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Figure 1: Left: taxonomy of attribute scoring functions, according to their structural characteristics. Overall, we differentiate between eight
types of functions, some of them not yet supported with visual analytics approaches. Right: conceptual example for the interactive creation
of scoring functions. Input values (bottom) are transformed to numerical output scores (right), here with a non-linear two-point function.

Abstract

Shifting the analysis from items to the granularity of attributes is a promising approach to address complex decision-making
problems. In this work, we study attribute scoring functions (ASFs), which transform values from data attributes to numerical
scores. As the output of ASF's for different attributes is always comparable and scores carry user preferences, ASFs are par-
ticularly useful for analysis goals such as multi-attribute ranking, multi-criteria optimization, or similarity modeling. However,
non-programmers cannot yet fully leverage their individual preferences on attribute values, as visual analytics (VA) support
for the creation of ASF's is still in its infancy, and guidelines for the creation of ASFs are missing almost entirely. We present a
taxonomy of eight types of ASFs and an overview of tools for the creation of ASFs as a result of an extensive literature review.
Both the taxonomy and the tools overview have descriptive power, as they represent and combine non-visual math and statistics
perspectives with the VA perspective. We underpin the usefulness of VA support for broader user groups in real-world cases for
all eight types of ASFs, unveil missing VA support for the ASF creation, and discuss the integration of ASF in VA workflows.

1. Introduction

We refer to attribute scoring functions (ASFs) as data transforma-
tions from an input data attribute to a numerical distribution of out-
put scores. ASFs naturally include concepts from statistical nor-
malizations, attribute numerification [JFJJ08], and transfer func-
tions [LKG*16]. ASFs are special in that output scores carry va-
lence information: high output scores necessarily imply goodness,
whereas low scores indicate neutral or even negative sentiments.
Finally, output scores of ASFs have a polarity characteristic, which
may either be unipolar (e.g., [0..1]) or bipolar (e.g., [—1..1]). The
semantics of both valence and polarity allows users to express their
preferences for attribute values through the creation of an ASF. The
functional characteristics of ASFs can always be specified in a non-
visual way by users with a programming background (the MATH
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perspective). As an alternative, many ASFs can already be created
with interactive visual interfaces, allowing the ASF creation and ad-
justment by larger user groups (the VA perspective). With multiple
ASFs at hand, the output of multiple ASFs is often (interactively)
weighted [WDC* 18] and combined [GLG™*13] to facilitate multi-
criteria decision making at the granularity of items. One of many
analysis scenarios is finding a used car (the item-level) by defining
preferences for attributes of interest. Preferably, a car may, e.g., be
a) as cheap as possible, b) as fast as possible, c) neither too old nor
too new, d) black, silver, or at least blue, and e) particularly have
as few exhausts as possible (with high emission being penalized
exponentially).

The analysis goal in this scenario is multi-attribute ranking, an
approach to structure potentially large and complex item collec-
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tions by computing ranks based on attribute scorings. An exam-
ple VA approach with ASF creation support is LineUp [GLG" 13]
that offers an interactive user interface, as well as a scripting inter-
face to enable the creation of ASFs for different user groups. An-
other analysis goal is multi-criteria optimization [PBJ93], where
the challenge is to select compromise solutions using optimization
algorithms. A VA example with a connection to ASFs is PAVED
[CMMK?20], with an emphasis on Pareto front visualizations that
support users in applying their preferences for selecting the most
preferred solutions. A third goal related to ASFs is similarity mod-
eling [SJ99] in information retrieval where distance metrics are ap-
plied either on individual attributes [BRS*17] or the entire attribute
set [Pam06]. The results of distance metrics form 1D metric spaces
and serve as the input for ASFs, which are then inverted (from
distances to similarities) and finally non-linearly scaled [MZ11]
to better approximate the notion of similarity as perceived by hu-
mans [She87].

Based on the reflection on literature in MATH and pioneer ap-
proaches in VA, the motivation for this research was manifold.
First, it may make sense to distinguish between the study of ASFs
and tools enabling users to create different types of ASF. Second,
we identified that both ASFs and ASF creation tools have not yet
been investigated and described systematically. Third, research on
the creation of ASFs in MATH and VA seems to co-exist indepen-
dently from each other, leaving room for the study of combinations
and synergies. Fourth, surprisingly little support exists for the inter-
active creation of ASFs: for some types of ASFs VA support is still
entirely missing. Finally, in several real-world use cases, we identi-
fied the unsatisfied need of non-experts for the interactive creation
of ASFs, which additionally calls for future VA support.

