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Abstract 
Dimensionality reduction algorithms may be of great help as decision support, representing the information as a map which summarizes the 
data similarities. When data come with an assigned class label, such a map can be used to check the quality of the labeling detecting class 
outliers or data near decision boundary, or to evaluate the relevance of the similarity measure used for the mapping from which to derive a 
good classification space. However, state-of-the-art mapping techniques are either unsupervised, not considering the class labels, or 
supervised, considering it but putting too much emphasis on the class information. The result is that well separated classes can be mapped 
as overlapping with the unsupervised techniques, while overlapping classes can be mapped as clearly separated with the supervised 
techniques, so none of these maps tends to show the truth about the inter-class and between-class high-dimensional structure. We designed 
ClassiMap, a supervised mapping technique which come over these limits by exploiting the unavoidable tears and false neighborhoods 
mapping distortions to preserve at best the class structure through the mapping. We compare it to other supervised mapping techniques in 
labeled data visual exploration tasks. 
 
Paper type: Optimizing embeddings for visual analysis 
 
 
 
1. Introduction 
 
 
1.1 Context 
 
Decision support systems based on automatic classification 
techniques [5] rely on classification scores like precision and 
recall, to help the user in their daily data classification task. 
However users faced with such a black box system, are prone 
either to blind trust or to mistrust these scores. In the former 
case, the user relies too much on the system which comes with 
its own risks, while in the latter the system is not used at all and 
so is useless.  
 
We expect that visualization techniques of multidimensional 
labeled data (i.e. data with an assigned class label) could help the 
user to trust the decision support system, better understanding 
why the system provides this classification score for a new data 
point, by positioning the new point on a map relative to the 
global class structures of the data.  
 
1.2. Multidimensional scaling and mapping distortions 
 
Multidimensional scaling techniques are used for visual analysis 
of high-dimensional datasets. Original high-dimensional data are 
mapped as points into a 2-dimensional vector space (the map) by 
attempting to preserve at best some similarity measure between 
the data points. The label information is usually color-coded on 
the map. Unsupervised mapping techniques do not consider the 
class information while supervised mapping techniques do. 
Whether supervised or not, any mapping of a dataset from a 
high-dimensional (HD) vector space to a lower dimensional 
(map) vector space necessarily comes with distortions. Let the 

boolean function Ns(x,y) be true if vectors x and y are neighbors 
in the space s and false otherwise, then tears (T) and false 
neighborhoods (FN) are the two types of distortions (Figure 1) 
which are relative to such a neighborhood function [1][4]. Tears 
and false neighborhoods can occur simultaneously relatively to 
the same data. 
 
Unsupervised mapping techniques do not consider the class 
information, so due to the above mapping distortions, they can 
map well separated classes as overlapping ones. In contrast, 
state-of-the-art supervised mapping techniques take into account 

 
Figure 1: Mapping distortions relative to the star-shaped data point. 
The original dataset (upper left insert) is a regular grid of points on 
the plane. Triangles are neighbors of the star. The large circle around 
the star defines its neighborhood in both the original and projection 
spaces. Map A (upper right insert) shows a tear where some of the 
original neighbors do not remain neighbors on the map (green 
triangles). Map B (down left insert) shows a false neighborhood where 
some neighbors on the map (magenta circles) are not original 
neighbors of the star. Please notice that tears and false neighborhoods 
can occur simultaneously as on Map C (down right insert). 
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both the original data similarities and the data class labels, but 
they are designed as visual classifiers putting too much emphasis 
on the class information, so they can map overlapping classes as 
clearly separated ones. Finally, none of these mapping 
techniques tends to show the truth about the inter-class and 
between-class high-dimensional structure likely to help the user 
to trust the classifier of the decision support system.  
 
