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Abstract

This paper introduces a new spatial index structure, called Bounded KD tree (B-KD tree), for realtime ray tracing
of dynamic scenes. By presenting hardware units of all time critical B-KD tree algorithms in the context of a custom
realtime ray tracing chip we show that this spatial index structure is well suited for hardware implementation.
B-KD trees are a hybrid spatial index structure that combine the advantages of KD trees and Bounding Volume
Hierarchies into a single, simple to handle spatial index structure. Similar to KD trees, B-KD trees are binary
trees where each node considers only a single spatial dimension. However; instead of a single splitting plane that
divides space into two disjoint sub-spaces, each node in B-KD trees contains two pairs of axis aligned planes
that bound the geometry of its two child nodes. As a bounding volume approach B-KD trees allow for simple and
efficient updates when changing geometry while maintaining the fast traversal operations and simple hardware
implementation known from KD trees. This enables the support for dynamic scenes with constant mesh topology
and coherent dynamic changes, like typical skinned meshes.

Our hardware architecture contains several fixed-function units that completely handle skinning, updating, and
ray tracing of dynamic scenes using B-KD trees. An FPGA prototype of this architecture already delivers realtime
performance of up to 35 frames per second even when clocked at only 66 MHz.

Categories and Subject Descriptors (according to ACM CCS): 1.3.1 [Hardware Architecture]: Graphics processors

1.3.7 [Three-Dimensional Graphics and Realism]: Ray Tracing

1. Introduction

The state-of-the-art in realtime rendering is the rasteriza-
tion algorithm [FvDFH97] mainly because low-cost and ef-
ficient hardware implementations are available that achieve
remarkable levels of performance. Rasterization is, in par-
ticular, well suited for handling dynamic scenes as changes
of geometry can be displayed directly without the need of
maintaining any auxiliary data structures.

Conceptually, the basic operation of rasterization is to indi-
vidually draw each triangle of a scene onto the screen by
shading all covered pixels. Because triangles are treated in-
dividually and access to the rest of the scene is not available
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or at least highly restricted, the shading operations are in-
herently limited to depend only on local data provided with
each triangle and some limited global state. Unfortunately,
global effects such as shadows, reflection, refraction, or in-
direct illumination cannot be directly computed this way.
While these effects can sometimes be approximated using
multi-pass rendering techniques this often results in artifacts
and is inefficient both with respect to computation and mem-
ory bandwidth.

In contrast, ray tracing [App68, Whi80] inherently requires
global access to the entire scene, as its core operation of find-
ing the first intersection with geometry along a ray is a global
visibility query. It heavily relies on fine grained (hierarchi-
cal) spatial index structures to make these queries efficient.
Consequently, ray tracing is well suited to access global in-
formation in a scene and thus forms the basis of almost all
approaches that simulate the physics of light (e.g. global il-
lumination) based on the rendering equation [Kaj86]. Such
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global effects require frequent and detailed visibility infor-
mation that can directly be computed by sampling the en-
vironment using ray tracing. While ray tracing has been ac-
celerated to realtime performance in both software and hard-
ware over recent years, support for dynamic scenes has been
very limited due to the cost of rebuilding or updating the
spatial index structures after every change.

The main contribution of this paper is a new hybrid spatial
index structure, Bounded KD (B-KD) tree, as well as a com-
plete hardware architecture that uses these B-KD trees for
implementing ray tracing of dynamic scenes.

2. Previous Work

For a long time spatial index structures for ray trac-
ing only considered static scenes as it took minutes to
hours to render a single image. Several spatial index struc-
tures have been proposed including: Grids [CWBVS3,
AWST7], Octrees [Gla84, Arv88], Bounding Volume Hier-
archies [RW80], Binary Space Partitioning [FKN80], and
KD trees [Jan86, SF90].

Interactive ray tracing applications have been mapped
to many different kinds of supercomputers such as SGI
shared memory machines [PSL*99]. More recently, in-
teractive performance has been brought also to clusters
of standard PCs [WBWS01, WPS*03] and single desktop
PCs [RSHOS]. Ray tracing has also been mapped to pro-
grammable GPUs [Pur04, FS05].

With realtime ray tracing it became also necessary to han-
dle interactive changes in dynamic scenes. This is possible
by using hierarchical grids as they allow to insert objects
in constant time [RSHOO]. Separation of the scene into ob-
jects with piece-wise rigid motion and separate static spatial
indices has been suggested by [LAMO1] and has been im-
plemented for realtime use on a cluster of PCs [WBSO03].
Bounding Volume Hierarchies have successfully been used
for rendering of dynamic scenes [TLO3].

