
Volume xx (200y), Number z, pp. 1–8

Boolean Operations in Open-Source Blender Project

Marc Freixas, Sergi Grau and David Silva

Grup d’Informàtica a l’Enginyeria (GIE), UPC, Barcelona, Spain

Abstract

This paper describes the work of a new implementation of the Boolean operations of Blender. Blender is a mod-
elling and animation 3D software with GNU General Public License (GPL). Boolean operations are a useful tool
for modelling. Previous implementations of Blender Boolean operations have some drawbacks and the Blender
users are not totally satisfied with them. The proposed implementation avoids the existing drawbacks of previous
implementations and helps users in their modelling stage.

Categories and Subject Descriptors (according to ACM CCS): I.3.4 [Computer Graphics]: Graphics Utilities I.3.5
[Computer Graphics]: Computational Geometry and Object Modelling I.3.6 [Computer Graphics]: Methodology
and Techniques

1. Introduction

In this paper we present the work consisting of a new im-
plementation of Blender Boolean operations. Blender is a
modelling and animation 3D software with GNU General
Public License (GPL) and it is maintained by a really active
community. Blender features are closed to other commercial
programs but some aspects still need to be improved.

Many important editing operations can be expressed in
terms of Boolean operations on closed objects. Shapes are
created using union, intersection or difference. For example,
a union operation merges shapes; the difference operation
scoops out a hole (see Figure 1). However some users do
not use Boolean operations because the original implemen-
tation in Blender provides unsatisfactory results. It gener-
ates meshes that have duplicated vertices, and they are not
sewed (see Figure 6 b). Some developers have offered al-
ternative solutions to this problem. For example, there is one
script called MegaBool, that implements Boolean operations
in Python. The results of MegaBool are usually satisfactory,
but it is a fact that interpreted languages do not have an ac-
ceptable computational cost, and it is not easy to integrate
this script inside the Blender’s source. Another problem of
MegaBool is that it does not take into account the properties
of the original objects in the final object (see Figure 7 c). The
properties of an object do not matter in the modelling stage,
but they are needed in the rendering stage.

Figure 1: Upper-left: original objects. Upper-right: union.
Down-left: substraction. Down-right: intersection.

2. Previous work

Boolean operations can be performed in several solid mod-
elling system. Constructive Solid Geometry (CSG) is com-
monly used for specifying solid models as Boolean combi-

submitted to COMPUTER GRAPHICS Forum (5/2006).

http://www.eg.org
http://diglib.eg.org


2 M. Freixas & S. Grau & D. Silva / Boolean Operations in Open-Source Blender Project

nations of primitives [Req80,HHK89]. CSG expressions can
be converted to a polygonal mesh through boundary evalu-
ation, but conversion algorithms are too slow for real-time
graphics [RV85, Taw91, KCF∗02, BGM93]. Requicha and
Voelcker [RV85] introduce first the boundary evaluation and
merging process. Their approach consists basically of three
stages. First, it splits the objects by the intersection region
(subdivision stage). Second, it classifies faces with regard to
the objects (classification stage). At last, it reconstructs the
resulting object using those faces that were correctly classi-
fied according to the type of Boolean operation (See union,
intersection or difference in Table 1) (reconstruction stage).

Boolean Operation A B
∩ in(B) in(A)
∪ out(B) out(A)
− out(B) in(A)

Table 1: Object classification according to the type of
Boolean operation.

There are several authors that propose different tech-
niques for the subdivision stage. Requicha and Voelcker
[RV85] and Miller [Mil88] use an edge-by-edge approach.
Mäntylä [Män86] suggests an algorithm called vertex neigh-
bourhood classifier based on a edge-by-face strategy. Later,
other authors like Hoffmannm, Hopcroft and Karasick
[HHK89] and Chiyoruka [Chi88] also suggest boundary
evaluation algorithms based on a face-by-face approach.
Kunwoo Lee [Lee99] describes an algorithm that computes
the intersected segments between two faces (called xeg-
ment). Then it takes into account the xegments to subdivide
each face. Rivero and Feito [RF04] present a technique to
detect intersection between triangular faces, and their con-
sistent subdivision.