Our primary contribution is a hierarchical taxonomy for ASFs di-
rectly drawn from patterns observed in both the MATH and the VA
literature. The main distinction criterion is between the categorical
or numerical input attributes, further sub-divided by the structural
characteristics in both branches. Our secondary contribution is an
overview of tools enabling users to create ASFs. In this overview,
we utilize the descriptive power [BL04] of the taxonomy to cat-
egorize and unify tools from MATH and VA. We demonstrate the
usefulness of both the taxonomy and the tools overview for all eight
ASF types with a) examples of real-world ASF instances, b) refer-
ences to (VA) tools enabling the ASF creation, and c) descriptions
of areas in the design space not yet supported with VA. Finally,
we discuss the integration of ASFs in VA workflows for different
analysis goals and outline future work. This work is meant to en-
able a deeper understanding of different types of ASFs and their
interactive creation with VA tools for experts and non-experts.

2. Attribute Scoring Functions
2.1. Characterizing Attribute Scoring Functions

We characterize ASFs according to the three aspects data transfor-
mation, polarity, and valence, allowing to transform attribute val-
ues according to user-defined preferences.

Data Transformation: ASFs are data transformations that assign
scores to attribute values. The mapping of ASFs is always defined
for the entire input value domain. By design ASFs can be described
formally, to enable automatic execution. In contrast to most ma-

chine learning models trained in a learning process, the functional
behavior of ASFs is described in a creation step before execution.

Polarity: The value domain of output scores can be unipolar
(from neutral to one extreme value) or bipolar (from a negative
extreme value to a positive extreme value). A unipolar interval
[0..1] [GLG*13] may be a good default solution for ASFs, just
like the min-max normalization. However, analysis scenarios ex-
ist where a bipolar interval [—1..1] is more useful: bipolar scores
allow modeling criteria for both, particularly good and bad items.

Valence: By default, high score values indicate something positive
(high is good). However, in some cases, it is useful to enable users
to flip the valence of the ASF to determine that low output values
should yield the highest scores (low is good), e.g., for a price at-
tribute.

2.2. Creation of Attribute Scoring Functions

Every ASF can be created by programmers using MATH support.
As an alternative to MATH, some ASFs can also be created with VA
support, e.g., to open the process for larger user groups. Inspired by
a VA pioneer approach [GLG"13], a conceptual interface for the
ASF creation is shown in Figure 1 (right), using a non-linear two-
point ASF as an example. We illustrate how users can create and
modify ASFs interactively; here, by dragging a selected orange line
segment in 2D, leading to adaptions of the functional behavior. We
show the distributions of both input values (blue, from the bottom)
and output scores (blue, to the right), as it may be recommendable
to enable users to observe the effect of the data transformation.

2.3. Attribute Scoring Functions in the Literature

We conducted an extensive cross-domain literature research that
aimed at including both the MATH and the VA perspective. Our
search target was two-fold as we sought two different classes of re-
search items: 1) concrete ASFs and 2) ASF creation tools. Both sets
of retrieved items helped us to analyze commonalities and differ-
ences across ASFs and to identify their structural characteristics.
One result of this iterative process is the taxonomy of ASFs pre-
sented in Figure 1 (left), described in Section 3. The taxonomy also
supported the creation of the structured overview of tools enabling
users to create ASFs, presented in Table 1, described in Section 4.

3. A Taxonomy of Attribute Scoring Functions

The literature research revealed a space of possible types of ASFs.
Design targets when identifying and structuring types of ASFs in
this space were a) to differentiate between structural characteristics
of ASFs and b) to assess the complexity of ASFs when being cre-
ated with VA support. As MATH may become arbitrarily complex,
we decided to only present types of ASFs for which plausible real-
world examples exist, to further motivate the creation of ASFs in
practice. The result of this process is a hierarchical taxonomy of
ASFs, presented in Figure 1 (left). In the taxonomy, the most prin-
cipal distinction is between ASFs for categorical and numerical in-
put attributes (Sections 3.1 and 3.2), as for both MATH and VA
the creation of ASFs fundamentally differs for these two attribute
types. In this section, we provide an overview of the taxonomy and
describe types of ASFs in detail. We explicitly point towards spaces
for ASF creation that do not contain VA solutions yet.
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3.1. Attribute Scoring Functions for Categorical Attributes

We distinguish between Score Assignment and Ordered variants
for the transformation of categorical attributes with a fixed number
of categories (values, observations, levels) into numerical scores.
Score assignment uses a lookup table with preferences to assign
categories to scores. Ordered ASFs require an ordering of cate-
gories first, before allocations of output scores can be achieved.