Multiple custom hardware architectures have been proposed,
both for volume [MKS98, KR0OO] and surface models. A
complete ray tracing hardware architecture has been simu-
lated by [KiSSO02, SWS02] while the first fully functional
realtime ray tracing hardware was presented in [SWW*04].
The fully programmable RPU hardware architecture for ray
tracing was published in [WSSO05]. All these hardware archi-
tectures are limited to scenes with static or piecewise rigid
motion, thus none of them supports highly dynamic scenes.

3. B-KD Trees

The Bounded-KD (B-KD) tree is a new hybrid spatial index
structure that combines in a single homogeneous data struc-
ture the advantages of Bounding Volume Hierarchies with
those of KD trees. From Bounding Volumes it inherits the
efficient support for dynamic scenes, while maintaining the

simplicity and efficiency of KD tree traversal in particular
with respect to hardware implementation (see Section 4).

Definition: A B-KD tree is a binary tree, where each node
recursively subdivides the geometry of the scene into two
disjoint subsets represented by its two children. Each node
stores the index of a coordinate axis and bounds on the ge-
ometric extent of its two children along this axis in form of
two intervals often also referred to as slabs (see Figure 1).
Each leaf node stores a reference to a single primitive of the
scene.

The use of disjoint subsets removes redundancy and storage
overhead. For a scene with N primitives a B-KD tree has
exactly N leaf nodes and N — 1 inner nodes. This makes the
size of the B-KD tree predictable which would be difficult
for KD trees. Special handling of lists of primitives in the
leaf nodes (as in conventional KD trees) is not required and
simplifies hardware implementations significantly.

4
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Figure 1: B-KD tree: A B-KD tree node divides the geometry
into two disjoint subsets, represented by the two children.
The node stores the extend of the geometry for each child
as two intervals along one splitting axis. The geometry is
recursively subdivided until there is only a single primitive
per node.

T split axis
0

T

Because of their bounding approach B-KD trees can be up-
dated as efficiently as Bounding Volume Hierarchies, but in
contrast their traversal operation is simplified because only
a single axis is considered in each node. Instead of having
to store complete bounding boxes in every node, B-KD trees
can pick an optimal split axis in each step, thus reducing the
size of the data structure by a factor of 3.

Furthermore, the traversal of B-KD trees is strictly ordered
along the ray and the traversal computation can be termi-
nated early if an intersection occurred in front of the next
node. The traversal order does not influence the correctness
of the algorithm but it greatly influences the traversal cost.
The traversal order of the child nodes can be precomputed
for the axis and depends only on the sign of the ray direc-
tion. Similar to KD trees, B-KD trees can also adapt well to
the structure of the scene resulting in a compact representa-
tion and efficient handling of inhomogeneous distributions.

For many highly detailed scenes, the ability to instanti-
ate multiple copies of an “object” is important in order to
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minimize memory requirements. We support this through
additional transformation nodes, that contain references to
an affine transformation and to the root node of the ob-
ject. By modifying the matrix one can transform the com-
plete object, which may consist of thousands of triangles,
while only changing the transformation node and possi-
bly the bounds of its parents. This approach is well under-
stood [LAMO1, WBS03] so that we do not focus on it in this

paper.

3.1. Updating B-KD Trees

For changed geometry the B-KD tree bounds can be updated
by a simple bottom-up algorithm using only trivial min/max
operations that do not touch the structure of the tree. This
updating procedure merges the different bounds of the nodes
from bottom-up through the tree and updates for each B-
KD tree node the extend of the two children along the axis
of the node. The order of both children is also precomputed
for both possible signs of the ray direction along this axis.
In Figure 2 the closer child is 7; for a ray going from left to
right, for instance.

For best results the overall structure of a B-KD tree should
“match” the geometry and its dynamics. This means that ge-
ometry in a sub-tree should stay as close together as possible
during the course of changes. A mismatch can result in sig-
nificant overlap of the bounds of child nodes. This leads to
redundant traversal and missed opportunities for early ray
termination, as both child nodes must be traversed if a ray
enters an overlap region. As a consequence only dynamic
scenes that show some coherent motion can be handled effe-
ciently with B-KD trees. Many typical motions, like skinned
meshes, obey this restriction as will be shown in the result
section. A random movement of triangles cannot be handled
well as this would result in a traversal of many B-KD tree
nodes, because of significant overlaps.

