
2

A Distributed Data Model for Ray tracing

Jorma Skytta and T apio T akala

Ray tracing is a superior method for producing realistic images. It can take into account
all natural phenomena covered by classical ray optics in image formation, and that
without any extra modeling effort. The main disadvantage is its high cost in terms of
computer time. Production of ray traced images of reasonably complex scenes takes long
in real time with a moderate general purpose computer [Whi80).

The basic idea of ray tracing is the brute force algorithm for simulating the path of a ray
of light in the whole model space. As no global information of the model is used to
anticipate the interactions of the ray with model elements, every ray must be tested against
every object and most of the processing time is consumed to ray-object intersection
calculation. At each intersection found the ray is divided into reflected and refracted
components and into a ray directed to each light source to produce shadows. Higher
quality images need more pixels to be calculated and the number of elements in a scene
grows linearly with model complexity, leading to steep increase of the computational
complexity of the whole problem.

In order to limit the growth of the problem, methodologies for splitting the model space
have been used. The idea has been to construct a hierarchy of model elements and thus to
be able to discard a large amount of non-intersecting elements with a single test. Several
methods have been reported with various geometric division principles [Rub80, Gla84,
Weg84, Kap85, Kay86). Most of the methods presented have concentrated on finding
suitable surface types for performing the hierarchal division without splitting the original
coherence of the model [Dip84, Kay86J. Even manual interaction is often needed to reach
this goal [00187).

Up to now the distribution of computation to physically different processors has not been
considered much although parallel computation is necessary for efficient use of ray tracing
methodology for image generation. The rough classification of approaches is based on two
division principles [Sev88J:

I) 	 Image space subdivision, where each ray originating from a different pixel is treated
independently and

http://www.eg.org
http://diglib.eg.org

20

2) Object space subdivision, where the model space is split into subregions each treating
rays independently.

The image space division principle leads to severe memory contention problems as every
processor has to have access to the same model database. The only way to avoid this is to
copy all the model data to each processor, which we cannot afford with large models.

The object spacc divisions presented have mostly concentrated on diminishing the amount
of intersections calculations, not on distributing the model data to physically separated
proccssors. A simple constant boundary box division [Cle85] is not adequate to achieve
uniform loading of a group of processors. It is further assumed that after installing a
graphic element to the model it is neither moved nor modified because otherwise the rigid
boundary concept would result to formation of additional split elements [Sky87J. The
more complicated division schemes, which avoid the splitting effect caused by updating,
rely implicitly on the availability of a centralized data base service controlling the total
model information. Typically in these methods there may be several references to the same
element located at different cells [Tam82], and thus at worst case we calculate the same
ray-object intersection several times unless global marking is employed.

The Tree of Processors
Our goal is to introduce a data structure containing each element only once \Vithout cross
references between cells or to a centralized global store. In order to permit flexible
modifying, the cell boundaries must not be rigid. This prevents unnecessary element
splitting. We still go a bit further and totally abandon the idea of splitting a natural
geometric element by an artificial boundary imposed by hardware constraints. Now the
set of constraints seems to be contradictory and impossible to satisfy. In many cases the
sets of elements are not linearly separable and cannot be separated with planes or even
with more general boundary surfaces.

Our aim is to bring the separation to coordinate level. This can be accomplished with the
concept of interval boundaries. The basic schema for utilizing interval coordinate axis
boundaries for constructing a hierarchy of 3-D geometric objects relies on a set of rules
determining the location of an element in the hierarchy by traversing the interval
boundary sets beginning from the root of the tree. As the boundaries are intervals, this
traversal contains parallel paths which can be elaborated in parallel provided that
necessary hardware is in use.

A ray being processed can be considered a packet relayed around the physical network
hierarchy based on the initial geometric coherence of the model. The preservation of
coherence and the equal loading of network nodes require an automatic hierarchy
construction schema, which distributes the model into the network. Our method relies on
local decision making based on interval classification. In order to make local processing
feasible, we stick to a simple binary tree hierarchy: elements at this node, elements at left
node and elements at right node. As already stated, it is difficult, often even impossible to

21

develop a geometric rule to perform this separation. However, employing intervals
provides quite a simple solution to the problem at coordinate axis level. We do not have
to construct separating planes, but define one coordinate axis as the dividing axis with a
set of intervals dividing encountered elements into left and right halfspaces plus a
nonseparable common area.