1.3. Purposes of supervised mapping techniques 
 
Supervised mapping techniques aim to import in the visual field 
typical analytic tasks which are usually performed on high-
dimensional labeled data with data mining techniques: namely 
data classification [10] and labeled data exploration [11]. These 
tasks can be transposed in the visual domain as:   

(i) visual data classification: a new unlabeled data point 
projected onto the map is visually assigned to the 
majority class among its labeled neighbors; 

(ii) mislabeled data detection: a labeled data whose 
neighbors on the map are assigned to a different class is 
assumed to be mislabeled; 

(iii) class-boundary data detection: a labeled data whose 
neighbors on the map are mixed between its own class 
and other classes is assumed to lie near the HD decision 
boundary of the classifier; 

(iv) similarity measure evaluation: a map showing much 
class overlapping implies a similarity measure which is 
not relevant to classification; 

(v) class structure summarization: the map is used to 
provide a visual global summary of inter-class and 
between-class HD structures. 

 
The visual data classification task (i) implies that data with 
different labels should be mapped as separated points, and data 
with the same label should be mapped as neighbors, in order to 
increase the probability that a point has the same label as its 
neighbors on the map. In this case, the labels are taken for 
granted and the mapping technique is designed as a supervised 
classifier which aims to separate the class and incidentally to 
preserve the HD data similarities. The mislabeled and class-
boundary data detection tasks (ii)  and (iii)  assume that the 
similarity is well preserved on the map and correlated to the 
class labels, so a point with a label different from the majority 
one of its neighbors is assumed to be mislabeled or near the 
decision boundary in the HD space. The similarity measure 
evaluation task (iv) assumes that the similarity is well preserved 
on the map and the class labels are all correct, so if points with 
different labels appear in the same area of the map, that means 
they are similar in the HD space and so the similarity measure is 
not correlated to the class labels. The class structure 
summarization task (v) assumes that data similarities are all 
preserved at best. 
 
The task (i) is related to data classification [10] which takes the 
class labels for granted and attempts to provide a classifier which 
in a probabilistic framework is based on a model of the 
distribution of the classes given the data similarities. The tasks 
(ii) to (v) are related to labeled data exploration [11] where the 
class-labels come as a supplementary characteristic of the data, 
so the analysis focuses on the joint distribution of both classes 
and data similarities.  
 
In this work we focus on the labeled data exploration tasks (ii) to 
(v) through a multidimensional projection, what we call Visual 
Exploration (VE) tasks in the following. 

 
1.4. Limits of existing supervised mapping techniques 
 
Most of the state-of-the-art supervised mapping techniques have 
been designed to comply with the visual data classification task 
(i). For instance, the Supervised Locally Linear Embedding (S-
LLE) [2], the Supervised Isomap (S-Isomap) [3] and the S-
NeRV [4]. Indeed, these techniques explicitly modify the HD 
similarity measure according to the class assignment of the data. 
Usually, the similarity is decreased between data assigned to 
different classes, while it is increased between data with the 
same label. The mapping technique “Map” appearing in the 
name of the supervised mapping technique “S-Map”, is 
unsupervised and used to map the data with the class-modified 
HD similarity measure (e.g. S-Isomap uses Isomap to map the 
data based on class-modified similarities). The Linear 
Discriminant Analysis (LDA) [6] is a linear projection technique 
which also provides a map enhancing class separation. 
 
The VE tasks strongly rely on the good preservation of the HD 
data similarities on the map to get reliable inference about the 
original HD class structures. So the above state-of-the-art 
supervised mapping techniques do not comply with the VE tasks 
as they modify the original HD similarity measure. Moreover 
modifying the original similarity measure corrupts the primary 
available information generating distortions which add up to the 
subsequent unsupervised mapping distortions in an 
unpredictable way, making VE inference harder and distance-
based mapping quality evaluation tools useless [7]. Another 
issue is that class separation is enforced even when classes 
strongly overlap in the HD space.  
 