To optimize this random motion case, a non-optimal struc-
ture of the tree could in principle be detected by looking at
the overlap of bounds. In the case of a mismatch it might
be necessary to re-compute the structure of parts of the tree.
Such computations can be performed by a software driver
as they are usually rare and their cost can ideally be amor-
tized over many frames, thus dedicated hardware would not
required for this operation. We perform this reconstruction
only for the higher nodes over the instantiated objects, as
they might move around freely.

3.2. Traversal

The traversal algorithm for the B-KD tree is similar to that
of standard KD trees [SF90]. The recursive traversal func-
tion traverses the scene in a traversal interval I = [near, far]
along the ray. We first test for early ray termination, with
respect to the near distance. We then intersect the ray with
the four bounding planes defined by the node giving the two

(© The Eurographics Association 2006.

intersection intervals I 1y for the two leaf nodes (see Fig-
ure 2). Before a child (for instance child 0) is traversed two
comparisons determine if its intersection interval [ overlaps
the current traversal interval /. We recursively traverse the
child if this is the case with the traversal interval updated to
the intersection of / and Iy, which requires two min/max op-
erations. If the other child overlaps the traversal interval it is
stored onto a stack together with the intersection of / and /;
as its traversal interval.

To
farther child

T4
closer child

Figure 2: Ray traversal: The ray is intersected with the four
planes defined by the bounds of each child giving two inter-
section intervals Iy 1y along the ray. A child is traversed
iff its intersection interval overlaps the traversal interval
I = [near, far] of the ray. The closer child is always tra-
versed first to improve performance through early ray ter-
mination.

3.3. Building B-KD Trees

As a B-KD tree is a Bounding Volume Hierarchy, similar
construction algorithms can also be applied. Converting a bi-
nary Bounding Volume Hierarchy into a B-KD tree is easily
possible by computing a splitting axis and bounding inter-
vals for each node.

Bounding Volume Hierarchies can be created in a top-
down or bottom-up fashion. Goldsmith and Salmon opti-
mize the bottom-up construction using a cost model that
minimizes an estimate for the traversal cost, called the Sur-
face Area Heuristic [GS87]. For top-down approaches a me-
dian split of geometry [KK86] and a middle split of the vol-
ume [Smi98] have been analyzed.

We use a top-down approach similar to [MF99] that uses
the Surface Area Heuristic to select an optimal partitioning
of the triangles into two disjoint sets, similar to top-down
construction algorithms for KD trees [Wal04]. Possible par-
titionings of the geometry are determined by looking at the
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geometry sorted in all three dimensions according to the cen-
ter of their bound. These sorted lists define possible parti-
tionings G = Gy U G of the geometry into two disjoint sets
(GoN Gy = 0), by splitting one of these lists at a cost op-
timal position. The list that is selected also determines the
splitting dimension of the node. Sorting the geometry in the
dimensions needs only to be performed once initially, which
improves the runtime of the algorithm [Wal04].

The Surface Area Heuristic is used to select the partitioning
with the smallest cost estimate. It is computed by a proba-
bilistic model assuming uniformly distributed rays. The cost
of a partitioning is an atomar traversal cost Cy4, plus the in-
tersection cost of each child (approximated by the number
of primitives) multiplied with the probability p(7;)|T that a
child 7; is traversed. These probabilities can be computed
by the ratio between the surface areas SA(7;) of the child’s
bounding box and the surface area SA(T') of the parent node.

SA(Ty)
SA(T)

SA(Th)
SA(T)

SAH(T):Ctrav“’ '|G0|+ |Gl‘

A relative traversal cost of T34y = 1/3 was experimentally
showing to be a good choice for the hardware architecture
described later.

4. Hardware Architecture

While software implementations of B-KD trees should be
easily realizable and should achieve good performance, they
suffer from the comparatively low computational power
of CPUs and difficult low level programming in order to
achieve high performance [RSHOS5]. Here we concentrate on
efficient hardware implementations of B-KD trees.

Our hardware architecture named DynRT (dynamic ray trac-
ing hardware) handles all aspects of dynamic scenes using
B-KD trees. This includes a Skinning Unit to recompute a
dynamic mesh using a very general skinning model, a ded-
icated Update Processor to maintain a valid B-KD tree af-
ter changes, and a fast ray casting engine, consisting of a
Traversal Unit to traverses rays through the B-KD trees and
a Geometry Unit to intersect them with triangles (or to trans-
form them to the local coordinate space of an instantiated
object).