Formally this is accomplished with a set of three intervals: (CI, Cr) defining the center
area, (U, Lr) defining the left side space and (RI, Rr) defining the right side space. These
intervals have to be true intervals (length > 0) and their mutual relationship has to obey
the assertion:

Lr < RI ; left and right spaces do not overlap

Cl<RI ; center and right areas may only partially overlap

Cr> Lr ; center and left areas may only partially overlap

These assertions guarantee the existence of a true interval hierarchy where we can specify
a meaningful set of search paths for any element with a known search interval. In order to
perform meaningful searches in 3-D space, we have to define the three intervals for one
coordinate axis at each node, but the axis used is alternated in different levels of the
hierarchy. Similar intervals, defining the maximum dimensions of the left and right
subtrees as well as limits of the root, are specified in all coordinate directions at each
node. However, the assertions are valid only in the dividing direction.

At each node of the binary tree we can always search for an element in all of the three
subsets, but using our set of rules many search paths can be terminated already by simple
comparisons of the search interval and our assertions. The net result of this operation is
the start of multiple search paths simultaneously, but only some of them remain active to
the end of the search. The paths created can be processed either sequentially one by one
until termination of each, or simultaneously due to branching. However, utilization of this
form of parallelism is quite tedious since a control lock point is needed at each branching.
The basic ray tracing algorithm contains already enough parallelism to utilize the whole
number of processors in use as each ray is treated separately, and by choosing the
sequential alternative for treatment of logically branched rays we are able to save memory
and code at each node.

Creating an interval tree structure featuring the stated properties is rather simple. In the
beginning each element brought into the system is positioned at the center area of the root
of the tree. As a preset threshold value for memory space utilization at that node is
exceeded, a balancing process is initiated. It picks either the leftmost element (Min Xr) or
the rightmost element (Max Xl) and tries to move it to the respective subtree. Typically
this leads to an update of the interval definitions, and balancing is prohibited unless for all
nodes, all the constraints are satisfied. For an empty node the interval is undefined, and it
receives its first numerical values with the first element positioned there. Later on the
favoured direction for balancing is determined by the fill ratios of the respective subtrees.
The process has great resemblance with ordinary weight balancing of graphs using scalar

22

keys. Now we only add a set of constraints specifying which element can occupy what
location, and that keeps our distributed version coherent with the original model. Also the
system is similar to B-trees in the sense that it does balancing through sorting the internal
keys of a single node, with the exception that no unique sorting can be performed due to
interval relations specifying only partial ordering relations between the elements.

Algorithm for Tracing Ray-Objects

OUf general idea in applying the processor tree for ray tracing is that each ray is an
independent object moving through the space subdivided between processors. Individual
rays are either primary rays initiated for each pixel of a raster image, or secondary rays
spawned at points where a ray intersects an object surface (i.e. reflected, refracted or
shadow rays).

Principally all ray objects can be processed in paralleL However, coordinated sequential
operation of processors may be needed for specific purposes. When spawning new parallel
reflection/refraction/shadow ray objects, typically implemented with subroutine calls in a
single-processor environment, their initiator ray is stored in a processor node and is set to
wait until each secondary ray has returned, thus performing recursion. Also while
processing one ray, it may be necessary to check for the nearest intersection point in
several cells. This could be done in parallel, but it is easier to serialize by providing the
ray object with routing information, i.e. a list of nodes telling which processors are to be
visited one-by-one, similar to iteration in conventional programming.

The ray tracing is initiated by a camera object, which is placed in the processor tree
according to its focal point. Thus thc camera is always inside the modelling space. The
processor containing the camera will produce for each pixel a primary ray as a data
packet send the rays to other processors when needed, and coHect the corresponding
return packets containing intensity values for pixels, which are then output from the tree
to a display system.

The main task for each ray is to find its first intersection point with all objects in the data
base, to spawn secondary rays there, and to calculate the returned light intensity at that
point. An outline of the basic ray tracing algorithm is as follows:

begin With parameters:

~ type of ray /" reflection/shadow

- direction vector.