Score Assignment: A straightforward ASF for cate-
gorical values is a lookup table with a number for each
category. In the illustration, three high and two com-
paratively low scores have been defined for the five
categories. In a house purchasing example, Score Assignment may
be used to assign preferences for districts or architecture types.

Ordered, Equidistant: Equidistantly ordered ASFs
transform ordered categories to uniform distributions
across the output space. This order of categories
can be the result of a distance function for cate-
gories [BRS*12] or be based on interactive orderings performed by
users, e.g., via drag-and-drop as presented in Podium [WDC* 18]
for item ranking. For a shopping dataset with shoes, this would be
beneficial if a user is sure about the ordering of color preferences,
but cannot quantify this color comparison.

Ordered, Non-Equidistant: Non-equidistant ASFs
extend the functionality of ordered equidistant ASF by
one degree of freedom: the transformations of ordered
categories into scores do not need to follow a uniform
distribution. This supports skewness tweaks, which can be quite
beneficial for semantically unbalanced categories. Johannson et al.
employ a non-equidistant ASF where differences in scores are the
results of user-defined similarities across categories [JFJJOS]. For a
traveling example, a user may prefer very few countries over many
uninteresting ones. Visual interfaces may enable users to allocate
large parts of the score value domain only for interesting brands.

3.2. Attribute Scoring Functions for Numerical Attributes

Continuous values open the space for advanced math and statistics
functionality. One branch of approaches is Quantile-based, using
the rank (order) of attribute values for the calculation of scores.
The majority of numerical ASF types however use the input val-
ues directly. We further sub-divide this group into Two-Point and
Multi-Point, referring to the number of supporting points defined by
the user. Two-point ASFs contain one linear or non-linear line seg-
ment. Multi-point ASFs contain multiple piece-wise defined line
segments (and different functional behavior respectively), which
are either continuous (connected) or discontinuous (disconnected).
With the differentiation between Linear, Non-Linear, Continuous,
and Discontinuous ASFs, we take different MATH complexities
and different requirements to VA interfaces into account.

Two-Point, Linear: A straight-forward numerical
mapping is using a linear transformation across the en-
tire input value range. Examples include the unipolar
min-max normalization, transforming values into the
interval [0..1], or the max-min normalization with an inverted va-
lence. From our experiences gained from real-world cases, Two-
Point, Linear is one of the most frequently applied types of func-
tions. In the LineUp approach [GLG*13] and the gradient brush
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tool in PAVED [CMMK?20], such two-point functions are the de-
fault ASF. Real-world scenarios include a shopping behavior where
a vacuum cleaner should have as much power as possible (positive
linear) but be as cheap as possible (negative linear).

Two-Point, Non-Linear: Non-linear functions with
two points have one line segment with a user-definable
curvature. While MATH support for non-linear behav-
ior exists [GLG*13, BV85], this goes beyond exist-
ing VA capabilities. Support for non-linear ASF widens the design
space considerably, as users now can steer the skewness of dis-
tributions from positive (e.g., logarithmic or square root norm), to
negative (quadratic norm or exponential functions). Application ex-
amples include linearization attempts for exponential attribute dis-
tributions, such as the market values of soccer players.

Multi-Point, Continuous: Multi-point opens the
space for piece-wise defined functions; continuous
requires that all functions are connected. Volume-
Pro [KGO1] uses for example roof functions or trape-
zoid functions as transfer functions for their data. Another exam-
ple is the utility function consisting of a convex and a concave
part [Mar52] that is, e.g., used in utility theory. For a car dataset,
an example could be a ramp function, as it typically arises when a
user has a linear preference for cheaper cars and an upper limit for
cars that are just too expensive.