The ray casting part of the architecture is similar to the hard-
ware architecture described in [SWW™*04] but with some sig-
nificant changes. We also require a Traversal Unit to traverse
rays through the spatial index, and a Geometry Unit to trans-
form rays or to intersect them with triangles. A major ad-
vantage of our architecture is that neither a list nor mailbox
unit is required, as the set of triangles maps one-to-one to
the set of leaf nodes. We use a similar Traversal Unit that
is modified for B-KD tree traversal, thus inherently support-
ing dynamic scenes without loss in performance. In contrast
to [SWS02, SWW*04, WSS05] our Intersection/Geometry
Unit operates directly on shared vertices (e.g. indexed face

to framebuffer
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Figure 3: DynRT Architecture: Vertices are skinned by a
Skinning Unit that reuses some units of the geometry inter-
section, while B-KD trees are updated by the Update Proces-
sor. The rendering part consists of a Shading Unit to gener-
ate and shade rays and a fixed-function part for tracing rays
through the scene. This fixed-function part contains of a high
performance Traversal Unit to traverse the B-KD tree and a
Geometry Unit fo intersect rays with triangles or to trans-
form them to the local coordinate space defined by a B-KD
transformation node.

sets) instead of precomputing triangle data which makes our
geometry cache (vertex cache) more efficient.

The focus of this paper is not shading, but we are convinced
that a similar shading unit as the RPU processor [WSS05]
can easily be added to our architecture as well. With the ad-
dition of a shading processor, the proposed hardware archi-
tecture would have similar features as current rasterization
engines, while also offering all the flexibility of ray tracing.

4.1. Skinning Unit

Recomputing the position of all vertices in a mesh for every
frame is an expensive and time critical task that should not be
performed by the application. The application should rather
compute the motion at a higher level of abstraction thereby
minimizing the computational cost and any communication
overhead with the rendering engine.

Our hardware architecture contains a flexible fixed-function
Skinning Unit that implements a general skinning model
typically referred to as Skeleton Subspace Deformation
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(SSD) [MTLTS88, MTT91]. The position of a vertex is de-
fined as the sum of vectors multiplied by some matrices:

Let vo,vy,---,vyy—1 € R* be M vectors (premultiplied by
some vertex weights) and Ag,A,---,Ay_1 € R¥* be refer-
ences to M matrices, then a vertex position V & R3 is defined
as:

M—1
V=3 Ajv;
=0

Each vertex of a mesh is defined by such a linear combina-
tion. Only the transformation matrices A ; are used to modify
the mesh, while the vectors v; stay constant.

The Skinning Unit is implemented as a vertex processor with
a simple matrix instruction set working with 24 bit float-
ing point accuracy in our implementation. The instructions
form a simple instruction stream including instructions to
set the row of a 3x4 matrix of one of the 32 matrix registers.
Other instructions multiply 4 component vectors with a ma-
trix from a matrix register and accumulate them. The accu-
mulation is performed by a custom hardware unit while the
matrix multiplication is performed by the the Geometry Unit
that is also used for rendering, thus reusing an otherwise not
utilized hardware resource. Accumulated results can then be
stored to a vertex array in memory indexed by an immidiate
constant. All vectors and matrix columns are encoded as im-
mediate values in a 128 bit wide instruction format with 24
bit floating point accuracy.

This approach stores and encodes all the rules to compute all
vertices in a mesh directly in a single sequential instruction
stream with little overhead. With this approach only a single
sequential instruction stream is read while a single sequen-
tial vertex stream is stored to memory. This simplifies the
implementation and optimizes an already bandwidth limited
computation by avoiding random memory accesses.

4.2. Data Layout

Each node of the B-KD tree is 16 bytes wide. Inner nodes
store the 2 splitting intervals using four 22 bit floating point
values, 2 bits to store the traversal order for the children, 2
bits for the splitting axis, and a relative pointer to the pair of
child nodes. Pointing to the pair of children requires only one
pointer (compared to two) but forces children to be stored
next to each other in memory, which requires some special
treatment during update. A leaf node stores pointers to each
of the vertices in a vertex array and a pointer to the per-
triangle shading data.

4.3. Update Processor

The updating of the B-KD tree of an object in the scene
needs to be performed each time some geometry changes
its position. In computer games this is typically the case in
each frame, thus a high update performance is required. This
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Figure 4: Update Processor: The processor fetches update
instructions (gray unit), that specify vertices to be read from
memory (red units), leaf node bounds to be computed from 3
vertices (blue units), and inner-node bounds to be computed
and updated from 2 child bounds (blue and green units).

can be achieved by our special Update Processor, capable of
updating one B-KD tree node per clock cycle.