Binary Space Partitioning Trees (BSP trees [FAG83])
have been used for classification in several strategies (
[TN87,NAT90,PY89]). The BSP tree of a solid object can be
used to classify any point with regard to the object. The point
can be inside (IN), outside (OUT) or on the boundary (ON)
of the solid. Using this basic test, the classification of one
face according to a solid object is also simple. In the classi-
fication stage, there is one BSP tree for each object, and the
faces are classified using the BSP of the other object.

3. Boolean operations algorithm

The implementation presented in this paper had to fit inside
an existing platform (Blender), where the data structure used
to represent an object is a mesh of triangles or quads. This
fact simplifies the representation of the general B-Rep struc-
ture.

For easiness and robustness, Boolean union (∪) and dif-
ference (−) are implemented in terms of intersection (∩) and

Figure 2: Boolean Operation Algorithm’s Pipeline can be
subdivided into dependent or independent on the type of the
operation (left). This pipeline can also be subdivided into
preprocess, core or postprocess stages (right).

complement (¬) (See Table 2). Complement operation con-
sists in flipping normal vectors and inverting vertex order of
all the mesh faces.

Boolean Operation Equivalence
A ∪ B ¬((¬A) ∩ (¬B))
A − B A ∩ (¬B)

Table 2: ∪ and − expressed in terms of ∩ and ¬.

This simplification subdivides the pipeline of the Boolean
operations algorithm in two kind of stages: dependent or in-
dependent on the type of the operation (∩,∪,−) (See Fig-
ure2).

The core of the strategy follows the three stages explained
before: subdivision, classification and reconstruction stages.
Before these stages, there is a preprocess that prepares all
the structures needed for the next stages. Firstly, the input
meshes are negated if it is required. The other tasks of the
preprocess are explained on each stage that it needs. After
all the stages, there is a postprocess that negates the output
mesh in case it is needed (in ∪ operation).

3.1. Subdivision stage

The subdivision stage is based on Kunwoo Lee [Lee99], but
it is simplified because the input faces are only triangles
(quads are split in the preprocess). In this face-by-face ap-
proach we intersect each face of one object against the faces
of the other object. For each couple of faces, it computes
their xegment and splits both faces.

submitted to COMPUTER GRAPHICS Forum (5/2006).



M. Freixas & S. Grau & D. Silva / Boolean Operations in Open-Source Blender Project 3

Figure 3: Intersection between a triangle and plane is
shown with a red segment. Each end of this segment can lies
on existing vertex or edge of the triangle.

Figure 4: In case that exists intersection between both tri-
angles, the intersection of each one against the plane of the
other face generates two segments (with one or two points).
Segment A represents their points in white, and segment B
in black. Both segments are collinear and can overlap. The
xegment is the corresponding overlapping region.

3.1.1. Xegment creation process

This process computes the possible intersection between two
faces, intersecting each face against the plane of the other
face. Intersection between the face and the plane generates
a segment with one or two points that can lie on vertices
or edges of the face (see red segments in Figure 3). When

Figure 5: A shows the intersection between two triangles.
Red segments represents in B the computed xegment on each
triangle.

there is intersection between both faces, the segments are
overlapped. Figure 4 shows all the configurations of two seg-
ments. Two faces do not intersect when there are not two seg-
ments or when they have configuration A or B. The region
shared by both segments represents the intersection segment
between both faces (xegment).

When the xegment does not begin or end on a face vertex,
a new vertex is created and added to the mesh vertices set.
When it begins or ends on a vertex of only one face, this one
is used. But when the xegment begins or ends on vertices of
both faces, one of them replaces the other. The vertex that
persists is used in the split process. This criterion of vertex
replacement avoids a posterior sewing process of the final
mesh in the reconstruction stage.

3.1.2. Split process

This process subdivides the faces taking into account the
xegment computed in the previous process (see Figure 5).
Figure 6 shows the possible locations of a xegment (red)
with regard to a face and the new edges (green) resulting
from the splits. The old faces are discarded and the new gen-
erated faces are added to the face-by-face process.

3.2. Classification stage

This stage receives a set of faces for each object (that are
original faces or come from original faces). For both objects,
this stage classifies its faces using the BSP tree of the other
object. The BSP trees had been computed in the preprocess
(see Figure 2).