Multi-Point, Discontinuous: With discontinuous
ASFs, users can define discontinuous MATH behav-
ior. This allows the implementation of step-functions
such as a ceil or floor function. Considered visually, a
supporting point is used as a splitting point for two line segments
(piece-wise functions) that do no longer share the same score
value. Using the car engine size in a tax assessment scenario, we
have observed a user who assigned maximum scores to 1.993cm®
and 2.991cm’ engines but low scores to 2.000cm’ and 3.000cm”>.
The rationale was unexpected: cars are taxed based on engine size,
which is why values slightly below thresholds are preferable.

Quantile-based: Quantile-based scoring functions
borrow the MATH concept of quantile normalizations,
which map elements of an input domain to values ac-
cording to their quantile rank in the value distribution.
Quantile-based scoring functions are useful to increase the reso-
lution of output scores for particularly dense regions of the input
space and are, e.g., used in bioinformatics to normalize microar-
ray [ACO1] or microchip [BI03] data. Quantile-based ASFs are also
quite useful for attributes with outlier values, as outliers create no
harm to output value distributions.

4. Tools for the Creation of Attribute Scoring Functions

We take advantage of the descriptive power of the proposed taxon-
omy and structure tools for the ASF creation by different types of
ASFs. Again, we consider both the MATH and the VA perspective:

e m: baseline MATH approaches allowing users with a program-
ming background to define preferences formally, leading to the
creation of ASFs in a non-visual way

e v: inspiring VA approaches enabling large user groups to de-
fine attribute transformations interactively, but not applied in ap-
proaches for the creation of ASFs directly
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LineUp: Data Mapping Editor X X

[GLG*13]

PAVED [CMMK20] X

uRank [dSSV15] \%

RanKit [KVD*18] vi| v

ValueChart [CLO04]

Podium [WDC*18]

HDR VolVis [YNCP06] v

VolumePro [KGO1] v

TOPSIS [YH95] m

Weighted Sum [MA10] m

SMARTER [EB94] m| m

SMAA [TF08] m| m

LineUp: Scripting Interface m| m{ m| m{ m
[GLG*13]

Promethee [BV85] m| m| m
Transfer Function [CKLG98] m| m| m
WWW-NIMBUS [MMO00] m| m| m
ValueTree [CL04] m

Table 1: Structured overview of tools for the creation of ASFs
(lines) according to the types of ASFs of the taxonomy (columns).
We use code “m” to mark approaches created with MATH support.
Further, we use “v” to refer to inspiring VA approaches, which
however only allow the creation of functions related to ASFs. Fi-
nally, with “x”, we mark VA approaches with a perfect fit.

e x: pioneer VA approaches directly enabling large user groups to
create ASFs with interactive visual interfaces, directly applied in
VA workflows

Table 1 provides an overview. We observe that VA approaches
for the ASF creation are scarce. In contrast, MATH support exists
for any type of ASF. A series of interactive VA inspiring techniques
do exist for modeling transfer functions [LKG*16] but do not di-
rectly create ASFs (“v”). So far, the LineUp [GLG*13] approach
covers the largest part of the design space of the taxonomy, as it
combines MATH and VA support. This is achieved by an inter-
active interface as well as a scripting interface for the creation of
ASFs. HDR VolVis [YNCP06] and VolumePro [KGO1] also have
support for MATH, but offer VA support for medical data instead of
attribute values. Finally, we observe the pattern that ASF creation
tools either support categorical or numerical variables, but hardly
both. This indicates that the type of input attribute is a useful sepa-
ration criterion in the ASFs taxonomy.

5. Discussion: Integration into Visual Analytics Workflows

We discuss future work along five steps of a conceptual VA work-
flow for the creation of ASFs as presented in Figure 2. In practice,

ASF Creation

Downstream Steps

Upstream Steps

Figure 2: Conceptual VA workflow for the creation of ASFs with
five steps where interactive-visual steering support is possible.