The updating has to merge the axis-aligned bounds of the
nodes from bottom-up through the tree and to update the
bounds of the inner B-KD tree nodes. Principally this up-
dating could be performed by recursively traversing the B-
KD tree top-down in a special hardware unit. However, this
would mean to cope with many data dependent memory
fetches of B-KD tree nodes and the resulting latencies. To
update a node such an approach would need to read the node,
which produces much memory traffic (4 words per node).
Furthermore, a cache would be required to cache the often
shared vertices and a multithreading approach for high us-
age of the hardware unit at the cost of non-sequential mem-
ory requests.

This would result in a complicated unit, while the approach
described in the following is more simple, programmable,
and powerful. As it is programmable all the complexity
is shifted to the compilation process of the B-KD trees in
the driver, where more complex optimizations can be per-
formed.

The Update Processor described here is optimized for tri-
angle meshes where typically many vertices are shared. In
regular meshes a vertex is shared by about 6 triangles. These
shared vertices are stored to one of 64 internal vertex reg-
isters, where they can be used for computing the bound of
several triangles. All partial results, such as computed node
bounds are stored to one of 64 special bound registers to
minimize the external memory requests to only the required
updates of the nodes, vertex fetches, and additional instruc-
tion fetches. The architecture needs no caches, as no tempo-
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rary values are stored in memory and the vertices are usually
read only once and reused optimally from the register file.
The nodes of the tree are processed in the reverse order as
them are stored in memory such that the pointer to the next
node to update can be computed by simple decrement oper-
ations in the hardware.

All data is arranged in such a way that it is processed mainly
sequentially by the hardware. The instruction stream is read
purely sequentially from memory, the nodes to update are
processes sequentially, and the vertices are stored according
to the order of their first access. All this together allows for
an efficient usage of the external DRAM. One update oper-
ation of a leaf node and inner node can be computed with
throughput 1 and a small latency of only a few cycles.

The Update Processor (see Figure 4) executes three different
kinds of instructions for fetching vertices, merging 3 ver-
tices to a bound, and merging two bounds to a new bound.
These 32 bit wide instructions are fetched by the Instruction
Fetch unit from the 128 bit wide memory interface. Vertices
are fetches by the Fetch Vertex Unit from main memory,
and then stored to one of the 64 vertex registers. If vertices
are shared between multiple triangles, these registers can be
reused to reduce the memory bandwidth.

4.4. Traversal Unit

The Traversal Unit traverses several packets of four rays in
parallel through the B-KD tree similar to the algorithm from
Section 3.2. In order to hide memory and computation laten-
cies multiple packets of rays are being processed simultane-
ously using a wide multi-threading approach [SWS02]. The
packets of four rays are used to reduce the memory band-
width as the rays in the packet always perform the same
memory requests. This multi-threading and packet-based ap-
proach performs very well because of the high coherence
between adjacent rays. The memory bandwidth is reduced
further by using dedicated first level caches to store B-KD
tree nodes (see [SWW*04, WSS05]).

The Traversal Unit is fully pipelined and completes one
packet traversal step per clock cycle (throughput 1). The
packet traversal algorithm always operates on one B-KD tree
node per packet and requires an active vector for the packet,
that indicates which rays overlap this current node. To derive
a traversal decision for the packet of rays, first a traversal de-
cision for each ray of the packet is generated in parallel. This
yields 3 bits for each ray that indicate if the ray wants to tra-
verse the first and/or the second child and in which order it
wants to traverse them.

The joint packet traversal decision for the packet is com-
puted as follows: The packet goes to the first child and/or
second child if there exists an active ray in the packet that
want to go there, and the packet goes from left to right if
there is an active ray that wants to traverse in this order. A

ray is set active in a child if it is active in the parent node and
wants to traverse that child.

Rays may disagree on the traversal order but this is irrel-
evant for the correctness of the algorithm and only influ-
ences its performance. Thus we have no issues with incon-
sistent rays that cause problems in the packet traversal of
KD trees [SWS02].

Our traversal stack has a depth of 32 entries and stores the
address of the node to traverse later, which rays are active in
that node, and the traversal interval for the node. The Traver-
sal Unit also includes a different ray stack of depth two for
storing transformed rays for instanced geometry, thus max-
imally one level of transformation nodes can currently be
handled in our implementation.