The faces resulting from the subdivision stage can only
have vertices classified as IN and ON, or OUT and ON. This
happens due to the BSP tree being constructed using the ob-
ject faces and these same faces subdivide the face of the
other object, if it is required. This property allows to sim-
plify the classification as IN, OUT or ON and accelerates
this stage. In case that at least, one of the vertices is IN, the
face is also IN. If one of the vertices is OUT, the face is OUT.
Otherwise the face is ON. When a face is classified ON we
compare its normal vector with the plane normal vector of

submitted to COMPUTER GRAPHICS Forum (5/2006).



4 M. Freixas & S. Grau & D. Silva / Boolean Operations in Open-Source Blender Project

Figure 6: All configuration of the xegment inside a trian-
gle. Red segments in B are the resulting xegment on each
triangle, and green segments are the new edges created by
the splitting process. Triangles A and B do not need to split.
Configurations {C,D,E} and {F,G} use the same split strat-
egy. Cases H, I, J and K do a particular split

the BSP node, if both are the same we will classify IN, and
OUT otherwise.

Figure 7: Left object represents the result of a Boolean op-
eration without reconstruction stage. Right object represents
the result of a Boolean operation with reconstruction stage.

3.3. Reconstruction stage

The reconstruction stage has been simplified because there
are not duplicated vertices but only those faces that repre-
sent the boundary of the final object, and all the faces are
connected. These faces could be a result of the Boolean op-
eration. The drawback of this output is that it could be very
fragmented (see Figure 7). The objective of this implemen-
tation is to help Blender users to design their objects. So if
they receive a mesh with unnecessary split faces, they could
be disappointed with the result. For this reason, we use the
reconstruction stage to reduce the number of faces, merging
those faces that come from the same original face. This stage
generates a mesh of triangles and quads, although it receives
only triangles. Only convex quads are allowed so before cre-
ating a quad we check its convexity and we discard it if it is
not a convex quad.

The reconstruction process is subdivided in two stages:

• Merge of faces removing vertices.
• Merge of faces removing edges.

Both are executed successively, until one of them ends
without producing any merge.

3.3.1. Merge via removing vertices

We say that a vertex is candidate to be removed or removable
if it didn’t exist on the initial vertices set. For this reason, we
only can remove those vertices generated during one of the
intermediate Boolean operation stages. The rest of vertices
and faces without removable vertices will be ignored during
this stage.

For each removable vertex vi of a mesh M, the first step
consists in finding the set of faces Li1...LiN where

• Li j is the faces set of M that contains vi and come from
the original face Cj.

submitted to COMPUTER GRAPHICS Forum (5/2006).



M. Freixas & S. Grau & D. Silva / Boolean Operations in Open-Source Blender Project 5

Figure 8: Possible configurations of merge faces.

Figure 9: The vertices vprev and vnext of v inside a triangle
are computed according to the vertex order.

• L = Li1 ∪ ...∪LiN is the faces set of M that contains vi.

The next step consists in the application of merge patterns
on those faces in the same set Li j (see Figure 8 A-D). Each
of these patterns receives two faces with vi, and in case of
success it produces a new face without it as a result of the
merge. The new faces are added in a new set L′ while the
merged faces are removed from their corresponding set Li j.
The process ends when neither of the patterns can’t be ap-
plied or all set Li j is void. In the first case, we have two or
more faces that could not be merged, so vi can’t be removed

Figure 10: The vertices vprev, vnext and vopp of v inside a
quad are computed according to the vertex order.

and the mesh keeps intact. In the second case, vi and the
faces of L are removed from the mesh, and the faces of L′
are added.

The patterns B-D in Figure 8 present as a special feature,
the fact that they require to remove a second vertex in order
to merge the input faces. This second vertex is added to a
list of pending vertices that must be removed to eliminate vi,
generating a chain of remove-dependencies between the ver-
tices. If the process fails for one of them, neither can be re-
moved. Otherwise, the vertices and their faces are removed,
and the new merged faces are added.

