3D MODELING FRAMEWORK: AN INCREMENTAL APPROACH

Luis Almeida, Paulo Menezes, Jorge Dias

OBJECTIVES

- Develop a framework for on-line 3D modeling useful for human computer interaction (HCI) or telepresence applications
- Propose an adaptation of the Crust algorithm for incremental reconstruction
- Fuse new data into the reconstructed model based on measure uncertainty and novelty
- Virtual view synthesis through body motion estimation and hybrid sensor composed by a video and depth camera

CHALLENGES AND APPROACHES

- Realistically represent the user's body appearance
- Enhance the presence feeling and immersion in netmeeting or interaction scenarios
- Combine body motions estimation to a depth camera to address the video reconstruction problem on object's low-texture regions
- Treat deformable bodies as a set of rigid transformations

MESH MODELING

• A new and incremental version of the Crust algorithm is proposed to add a new set of sample points X_{t+1} to the surface mesh, without a full recalculation :

Algorithm 1 Crust incremental algorithm

- 1: P_{t+1} = poles of X_{t+1}
- 2: Add $P_{t+1} \cup X_{t+1}$ as new Delaunay triangulation vertices
- 3: Extract triangles whose vertices belong to $X_t \cup X_{t+1}$

Mesh model using Crust triangulation

CONTACTS

Jorge Dias

Luis Almeida laa@ipt.pt
Paulo Menezes paulo@isr.uc.pt

jorge@isr.uc.pt

Institute Polytechnic of Tomar

Dep. of Electrical and Computer Engineering

Dep. of Electrical and Computer Engineering

REAL-TIME 3D RECONSTRUCTION SYSTEM

COMBINES VISUAL FEATURES AND SHAPE-BASED ALIGNMENT

- Multiview 3D Scan: one single RGB-D sensor (kinect)
- Correspondence: RGB-D sensor provides simultaneously scene 3D information and respective 2D image, SURF establish the 2D match
- Registration: 3D point clouds alignment, two corresponding 3D points sets, $\{x_i^t\}$ and $\{x_i^{t+1}\}$, i=1::N

$$\mathbf{x}_{i}^{t+1} = \mathbf{R}\mathbf{x}_{i}^{t} + \mathbf{t} + \mathbf{v}_{i}$$

$$\varepsilon^{2} = \sum_{i=1}^{N} \left\| \mathbf{x}_{i}^{t+1} - \mathbf{R}\mathbf{x}_{i}^{t} - \mathbf{t} \right\|^{2}$$

 $\bf R$ - rotation matrix, $\bf t$ - 3D translation vector, $\bf v_i$ - noise vector. equation minimization using a least square criterion (SVD)

- Model Mapping: To update the reconstructed model, each acquired
 3D point set is transformed to initial sensor reference coordinates
- Integration: information relevance based on the uncertainty of range sensor. Confidence inversely proportional to the distance L and angle Ø of data acquisition: Ci= |1/(LØ)|

EXPERIMENTS AND RESULTS

Synthesized views of a 3D reconstructed model dependent of observer point of view

CONCLUSIONS

- A framework for on-line incremental 3D modeling useful for HCI
- Virtual view synthesis through motion body estimation & RGB-D sensor
- A new incremental version of Crust algorithm that efficiently adds new vertices to an already existing surface without full mesh recalculation
- Integration of 3D data based on confidence measures avoiding redundant information computation.