Compared to a Traversal Unit for KD trees we need more
resources in terms of memory and arithmetic units. Stack
memory requirements are twice as high as an interval instead
of a single scalar needs to be stored [SWW*04]. The logic
complexity is four times higher because four multiplications
(with the reciprocal of the direction) and four additions are
required to compute the distances to the four planes versus
only one plane. This higher cost pays off as the B-KD tree is
much more flexible and enables the handling of most kinds
of dynamic scenes.

4.5. Geometry Unit

The Geometry Unit is responsible for sequentially inter-
secting the rays of a packet with triangle geometry using
the Moller-Trumbore algorithm [MT97], or to sequentially
transform rays to the local coordinate space defined by a
transformation node of the B-KD tree. This transformation
mode requires no additional arithmetic units as them can be
shared with the ones used for triangle intersection. The Ge-
ometry Unit is pipelined and can perform one ray triangle
intersection or one ray transformation each 2 clock cycles.
Thus a number of 8 cycles are required to transform or inter-
sect the four rays of a packet.

5. Prototype Implementation

Using FPGA technology, we implemented a high perfor-
mance prototype of our hardware architecture with fixed-
function shading capabilities running at 66 MHz. Our proto-
type platform uses a Xilinx Virtex-II 6000-4 FPGA [Xil03],
that is hosted on the Alpha Data ADM-XRC-II PCI-
board [Alp03]. The FPGA has access to a 64-bit wide DDR
memory interface that can deliver a peak bandwidth of
1.0 GB/s at 66 MHz. Especially the bandwidth consuming
skinning and updating benefits from this high bandwidth,
while the rendering requires typically only 100 to 200 MB/s
for our test scenes as caching is very effective.

The hardware description of our design is about 5300 lines
of ML [MTH90] code using an ML library for hardware de-
scription [WBS]. The specification is fully parameterizable,
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OpenRT
Scene6 | 0.8k H 450 446 234 129

Scene tris || DynRT SaarCOR RPU

Office | 343k || 27.9 359 17.2 104
Gael | 525k || 144 18.6 9.2 8.0

Figure 5: Performance comparision of our DynRT proto-
type with three different ray tracing platforms: the fixed-
function SaarCOR prototype, the RPU prototype, and the
OpenRT software ray tracer running on an Intel Pentium-4
with 2.66 GHz. The performance numbers of the three hard-
ware architectures are scaled to 66 MHz and a single FPGA
to compare the architecture and not the quality of the imple-
mentation. All numbers are given in frames per second and
the scenes map to the images from left to right.

which means that each of the parameters of the prototype,
like floating point accuracy, packet size, number of threads,
latencies, and caches, can be changed by simply adjusting a
configuration file. We fixed the configuration to achieve the
best performance with our FPGA platform.

The rendering part of the prototype architecture is widely
multi-threaded, as there are 32 packets with four rays each
in the system. This number of threads is sufficient to achieve
comparatively high usage rates of the arithmetic units. Each
arithmetic units in the chip computes with 24 bit floating
point accuracy. Floating point numbers are stored in mem-
ory in IEEE32 format, thus need to be converted on reads
and writes. The traversal and vertex cache are both direct
mapped caches that hold 1024 B-KD tree nodes or vertices,
respectively.

Because of limited space on the FPGA we implemented
only a very simple fixed-function shader instead of a pro-
grammable shading unit such as described in [WSS05]. Our
fixed function shader uses a constant color per triangle or can
shade the triangle with the barycentric coordinates of the in-
tersection point. To evaluate the quality of the B-KD trees,
we can also shade a ray according to the number of traver-
sal steps performed per packet or the number of ray triangle
intersections.

Our prototype architecture occupies about 99% of the logic
cells, 65% of the block memories, and 33 of the 144 18-
bit multipliers of the FPGA chip. The Traversal Unit uses
about 35% of the FPGA resources while the Geometry Unit
requires 41%. The Update Processor uses only 8% of the re-
sources while the Skinning Unit is mostly shared with the
Geometry Unit. The remaining resources are spend for the
infrastructure, such as memory access, shading, PCI access
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Figure 6: Several dynamic scenes rendered in realtime with
up to 35 frames per second at a resolution of 512x384 on the
prototype FPGA clocked at 66 MHz: Pipe (0.5k triangles),
Hand (17k triangles), Skeleton (16k triangles), Helix (78k
triangles), Rotating Cube (18k triangles), Morph (4.3k trian-
gles), Random (4.3k triangles), and the DynGael scene con-
taining several dynamic objects (52k static + 45k dynamic
triangles).

etc. The latencies of the longest pipelines of the design are
13 stages for the Traversal Unit and 36 stages for the geom-
etry pipeline.