Figures 9 and 10 show definitions of vprev, vnext and vopp

and here we define some functions used later:

Collinear(a,b,c) ⇔ Segment(a,b)‖Segment(b,c)
Between(a,b,c) ⇔ a �= b∧a �= c∧a ∈ Segment(b,c)

The pattern A can be formalised as:

Require: Triangle(v0,v1,v2) ∧ Triangle(w0,w1,w2) ∧
∃i, j : 0..2 : vi = w j
if viprev = w jnext ∧Between(vi,vinext ,w jprev) then

return Triangle(viprev ,w jprev ,vinext )
else if vinext = w jprev ∧Between(vi,viprev ,w jnext ) then

return Triangle(viprev ,w jnext ,vinext )
end if

The pattern B can be formalised as:

Require: Quad(v0,v1,v2,v3) ∧ Quad(w0,w1,w2,w3) ∧
∃i, j : 0..3 : vi = w j
if viprev = w jnext ∧ Between(vi,w jprev ,vinext ) ∧
Between(w jnext ,w jopp ,viopp) then

return Quad(w jopp ,w jprev ,vinext ,viopp)
else if vinext = w jprev ∧ Between(vi,viprev ,w jnext ) ∧
Between(vinext ,viopp ,w jopp) then

return Quad(viopp ,viprev ,w jnext ,w jopp)

submitted to COMPUTER GRAPHICS Forum (5/2006).



6 M. Freixas & S. Grau & D. Silva / Boolean Operations in Open-Source Blender Project

end if

The pattern C can be formalised as:

Require: Quad(v0,v1,v2,v3)∧ Triangle(w0,w1,w2)∧∃i :
0..3, j : 0..2 : vi = w j
if viprev = w jnext ∧ Between(vi,vinext ,w jprev) ∧
¬Collinear(w jprev ,viprev ,viopp) then

return Quad(viopp ,viprev ,w jprev ,vinext )
else if vinext = w jprev ∧ Between(vi,viprev ,w jnext ) ∧
¬Collinear(w jnext ,vinext ,viopp) then

return Quad(viopp ,viprev ,w jnext ,vinext )
end if

The pattern D can be formalised as:

Require: Quad(v0,v1,v2,v3)∧ Triangle(w0,w1,w2)∧∃i :
0..3, j : 0..2 : vi = w j
if viprev = w jnext ∧ Between(vi,vinext ,w jprev) ∧
Between(viprev ,w jprev ,viopp) then

return Triangle(vinext ,viopp ,w jprev)
else if vinext = w jprev ∧ Between(vi,viprev ,w jnext ) ∧
Between(vinext ,viopp ,w jnext ) then

return Triangle(viprev ,w jnext ,viopp)
end if

3.3.2. Merge via removing edges

This stage is much simpler than the previous one. It gen-
erates quads merging two triangles, using the pattern of the
Figure 8 E, when these tringles share an edge and come from
the same parent face. If this pattern is successful, the input
triangles are removed from the mesh and the resulting quad
is added to its faces set. This pattern can be formalised as
follow:

Require: Triangle(v0,v1,v2) ∧ Triangle(w0,w1,w2) ∧
∃i, j : 0..2 : vi = w j
if viprev = w jnext ∧ ¬Collinear(vinext ,vi,w jprev) ∧
¬Collinear(vinext ,viprev ,w jprev) then

return Quad(vi,vinext ,viprev ,w jprev)
else if vinext = w jprev ∧ ¬Collinear(viprev ,vi,w jnext ) ∧
¬Collinear(viprev ,vinext ,w jnext ) then

return Quad(vi,w jnext ,vinext ,viprev)
end if

4. Results

Table 7 shows some figures that compare the original
Blender Booleans with our implementation and the Mega-
Bool script. We can see that the original strategy produces
too many triangles and the meshes are not solids (a,g,j). The
other two strategies preserve original quads (b,c). MegaBool
constructs clean meshes with spectacular nice triangles (l),
but sometimes generates unexpected holes (i) and does not
assign the correct property values for each faces, like its ma-
terial (c). In the second row (d,e,f), two solids that are coin-
cident by one face and one vertex are joined. Megabool (f)

computes a wrong union operation, and the original strategy
(d) does not detect the coincidence.

The performance tests have been done in a Pentium IV
3Ghz with 512Mb of memory. We can consult the used sam-
ples sizes in the Table 3. In Table 4 we can observe the re-
sults of computing the different Boolean operations with the
sample models. In this Table we can see that the old version
is faster than the new one, but we have seen this one does
not compute the solid object well. In the case of the Mega-
bool Python script, it is considerably slower. For the dense
models it has memory problems and it does not compute the
result. This low performance is due to the interpreted lan-
guage implementation.