This tendency to artificially separate the different classes is 
illustrated with a simple example in the figure 2: original data 
points are located at the nodes of a 2-dimensional square grid 
with random and balanced class assignment. The original space 
and the projection space are both 2-dimensional planes so that it 
is obvious that the optimal mapping is the distortion-free identity 
function which maps each data onto itself. We used the original 
data points as the initial positioning of their image through the 
mapping and then start the optimization process of each 
technique. This simple experiment is a sanity check: we expect 
the mapping of the original data and the original data themselves 
to be strictly identical because no dimension reduction occurs. 
Figure 2 shows that the above supervised techniques designed 
for visual data classification do not preserve the original 
pairwise distances and tend to separate the classes while both 
classes obviously overlap in the original space. In contrast, 
ClassiMap, our proposed supervised mapping technique 
provides a perfect mapping as well as DD-HDS [8], an 
unsupervised mapping technique. 
 
It seems that unsupervised mapping techniques could be used as 
well to provide maps for the VE tasks as they aim at preserving 
the HD similarities. However we expect that taking into account 
the class labels during the mapping process can be useful to 
preserve the most important information about the class 
structures while dealing with the unavoidable mapping 
distortions. 
 
In the following we present ClassiMap, a supervised mapping 
technique dedicated to labeled data Visual Exploration tasks for 
decision support systems, which exploit the unavoidable 
mapping distortions to better preserve the class structure and to 
enable more reliable inference about it from the map. The main 
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idea is to drive the unavoidable mapping distortions where they 
are the less detrimental to the global class structure visualization, 
namely driving tears between the classes and false 
neighborhoods within the classes. 
 

 
 
2. The ClassiMap technique 
 
2.1. The ClassiMap stress function 
Stress-driven mapping techniques optimize the position of the 
data points on the map so as to make the distances as close as 
possible to the ones in the original HD space according to a 
given cost function called the global stress). The global stress 
takes the general form of a sum over all pairs of points (2) of 
local stress functions Sm(i,j) between points i and j (1): 
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Generally, F is a decreasing function that depends on the 
distances in the HD or/and on the map. It is well-known that 
stress-driven mapping techniques tend to commit false 
neighborhoods (respectively tears) when F depends on HD 
distances (respectively on map distances) [1]. Except in trivial 
cases (as in the case shows in the figure 2), all the original 
pairwise distances cannot be preserved [1] and the choice of the 
function F strongly influences the type of distortions which are 
released on the map. Therefore F gives us a chance to control the 
type of distortions and to attempt to drive them in the less 
detrimental place.  
 
ClassiMap relies on this characteristic: in order to take into 
account the class information, ClassiMap adapts the weighing 
function F rather than modifying the original distances. As a 
direct consequence, distortions are avoided each time it is 
possible as in unsupervised mapping techniques. The 
optimization process is designed so as to drive the unavoidable 
distortions where they are the less detrimental, that is to say tears 
are driven between classes possibly separating data from 
different classes, and false neighborhood within classes possibly 
gathering data assigned to the same class.  
 
In that purpose, the weighing function F depends on either the 
HD or the map distances depending of the class co-membership 
Aij of the pair (i,j) of data points considered (3). The ClassiMap 
stress function is then defined as: 
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where A is the class co-membership n×n matrix of the n data 
points. The value Aij located in the ith row and the jth column 
quantifies the class similarity between data points i and j. We set 
Aij = 1 if the data points i and j belong to the same class, and Aij 
= 0 otherwise. Many functions can be used for F. In the 
following, we use the one proposed in [8] for its robustness to 
the concentration of measure phenomenon: 
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and ( )θµ,,uf  is the Normal distribution with mean µ and 
standard deviation (std) θ. The parameter γ controls the influence 
of the neighborhood. It decreases linearly from 0.9 to 0.1 during 
the mapping optimization process.  