The prototype can update a peak number of 66 million B-
KD tree nodes per second and perform up to 66 million ver-
tex matrix multiplications per second in skinning mode. The
upload of scene data and the download of frame buffer data
are performed by DMA data transfers. We achieve a peak
data transfer rate of 94 MB/s using our configuration of a
64 bit PCI bus and the PCI bridge of the FPGA board.

6. Results

For static scenes we compare the rendering performance
of our hardware architecture against three different ray
tracing engines: the fixed-function SaarCOR ray trac-
ing prototype [SWW*04], the programmable RPU ar-
chitecture [WSSO05], and the OpenRT ray tracing sys-
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skinning cycles relative cycles frame-
Scene triangles  vertices matrices | skinning update  render | skinning update render rate
Pipe 0.5k 0.26k 2 2.3k 2.9k 1332k 0.17% 021% 99.6% 32.6
Hand 17k 9.3k - - 104k 1404k - 6.8% 93.2% 20.9
Skeleton 16k 8.3k - - 107k 1414k - 7.0%  93.0% 25.5
Helix 78k 50.1k - - 553k 3466k - 137% 86.3% 12.3
Rotating Cube 18k 17.7k 2 133k 154k 2637k 4.5% 52% 90.2% 18.5
Morph 4.3k 2.1k 3 22k 26k 1359k 1.6% 1.8%  96.6% 323
DynGael 97k 184k - 76k 176k 4547k 1.6% 3.6% 94.8% 13.0
Random 4.3k 12.9k 3 133k 58k 23503k 0.5% 02% 99.3% 2.8

Table 1: This table shows the clock cycles required for to perform skinning and updating of the B-KD tree and for rendering in
512x384 resolution. The relative amount of cycles and the framerate (including a small driver overhead) are also shown.

Figure 7: The quality of the spatial index structure stays

close to optimal during the entire animation, which is illus-
trated by these images showing the skeleton model in two
different poses (from left to right). The number of traversal
steps and ray triangle intersections are visualized from top
down.

tem [WBSO03]. We use three static scenes of different com-
plexity for the comparison: Scene6 (0.8k triangles), Office
(34.2k triangles), and the Gael level (52.5k triangles) from a
current computer game (see Figure 5). We tried to make that
comparison as fair as possible by using flat triangle shad-
ing only, the same KD tree, and the same number of FPGAs
clocked at 66 MHz. For the DynRT architecture we con-
verted the KD tree to a B-KD tree by supporting empty cells
and encoding lists of triangles into small B-KD subtrees. The
Figure 5 shows that the rendering performance of our ar-
chitecture is slightly lower than the fixed-function SaarCOR
prototype, which is mainly because of our lower intersection
performance of 2 cycles per ray triangle intersection com-
pared to 1.25 cycles per intersection for SaarCOR. For the
same reason the RPU architecture performs worse than the
DynRT. Compared to OpenRT the DynRT ray tracer is 2 to
3 times faster than the used Pentium-4 with 2.66 GHz.

We use a different set of benchmark scenes to evaluate the
performance for dynamic scenes (see Figure 6). We use three
Poser [Pos06] animations with varying complexity to evalu-
ate the performance for game-like characters: Hand (17Kk tri-
angles), Skeleton (16k triangles), and Helix (78k triangles).
As we have no skinning model for these scenes, the vertex
positions have been pre-computed by Poser and are uploaded
to the FPGA via DMA, but updated by the hardware.

Four deforming objects show the computations of the com-
plete animation using the skinning capabilities of the pro-
totype: a deforming pipe (Pipe), a rotating deforming cube
(Rotating Cube), a morphing sequence between a cube, a
sphere, and a cylinder (Morph), and a morphing sequence
between a cube, a random triangle distribution, and a cylin-
der (Random).

To show the combination of dynamic objects and a static en-
vironment, the DynGael scene contains the static gael envi-
ronment (52k triangles), two skeleton instances (2x16k tri-
angles), a rotating cube (4k triangles), a morph object (4k
triangles), and a bouncing cube (4k triangles). The B-KD
tree nodes on top of these 6 object instances are recomputed
by the driver for each frame.

Figure 7 shows the number of traversal steps (red) and
ray/triangle intersections (green) per pixel of the Skeleton
object in two different poses. Even as the second pose is
quite different from the inital one, the work per pixel does
not change very much, because the B-KD tree adapts well to
the geometry.