In Table 5 we show the performance of each pipeline
stage. The most expensive stage in the Boolean process is the
subdivision stage, followed by the reconstruction stage. As a
future work we aim to improve the subdivision stage so that
it realizes less and better divisions, and as a consequence we
will be able to reduce the work for the reconstruction stage.

Sample size of mesh A size of mesh B
sphere drill 1984 12
two spheres 1984 1984
wheel low 4704 12
wheel high 18816 12

Table 3: Samples used in the performance tests.

Old version ∩ ∪ −
sphere drill 0.22′′ 0.23′′ 0.25′′

two spheres 0.47′′ 0.49′′ 0.49′′

wheel-low 0.19′′ 0.20′′ 0.20′′

wheel-high 0.73′′ 0.80′′ 0.82′′

MegaBool ∩ ∪ −
sphere drill 2.78′′ 2.90′′ 3.03′′

two spheres 10.82′′ 10.82′′ 11.10′′

wheel-low out of mem out of mem out of mem
wheel-high out of mem out of mem out of mem
New version ∩ ∪ −
sphere drill 0.50′′ 0.49′′ 0.51′′

two spheres 1.59′′ 2.04′′ 1.63′′

wheel-low 1.05′′ 0.97′′ 0.98′′

wheel-high 22.97′′ 27.07′′ 26.72′′

Table 4: Execution times for all Boolean implementations.

5. Conclusions and future work

The present work has allowed to introduce us to the world
of free software and to be able to collaborate with the
Blender community. The fact that everybody has access to
the Blender source code turns it an ideal platform for the
development of projects related to computational geometry.

submitted to COMPUTER GRAPHICS Forum (5/2006).



M. Freixas & S. Grau & D. Silva / Boolean Operations in Open-Source Blender Project 7

sphere drill ∩ ∪ −
Preprocess 0.21′′ 0.20′′ 0.22′′

Subdivision 0.17′′ 0.17′′ 0.17′′

Classification 0.06′′ 0.06′′ 0.06′′

Reconstruction 0.06′′ 0.06′′ 0.06′′

Total 0.50′′ 0.49′′ 0.51′′

two spheres ∩ ∪ −
Preprocess 0.42′′ 0.38′′ 0.40′′

Subdivision 0.81′′ 0.78′′ 0.78′′

Classification 0.30′′ 0.28′′ 0.29′′

Reconstruction 0.06′′ 0.60′′ 0.16′′

Total 1.59′′ 2.04′′ 1.63′′

wheel-low ∩ ∪ −
Preprocess 0.22′′ 0.22′′ 0.21′′

Subdivision 0.61′′ 0.53′′ 0.56′′

Classification 0′′ 0′′ 0.01′′

Reconstruction 0.22′′ 0.22′′ 0.20′′

Total 1.05′′ 0.97′′ 0.98′′

wheel-high ∩ ∪ −
Preprocess 1.77′′ 1.70′′ 1.69′′

Subdivision 12.14′′ 13.62′′ 13.56′′

Classification 0.02′′ 0.02′′ 0.02′′

Reconstruction 8.86′′ 11.55′′ 11.27′′

Total 22.97′′ 27.07′′ 26.72′′

Table 5: Execution times for each Boolean stage.

We recoded Blender’s Boolean Operations, and they re-
turn intuitive results that conserve properties of the input ob-
jects. This new implementation is available since Blender
2.40.

We will try to speed up the algorithm by simplifying the
subdivision stage. This stage will be divided in two sub-
stages. First we will compute all xegments, using a face-by-
face test, without splitting the triangles. Next we will tesse-
late all faces avoiding unnecessary splits.

6. Acknowledgements

This work has been made thanks to the program of schol-
arships "Summer of Code 2005" of Google for the develop-
ment of free software projects. We thank Alex Ewering and
the Blender community for their aid and technical support.
This work has been partially supported by a CICYT grant
MAT2005-07244-C03-03 and TIN2004-06326-C03-01.