the ASF creation often forms one step in longer cascades [Fek13]
of VA processes. The first step is preprocessing to address data
quality issues early in the process [RD00, KHP*11, KPHHI12],
e.g., by using data wrangling support [KPHH11, KBM21] for
multivariate or tabular data to transform attribute values into
formats that are a) usable by downstream models and b) useful
for a given analysis goal [BHR*19]. With usable attribute values
at hand, users can create ASFs interactively in a second step,
e.g., by using LineUp [GLG"13] as the most comprehensive
VA solution observed in the literature. However, as indicated
in Sections 3 and 4, there is still a lack of visual interfaces
to support the full space of all ASF types as described in the
taxonomy. Future work also includes systematic research into
different (design) solutions for ASF creation tools. A third step
addresses the weighting of attributes [WDC™ 18, YH95], relevant
for multi-attribute goals like optimization or ranking. Also, a
fourth step is the combination of output scores, e.g., to arrive at
a summary ranking of items [GLG*13, BV85] or the assessment
of alternatives [CMMK20] according to user preferences. One
possible alternative to these steps is creating multi-attribute value
functions [CL04], forming another direction for future work. Fi-
nally, the VA workflow leads to the analysis goal downstream, such
as creating and analyzing rankings, multi-attribute optimizations,
or similarity models.

Item Filtering: We consider item filtering a related, but a con-
ceptually different concept. With filtering, items are removed
from a focus set, whereas ASF may only de-emphasize the rel-
evance of items. Filtering is typically supported with range slid-
ers for VA tools [vvl4, BHZ*20], dynamic queries [AS94], or
other types of faceted search [Hea09] interfaces. In contrast to
LineUp [GLG*13], we argue that filtering may be combined with
tools for the creation of ASFs but does not need to be an intrinsic
part of the interface. However, future work includes the study of an
additional filtering step in applications using (sets of) ASF.

6. Conclusion

We have presented a hierarchical taxonomy of attribute scoring
functions and a tabular overview of tools enabling users to create
attribute scoring functions, both covering the body of related work
from a math and a visual analytics perspective. We believe that the
taxonomy can guide designers of future visual analytics systems,
e.g., towards the gaps of missing interactive solutions. Future work
will shift focus on the generative power of the taxonomy and in-
cludes additional prototypes and implementations of visual inter-
faces for scoring functions, in combination with real-world data
and collaborations with users. In addition, we plan to extend the
visual analytics pipeline for downstream attribute weighting, e.g.,
to support multi-criteria optimization or complex item ranking.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.



J. Schmid & J. Bernard / A Taxonomy of Attribute Scoring Functions 35

References

[ACO1] AMARATUNGA D., CABRERA J.: Analysis of data from viral
dna microchips. American Stat. Assoc. 96, 456 (2001), 1161-1170. 3

[AS94] AHLBERG C., SHNEIDERMAN B.: Visual information seek-
ing: Tight coupling of dynamic query filters with starfield displays. In
SIGCHI Conference on Human Factors in Computing Systems (1994),
p-313-317. do1:10.1145/191666.191775. 4

[BHR*19] BERNARD J., HUTTER M., REINEMUTH H., PFEIFER H.,
BORS C., KOHLHAMMER J.: Visual-interactive preprocessing of multi-
variate time series data. Computer Graphics Forum (CGF) 38, 3 (2019),
401-412. doi:10.1111/cgf.13698. 4

[BHZ*20] BERNARD J., HUTTER M., ZEPPELZAUER M., SEDLMAIR
M., MUNZNER T.: SepEx: Visual Analysis of Class Separation Mea-
sures. In EuroVis Workshop on Visual Analytics (EuroVA) (2020), The
Eurographics Association. doi:10.2312/eurova.20201079. 4

[BIO3] BOLSTAD B., IRIZARRY R., ASTRAND M., SPEED T.: A com-
parison of normalization methods for high density oligonucleotide array
data based on variance and bias. Bioinformatics 19, 2 (01 2003), 185—
193. doi1:10.1093/bioinformatics/19.2.185.3

[BLO4] BEAUDOUIN-LAFON M.: Designing interaction, not interfaces.
In Working Conference on Advanced Visual Interfaces (2004), Assoc. for
Comp. Machinery, p. 15-22. doi:10.1145/989863.989865. 2

[BRS*12] BERNARD J., RUPPERT T., SCHERER M., KOHLHAMMER .,
SCHRECK T.: Content-based layouts for exploratory metadata search in
scientific research data. In Joint Conference on Digital Libraries (2012),
ACM, pp. 139-148. doi1:10.1145/2232817.2232844. 3

[BRS*17] BERNARD J., RITTER C., SESSLER D., ZEPPELZAUER M.,
KOHLHAMMER J., FELLNER D.: Visual-interactive similarity search for
complex objects by example of soccer player analysis. In Computer Vi-
sion, Imaging and Computer Graphics Theory and Applications (IVAPP)
(2017), vol. 3, pp. 75-87. doi1:10.5220/0006116400750087. 2

