the use of Shared Memory, we look at a simple example. At two points within
its operation, the given kernel needs to compute the sum once over the columns and, at a
later point, over the rows of a 32×32 element matrix stored in row-major layout. It does so
using the 32 threads of a warp in order to compute the sum for each column/row in
parallel. To compute the sum over the columns, the kernel proceeds row-by-row, each
thread adding the element in the corresponding column to its running total. The access
pattern in this case is such that each thread accesses an element served by a different bank.
To compute the sum over the rows, the kernel proceeds column-by-column, each thread
adding the element in the corresponding row to its running total. The access pattern in this
case is such that the elements accessed by all threads are served by the same bank,
resulting in the worst possible case of a 32-way bank conflict.
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__global__ void kernel(…)
{

__shared__ float mydata[32*(32 + 1)];
…
float sum = 0;
for(uint i = 0; i < 32; ++i)

sum += mydata[threadIdx.x + i*33]; //conflict free
…
sum = 0;
for(uint i = 0; i < 32; ++i)

sum += mydata[threadIdx.x*33 + i]; //conflict free
…

}

Shared Memory: Bank Conflict Resolution

85

0 1 2 3 4 5 6 7 8 9 3031
1 2 3 4 5 6 7 8 9 1031 0
2 3 4  5 6 7 8 9 1011 0 1
3 4 5 6 7 8 9 10 11 0 1 2
4 31 0 1 2 3 4 5 6 7 2 3
31 0 1 2 3 4 5 6 7 8 2930

0
1
2
3
4
31

1
2
3
4

31
0

0

2
3
4
5

1

3
4

6
1
2

5

4
5
6
7
2
3

5
6
7
8
3
4

6
7
8
9
4
5

10

7
8
9

5
6

10
11

8
9

6
7

10
9

11
0
7
8

30
31
0
1
2

29

31
0
1
2
3
30

25.04.2022 CUDA and Applications to Task-based Programming

A trick to resolve this issue is to pad the matrix by adding a dummy column. As a result of
this padding, the access pattern in both scenarios works out such that no bank conflicts
arise at any point.
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Shared Memory: Use Cases

86

__global__ void kernel(…)
{

__shared__ bool run;
run = true;
while(run)
{

__syncthreads();
if(found_it())

run = false;
__syncthreads();

}
}

• inter-thread communication

25.04.2022 CUDA and Applications to Task-based Programming
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Shared Memory: Use Cases

• inter-thread communication
• reduce global memory access manual cache

87

__global__ void kernel(float* global_data, …)
{

extern __shared__ float data[];
uint linid = blockIdx.x*blockDim.x + threadIdx.x;
//load
data[threadIdx.x] = global_data[linid];
__syncthreads();
for(uint it = 0; it < max_it; ++it)

calc_iteration(data); //calc
__syncthreads();
//write back
global_data[linid] = data[threadIdx.x];

}

25.04.2022 CUDA and Applications to Task-based Programming
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Shared Memory: Use Cases

• inter-thread communication
• reduce global memory access manual cache
• adjust global memory access pattern

88

__global__ void transp(float* global_data, float* global_data2)
{

extern __shared__ float data[];
uint linid1 = blockIdx.x*32 + threadIdx.x + blockIdx.y*32*width;
uint linid2 = blockIdx.x*32*width + threadIdx.x + blockIdx.y*32;
for(uint i = 0; i < 32; ++i)

data[threadIdx.x + i*33] = global_data[linid1 + i*width];
__syncthreads();
for(uint j = 0; j < 32; ++j)

global_data2[linid2 + j*width] = data[threadIdx.x*33 + j] ;
}

25.04.2022 CUDA and Applications to Task-based Programming
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Shared Memory: Use Cases

• inter-thread communication
• reduce global memory access manual cache
• adjust global memory access pattern
• indexed access

89

__global__ void kernel(…)
{

uint mydata[8]; //will be spilled to local memory
for(uint i = 0; i < 8; ++i)

mydata[i] = complexfunc(i, threadIdx.x);
uint res = 0;
for(uint i = 0; i < 64; ++i)

res += secondfunc(mydata[(threadIdx.x + i) % 8],
mydata[i*threadIdx.x % 8]);

}

25.04.2022 CUDA and Applications to Task-based Programming
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Shared Memory use cases

• inter-thread communication
• reduce global memory access manual cache
• adjust global memory access pattern
• indexed access 

90

__global__ void kernel(…)
{

__shared__ uint allmydata[8*BlockSize];
uint *mydata = allmydata + 8*threadIdx.x;
for(uint i = 0; i < 8; ++i)

mydata[i] = complexfunc(i, threadIdx.x);
uint res = 0;
for(uint i = 0; i < 64; ++i)

res += secondfunc(mydata[(threadIdx.x + i) % 8],
mydata[i*threadIdx.x % 8]);

}

25.04.2022 CUDA and Applications to Task-based Programming
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Shared Memory: Use Cases

• inter-thread communication
• reduce global memory access manual cache
• adjust global memory access pattern
• indexed access
• combine costly operations

91

__global__ void kernel(uint *global_count, …)
{

__shared__ uint blockcount;
blockcount = 0;
__syncthreads();
uint myoffset = atomicAdd(&blockcount, myadd);
__syncthreads();
if(threadIdx.x == 0)

blockcount = atomicAdd(global_count, blockcount);
__syncthreads();
myoffset += blockcount;

}
25.04.2022 CUDA and Applications to Task-based Programming
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Registers vs Shared vs Global Memory

92

Global 
Memory

Shared 
Memory

Registers

190–240 GiB/s (K80) 
510–732 GiB/s (P100)
750–900 GiB/s (V100)

2.9 TiB/s (K80)
9.5 TiB/s (P100)

13.8 TiB/s (V100) 8 TiB/s (Fermi)
27 TiB/s (Kepler)

7.6×
13.5×

6×
12×
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https://cuda-tutorial.github.io
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