. starting point I" the ray's initialization point' I

.. end point end of search interval;

for shadow ray: end point ~ light position,

otherwise: end pOint undeflneo) ~·I

23

for each object In space do

check for firs: 1"""Seletl(ln wilhin ray's m:B;val

I.e. between start and end points ,~

if intersection found then

if shadow_ray then return zero intensity

/" terminate immedIately

else assign end POIr! ~ inlersecllon point

,:~. search interval shortened as on:y

nearer Intersections are searChed tor ;, I

endif

endfor:

if end pOint defined then

! r. nearest Intersection is found for a reflection ray'; /

if not maximum reCursion depth reached then

spawn ne\'J rays for:

- reflection

. refraction

a stmdow ray towards eacn light source;

then walt for secordary fays:

while not all seconcary returned do

if returr packet ob131f'\OO then

add IntensifY

endwhile:

return total intenSity

else

no Intersect on was found

if shadow_ray then

. no shadOWing 10ura ..

return light source mIens!ty

else the ray didn't hit t~e scene at all I

return background ;nte'1sny

terminate.

A ray is terminated. if the maximum recursion depth is reached (for a reflected/refracted
ray), if the light source is reached or an obstacle found (for a shadow ray), or if the ray is
going to the background outside the whole modelling area. In each case, a return packet is
formed and sent back to the ray's initial node. When all descendants of a non-terminated
secondary ray have returned, its total illumination is calculated and put into the
corresponding return packet. For a primary ray, the pixel intensity value is forwarded to a
display.

The directions of a ray are calculated in the processor, where the first intersection point is
found. For reflected and refracted rays the information needed (the intersecting surface's
properties) is localized in that processor only, whereas calculation of shadow rays'
directions needs that all light positions are broadcast to all processors.

24

Pruning the Object Intersection Search
The brute-force algorithm utilizing no structure of the model must visit every object in the
whole space for each ray to find the nearest intersection. In a cell-organized modelling
space the algorithm can be localized by visiting the cells sequentially (brute force is
applied only within each cell), starting from the cell where the ray initiates, and then
following the ray direction until first intersection is encountered.

For disjoint cells (eg. in octree or voxel-type organization) the strategy is strictly
sequential. If no intersection is encountered in one cell, the search can simply continue in
the next one, which is determined according to the point where the ray leaves the cell. The
cells have a linear ordering along the ray. If all cells are of equal size, the ordering
calculation resembles the DDA line rasterization algorithm [Fuj86].

In OUf system the areas of all nodes in the tree are not disjoint, and thus cannot be
processed independently with the simple sequential procedure outlined above. Typically
the area of an intermediate node (C-interval) will overlap with both of its subtree areas,
and may overlap with potentially all higher nodes' areas up to the root (sce Figure 1).
Assuming we have found an intersection in one cell, we cannot be sure it is the nearest
one before checking all the overlapping cells, too. Neither can we, without checking the
overlapping areas as well, determine that there is no intersection within a cell's boundaries.

LR

RR

LL
Area llRC, bounding
llRl and llRR. may
also overlap with
any of C,le and llC

IlIlIlT
RL

llR

L R
Figure 1: Subdivision 01 a 2-D space (the code of a node specifies its position in the tree, e.g.

LLRC left-Ieft-right-cenler).

Search in several cells and comparison of results is necessary to determine the nearest
intersection. However, even overlapping cells can be partially ordered along a ray, and this
property can be used to organize the parallel search sequentially. Also the bounding boxes
of objects are stored in hierarchical fashion, and can be checked against the dynamic
search interval being the range along the ray from its starting point to the nearest
intersection found so far. This method will effectively prune the search candidates.

25

Assuming the ray initiates at an intermediate node (e.g. LLRC in the figure), the search
for nearest intersection with objects in the scene is first performed there, is then
propagated down and finally up in the processor tree. The following aspects are taken into
account when implementing these processes:

I) 	 Downward: Each C-area (LLRC) may ovcrlap with its both left and right
descendants (LLRL and LLRR), and thus both subtrees have to be considered.
However, if we first check the bounding box of a subtree (which is stored in the
intermediate node), typically only one or neither of those intersects the ray within the
search interval (e.g. if we go down from LLRC, and the starting point isn't within
LLRR, then the whole LLRR can be discarded). As the search - even though pruned
- may branch into several subtrees whose results have to be compared, this will be
implemented using recursion (the initial ray packet sends descendant packets and
waits for results).