 
2.2. ClassiMap optimization process 
The minimization of EClassiMap is achieved thanks to a force 
directed placement technique [9] similar to the one used in [8] 
where only changes the stress function. Indeed, a force is defined 
between each pair of points: 
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where iju
r

is the unitary vector oriented from point i to point j on 
the map. The points image of the data on the map move due to 
these forces until they reach an equilibrium state, local minimum 
of the global stress function. 
At first, a subset of the data points [8] is mapped. The value of 
the γ parameter at this step is set to 0.9 and positions are 
optimized. The result allows providing a rough map of the global 
structures. Then remaining data points are progressively 
considered and the γ parameter is decreased simultaneously 
towards its final value. This process is used [8] in an 
unsupervised setting. Such an iterative process allows 
progressive focusing on local structures while accounting for the 
global structures. 

 
Figure 2: Original 2-dimensional data (top left) with randomly 
assigned class labels (red triangles and blue circles) are mapped on a 
plane with unsupervised and supervised (name in a frame) mapping 
techniques. DD-HDS which preserve distances give exactly the same 
data distribution as the original one. Conversely, S-Isomap, S-NeRV 
and S-LLE, supervised mapping techniques which first modify 
original distances based on the class labels, tend to separate the 
classes unduly. In this case, the proposed ClassiMap supervised 
mapping technique gives the same correct map as distance-preserving 
unsupervised mapping techniques. 

Table 1: Notation summary 
dij  Distance between items i and j in the original HD 

space. 
dij ’ Distance between data points i and j on the map. 
F Weighting function which emphasizes small 

distances.  
Sm(i,j) Stress function between items i and j for the 

mapping technique m. 
Aij  Class co-membership of data points i and j (1 if their 

classes are identical, 0 if they belong to two different 
classes). 
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4. Example with Digit data 
 
ClassiMap as well as several other supervised and unsupervised 
mapping techniques has been tested on the popular optical 
recognition of handwritten digits dataset: a set of black and 
white pictures (8 × 8 pixels) of handwritten digits (numbers from 
“0” to “9”) from the UCI machine Learning Repository 
(http://archive.ics.uci.edu/ml/datasets/).  
 
The resulting maps are shown in the figure 3. We can observe 
that, conversely to other methods, ClassiMap provides a map 
where classes can be easily distinguished. Moreover, using the 
CheckViz technique, we see that tears (green background) 
appear preferentially between classes and false neighborhoods 
(purple background) within classes. Finally, the ambiguous data 
points appear on the map in grey or black areas. For example, 
several “3” and “8” are very close (green diamonds and blue 
stars). Figure 4 shows some of the digits which are mapped very 
close while they are assigned to different classes. These points at 
the boundaries of the classes deserve special attention from the 
user as they are either the ones which define the classes’ 
boundaries if the labels are taken for granted, or the ones more 
likely to be mislabeled otherwise. 
 
4. Conclusion 
 
As far as we know, ClassiMap is yet the only one supervised 
mapping technique that does not distort the original distances. It 
is seems able to untangle classes while fairly preserving the main 
HD structures of the classes. Such features are very suitable for 
decision support systems because it shows proximity 
relationships between data on a more readable map.  
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Figure 3: Unsupervised (PCA and Isomap) and supervised (LDA, S-NeRV and ClassiMap) mapping techniques displaying 64-
dimensional Digit data (pictures of handwritten digits 0 to 9) in a plane. ClassiMap emphasizes class separation while preserving 
classes’ topology. Local distortion evaluation is provided by coloring the background using the CheckViz technique [1] (σ is set to 35); 
light colored background account for fairly mapped areas; green ones account for torn areas, purple ones account for false 
neighobrhoods and black ones account for areas where both types on distorition occur simultaneously (the colorcode is similar as in 
figure 1). 

 
Figure 4: Several examples of digit  data with ambigous labels. Each picture is the digit as drawn by the writer (and corresponds to a 
point in the figure 3). The above examples arepairs of points  lying between different classes on the map provided by classiMap. As we 
can observe, many of these examples are ambigous for the reader as well. 
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