[BV85] BRANS J.-P., VINCKE P.: A Preference Ranking Organisation
Method. Operations Research and the Mgmt Sciences", 1985. 3, 4

[CKLGY98] CASTRO S., KONIG A., LOFFELMANN H., GROLLER E.:
Transfer function specification for the visualization of medical data. 4

[CLO4] CARENINI G., LOYD J.: Valuecharts: Analyzing linear models
expressing preferences and evaluations. In Working Conference on Ad-
vanced Visual Interfaces (2004), Association for Computing Machinery,
p.- 150-157. doi:10.1145/989863.989885. 4

[CMMK20] CIBULSKIL., MITTERHOFER H., MAY T., KOHLHAMMER
J.: Paved: Pareto front visualization for engineering design. Com-
puter Graphics Forum 39 (06 2020), 405-416. doi:10.1111/cgf.
13990. 2,3,4

[dSSV15] D1 SciAascio C., SABOL V., VEAS E.: urank: Exploring doc-
ument recommendations through an interactive user-driven approach.
doi:10.13140/RG.2.1.5105.0321. 4

[EB94] EDWARDS W., BARRON F.: Smarts and smarter: Improved sim-
ple methods for multiattribute utility measurement. Organizational Be-
havior and Human Decision Processes 60, 3 (1994), 306-325. doi:
https://doi.org/10.1006/0bhd.1994.1087. 4

[Fek13] FEKETE J.-D.: Visual analytics infrastructures: From data man-
agement to exploration. [EEE Computer 46, 7 (2013), 22-29. doi:
10.1109/MC.2013.120. 4

[GLG*13] GRATZL S., LEX A., GEHLENBORG N., PFISTER H.,
STREIT M.: Lineup: Visual analysis of multi-attribute rankings. /EEE
Transactions on Visualization and Computer Graphics 19, 12 (2013),
2277-2286. doi:10.1109/TVCG.2013.173.1,2,3,4

[Hea09] HEARST M.: Search user interfaces. Cambridge university
press, 2009. 4

[JFJJO8] JOHANSSON FERNSTAD S., JERN M., JOHANSSON J.: Interac-
tive quantification of categorical variables in mixed data sets. pp. 3—10.
doi:10.1109/1Iv.2008.33.1,3,4

[KBM21] KASICA S., BERRET C., MUNZNER T.: Table scraps: An ac-
tionable framework for multi-table data wrangling from an artifact study
of computational journalism. IEEE Transactions on Visualization and

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Computer Graphics 27, 2 (2021), 957-966. doi:10.1109/TVCG.
2020.3030462. 4

[KGO1] KONIG A., GROLLER E.: Mastering transfer function specifica-
tion by using volumepro technology. In Spring Conference on Computer
Graphics (2001), vol. 17, pp. 279-286. 3, 4

[KHP*11] KANDEL S., HEER J., PLAISANT C., KENNEDY J., VAN
HAM F., RICHE N. H., WEAVER C., LEE B., BRODBECK D., BUONO
P.: Research directions in data wrangling. Information Visualization 10,
4(2011),271-288. doi:10.1177/1473871611415994. 4

[KPHH11] KANDEL S., PAEPCKE A., HELLERSTEIN J., HEER J.:
Wrangler: Interactive visual specification of data transformation scripts.
In SIGCHI Conference on Human Factors in Computing Systems (2011),
p- 3363-3372. doi:10.1145/1978942.1979444. 4

[KPHH12] KANDEL S., PAEPCKE A., HELLERSTEIN J. M., HEER J.:
Enterprise data analysis and visualization: An interview study. [EEE
Transactions on Visualization and Computer Graphics 18, 12 (2012),
2917-2926. doi:10.1109/TVCG.2012.219. 4

[KVD*18] KUHLMAN C., VANVALKENBURG M., DOHERTY D.,
NURBEKOVA M., DEVA G., PHYO Z., RUNDENSTEINER E., HARRI-
SON L.: Preference-driven interactive ranking system for personalized
decision support. doi1:10.1145/3269206.3269227. 4

[LKG*16] LJUNG P., KRUGER J., GROLLER E., HADWIGER M.,
HANSEN C. D., YNNERMAN A.: State of the art in transfer functions
for direct volume rendering. Computer Graphics Forum 35, 3 (2016),
669-691. doi:https://doi.org/10.1111/cgf.12934. 1,4