2) 	 Upward:.In principle a cell (LLRC) may overlap with all its ancestors (C, LC, LLC)
in the tree - thus the whole path up to the root node has to be checked before we can
determine the first intersection. In this case also the search interval is first checked
against bounding boxes of the nodes. Because there now is only one linear path of
nodes being visited, the process will be implemented with iteration (the ray packet
leaves its initial node, but is provided with return address and a list of upper nodes
being visited).

3) 	 If none of the initial node's subtrees contain an intersection, nor one of the upper
nodes within the search boundaries, then the process is continued with another
subtree, determined according to the ray's exit point from the initial subtree (e.g. if
the ray direction is straight up from LLRC, and LLRR doesn't report intersection,
then LC will recognize that the search continues in the LR subtree).

Checking the potential intersections for each ray at several processors may cause tedious
overhead. and should be reduced to the minimum. The interval borders at each node can
prune many unnecessary checks. However, all the upward check queries have to proceed
up to the root node, unless some knowledge about the intermediate nodes' areas is stored
in the subnodes also. One way to create this checking information is to calculate, during
filling and balancing of the tree, extents of the "private" area of each subtree, which is
guaranteed not to overlap with any of the center areas of its ancestor nodes.

Keeping the areas of the intermediate nodes as narrow as possible will optimize the
performance of upward directed intersection queries in the tree. Whether this is feasible,
depends much on the material stored in the tree. In special cases, it may be necessary to
subdivide a large object into a set of smaller ones just for efficiency, although our goal is
to avoid object splitting.

http:Upward:.In

26

References

[Cle85] 	 J. Cleary et. al., "Multiprocessor Ray Tracing", Computer Graphics Forum, vol. 5,
no. I, pp. 3-12, March 1986.

[Dip84] 	 M. Dippe and J. Swensen, "An Adaptive Subdivision Algorithm and Parallel
Architecture for Realistic Image Synthesis", Computer Graphics, vol. 18, no. 3,
pp. 149-158, July 1984.

[Fuj86] A. Fujimoto et. al., "ARTS: Accelerated Ray-Tracing System", IEEE Computer
Graphics and Applications, pp. 16-26, April 1986.

[Gla84] A. Glassner, "Space Subdivision for Fast Ray Tracing", IEEE Computer Graphics
and Applications, pp. 15-22, Oct. 1984.

[GoI87] J. Goldsmith and J. Salmon, "Automatic Creation of Object Hierarchies for Ray
Tracing", IEEE Computer GraphiCS and Applications, pp. 14-20, May 1987.

[Kap85] 	 M. Kaplan, "Space Tracing, a Constant Time Ray-Tracer", SIGGRAPH'85
Course Notes, no. 11: State of the art in Image Synthesis, San Francisco, CA,
1985.

[Kay86] T. Kay and J. Kajiya, "Ray Tracing Complex Scenes", Computer Graphics,
vol. 20, no. 4, pp. 269-278, Aug. 1986 (SIGGRAPH'86).

[Rub80] S. Rubin and T. Whitted, "A 3-Dimensional Representation for Fast Rendering
of Complex Scenes", Computer Graphics, vol. 14, pp. 110-116, July 1980.

[Sev88] S. Gaudet et al., "Multiprocessor Experiments for High-Speed Ray Tracing".
ACM Transactions on Graphics, vol. 7, no. 3, pp. 151-179, July]988.

[Sky87] 	 J. Skytta and T. Takala, "VLSI-based Partially Ordered Tree for Storing 3-D
Geometric Information in Data Base", IEEE CompEuro'87, Federal Rep. of
Germany. 11-15 May 1987, pp. 746-749.

[Tam82] 	M. Tamminen and R. Sulonen, "The EXCELL Method for Efficient Geometric
Access to Data", 19th Design Automation Conference, Las Vegas, 1982, pp. 345­
351.

[Weg84] H. Weghorst, G. Hooper and P. Greenberg. "Improved Computational Methods
for Ray Tracing", ACM Transactions on Graphics, vol. 3, no. 1, pp. 52-69, Jan.
1984.

[Whi80j 	 T. Whitted, "An Improved Illumination Model for Shaded Display",
Communications of the A CM, vol. 23, no. 6, pp. 343-349, June 1980.