Table 1 analyzes the number of cycles required for the skin-
ning, updating, and rendering in 512x386 resolution for each
of the demo scenes. It shows that rendering is the most ex-
pensive operation requiring more than 90% of the clock cy-
cles. This is due to the large amount of pixels that need to
be processed at 512x386 resolution. One can also see that
skinning is linear in the number of vertices times the num-
ber of matrices connected to them. Updating is dependent on
the number of B-KD tree nodes to update (which is about 2

(© The Eurographics Association 2006.
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Figure 8: This figure shows the number of clock cycles spend
in skinning, updating and rendering for the morphing se-
quence between 3 objects computed with different geometry
complexity.

times the number of triangles) and the number of vertices to
read.

As the Morph and the Random scene have a different num-
ber of vertices, they also have a quite different update time,
despite the number of triangles are the same. As expected,
the rendering time of the Random scene is the worst of all
sample scenes despite it contains only 4.3k triangles. The
reason is that this Random morph sequence morphs between
two stages with similar structure (cube and cylinder) and a
random triangle distribution whose structure does not match
the initial B-KD tree structure any more. Rendering this state
performs very bad, as the bounds of the B-KD nodes overlap
much, and mainly the complete tree needs to be traversed per
ray hitting the random distribution. Obviously, in the cube
and the cylinder stage the rendering performance is high, but
the table row shows the random state only.

We also analyzed the architecture for scalability with scene
complexity. Figure 8 shows the number of skinning, update,
and rendering cycles for the Morph object rendered with dif-
ferent geometry complexity. It shows that skinning and up-
dating is linear in the number of triangles (as long as the
vertex/triangle ratio is constant). One can also see that ren-
dering depends sublinear on the number of triangles. The
jump in the number of rendering cycles at 2000 triangles is
due to caching effects.

The paper [WSS05] showed that a nearly linear scaling of
the rendering part of a ray tracing hardware architecture for
static scenes is easily possible if each rendering FPGA stores
a copy of the complete scene data and renders different parts
of the image. A similar speedup for the pure rendering time
is also possible with our approach if only static scenes are
considered.

(© The Eurographics Association 2006.

Scaling the performance in case of many dynamic scene
changes is more challenging, as these dynamic changes need
to be computed by or send to the different parallel FPGAs
for rendering. An approach where each FPGA computes all
scene changes would only allow for scaling the rendering,
not the setup time to compute the dynamics. A different ap-
proach would be to distribute the skinning and update com-
putations to the parallel FPGAs followed by a final distri-
bution of all updated B-KD trees and vertices to all FPGAs.
This would result in a communication bottleneck as skinning
and updating together produce a very high output bandwidth.

To solve this parallelization issue skinning and updating
could be performed on demand during rendering. The paral-
lel FPGAs then only compute dynamic changes that are re-
quired for the pixels rendered by them. This approach could
be used if the application provides a conservative bound of
the objects that are updated on demand.

7. Conclusions and Future Work

This paper presented B-KD trees, a new spatial index struc-
ture that combines the advantages of KD trees and Bounding
Volume Hierarchies into a single, simple to handle, and ho-
mogeneous data structure.

B-KD trees can be used to handle dynamic scenes by main-
taining the structure of the tree while updating the two
bounding intervals of each node when geometry changes.
We can efficiently handle all important types of dynamic
motion like characters, morphing sequences, or water sur-
faces. Random movements of many objects are problematic
as they result in large overlaps among the B-KD nodes rep-
resenting these objects. The overlap is as large as the range
of the movement and results in a sequential intersection with
each of the involved subtrees.

B-KD trees fit well to an hardware implementation as they
are more homogeneous than KD trees, making the special
treatment of lists or mail-boxing unnecessary. B-KD trees
can also be used as spatial index structure for static scenes,
similar to KD trees.

We proposed a hardware architecture to render dynamic
scenes that accelerates all expensive and time critical com-
putations in hardware. We support skinning of meshes using
a fixed-function general skinning approach, updating of the
B-KD tree, and the rendering using ray tracing.

The novel spatial index structure together with the hard-
ware architecture closes the largest remaining gap between
ray tracing and rasterization hardware: the handling of dy-
namic scenes. The techniques presented in this paper brings
ray tracing very close to rasterization also in respect to the
support for dynamic scenes while maintaining all the advan-
tages of ray tracing including the direct and simple handling
of global effects. We are confident that fast, hardware accel-
erated ray tracing will become widely available, as it pro-
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vides a robust, easy to use, and powerful basis for advanced
3D graphics.
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