References

[BGM93] BANERJEE R. P. K., GOEL V., MUKHERJEE

A.: Efficient parallel evaluation of csg tree using fixed
number of processors. In SMA ’93: Proceedings on the
second ACM symposium on Solid modeling and applica-

a b

c

Table 6: Union of two cubes. (a&b) Some vertices lay on
edges. The result is not a solid mesh and it has a lot of un-
necessary vertices. (c) The result is a well sewed mesh with
the minimum number of necessary vertices.

tions (New York, NY, USA, 1993), ACM Press, pp. 137–
146. 2

[Chi88] CHIYOKURA H.: Solid Modeling with Design-
base: Theory and Implementation. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1988.
2

[FAG83] FUCHS H., ABRAM G. D., GRANT E. D.: Near
real-time shaded display of rigid objects. In SIGGRAPH
’83: Proceedings of the 10th annual conference on Com-
puter graphics and interactive techniques (New York, NY,
USA, 1983), ACM Press, pp. 65–72. 2

[HHK89] HOFFMANN C. M., HOPCROFT J. E., KARA-
SICK M. E.: Robust set operations on polyhedral solids.
IEEE Comput. Graph. Appl. 9, 6 (1989), 50–59. 2

[KCF∗02] KEYSER J., CULVER T., FOSKEY M., KR-
ISHNAN S., MANOCHA D.: Esolid–a system for exact
boundary evaluation. In SMA ’02: Proceedings of the sev-
enth ACM symposium on Solid modeling and applications
(New York, NY, USA, 2002), ACM Press, pp. 23–34. 2

[Lee99] LEE K.: Principles of CAD/CAM/CAE Systems.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1999. 2

[Män86] MÄNTYLÄ M.: Boolean operations of 2-
manifolds through vertex neighborhood classification.
ACM Trans. Graph. 5, 1 (1986), 1–29. 2

submitted to COMPUTER GRAPHICS Forum (5/2006).



8 M. Freixas & S. Grau & D. Silva / Boolean Operations in Open-Source Blender Project

[Mil88] MILLER J. R.: Analysis of quadric-surface-based
solid models. IEEE Comput. Graph. Appl. 8, 1 (1988),
28–42. 2

[NAT90] NAYLOR B., AMANATIDES J., THIBAULT W.:
Merging bsp trees yields polyhedral set operations. In
SIGGRAPH ’90: Proceedings of the 17th annual confer-
ence on Computer graphics and interactive techniques
(New York, NY, USA, 1990), ACM Press, pp. 115–124.
2

[PY89] PATERSON M. S., YAO F. F.: Binary partitions
with applications to hidden surface removal and solid
modelling. In SCG ’89: Proceedings of the fifth annual
symposium on Computational geometry (New York, NY,
USA, 1989), ACM Press, pp. 23–32. 2

[Req80] REQUICHA A. A. G.: Representations for rigid
solids: Theory, methods, and systems. ACM Comput.
Surv. 12, 4 (December 1980), 437–464. 2

[RF04] RIVERO M. L., FEITO F.: Refinamiento de mal-
las triangulares. Aplicación para el cálculo de operaciones
Booleanas en 3D. XIV Congreso Español de Informática
Gráfica (2004), 77–90. 2

[RV85] REQUICHA A., VOELCKER H.: Boolean opera-
tions in solid modeling: Boundary evaluation and merging
algorithms. P-IEEE 73 (1985), 30–44. 2

[Taw91] TAWFIK M. S.: An efficient algorithm for csg
to b-rep conversion. In SMA ’91: Proceedings of the
first ACM symposium on Solid modeling foundations and
CAD/CAM applications (New York, NY, USA, 1991),
ACM Press, pp. 99–108. 2

[TN87] THIBAULT W. C., NAYLOR B. F.: Set opera-
tions on polyhedra using binary space partitioning trees.
In SIGGRAPH ’87: Proceedings of the 14th annual con-
ference on Computer graphics and interactive techniques
(New York, NY, USA, 1987), ACM Press, pp. 153–162.
2

submitted to COMPUTER GRAPHICS Forum (5/2006).



M. Freixas & S. Grau & D. Silva / Boolean Operations in Open-Source Blender Project 9

Old Version Megabool script New Version

a b c

d e f

g h i

j k l

Table 7: Comparison between the different strategies.

submitted to COMPUTER GRAPHICS Forum (5/2006).