[MA10] MARLER R., ARORA J.: The weighted sum method for
multi-objective optimization: New insights. Structural and Multidis-
ciplinary Optimization 41 (06 2010), 853-862. doi:10.1007/
s00158-009-0460-7. 4

[Mar52] MARKOWITZ H.: The utility of wealth. Journal of Political
Economy 60, 2 (1952), 151-158. doi:10.1086/257177. 3

[MMO0O0] MIETTINEN K., MAKELA M.: Interactive multiobjective opti-
mization system www-nimbus on the internet. Computers & OR 27 (06
2000), 709-723. doi:10.1016/S0305-0548(99)00115-X. 4

[MZ11] MITROVIC D., ZEPPELZAUER M.: Syntactic and semantic con-
cepts in audio-visual media. PhD thesis, 2011. 2

[Pam06] PAMPALK E.: Computational models of music similarity and
their application in music information retrieval. PhD thesis, 2006. 2

[PBJ93] PAYNEJ. W., BETTMAN J. R., JOHNSON E. J.: The Adaptive
Decision Maker. Cambridge University Press, 1993. doi:10.1017/
CB09781139173933.2

[RDO0] RAHM E., DO H. H.: Data cleaning: Problems and current ap-
proaches. IEEE Data Engineering Bulletin 23, 4 (2000), 3—-13. URL:
http://sites.computer.org/debull/A00DEC-CD.pdf. 4

[She87] SHEPARD R. N.: Toward a universal law of generalization for
psychological science. Science 237, 4820 (1987), 1317-1323. 2

[SJ99] SANTINI S., JAIN R.: Similarity measures. IEEE Transactions on
Pattern Analysis & Machine Intelligence 21,9 (1999), 871-883. 2

[TFO8] TERVONEN T., FIGUEIRA J.: A survey on stochastic multicrite-
ria acceptability analysis methods. Journal of Multi-Criteria Decision
Analysis 15 (04 2008), 1 —14. doi:10.1002/mcda.407. 4

[vv14] VAN DEN ELZEN S., VAN WK J. J.: Multivariate network ex-
ploration and presentation: From detail to overview via selections and
aggregations. Transactions on Visualization and Computer Graphics 20,
12 (2014), 2310-2319. do1:10.1109/TVCG.2014.2346441. 4

[WDC*18] WALL E., DAS S., CHAWLA R., KALIDINDI B., BROWN
E. T., ENDERT A.: Podium: Ranking data using mixed-initiative visual
analytics. Transactions on Visualization and Computer Graphics 24, 1
(2018), 288-297. doi1:10.1109/TVCG.2017.2745078. 1,3,4

[YH95] YooN K. P., HWANG C.-L.: Multiple attribute decision making.
Quantitative applications in the social sciences, Thousand Oaks (1995).
URL: http://www.doi.org/10.4135/9781412985161. 4

[YNCP06] YUAN X., NGUYEN M., CHEN B., PORTER D.: HDR
VolVis: High dynamic range volume visualization. IEEE transactions
on visualization and computer graphics 12 (08 2006), 433-45. doi:
10.1109/TVCG.2006.72. 4


http://dx.doi.org/10.1145/191666.191775
http://dx.doi.org/10.1111/cgf.13698
http://dx.doi.org/10.2312/eurova.20201079
http://dx.doi.org/10.1093/bioinformatics/19.2.185
http://dx.doi.org/10.1145/989863.989865
http://dx.doi.org/10.1145/2232817.2232844
http://dx.doi.org/10.5220/0006116400750087
http://dx.doi.org/10.1145/989863.989885
http://dx.doi.org/10.1111/cgf.13990
http://dx.doi.org/10.1111/cgf.13990
http://dx.doi.org/10.13140/RG.2.1.5105.0321
http://dx.doi.org/https://doi.org/10.1006/obhd.1994.1087
http://dx.doi.org/https://doi.org/10.1006/obhd.1994.1087
http://dx.doi.org/10.1109/MC.2013.120
http://dx.doi.org/10.1109/MC.2013.120
http://dx.doi.org/10.1109/TVCG.2013.173
http://dx.doi.org/10.1109/IV.2008.33
http://dx.doi.org/10.1109/TVCG.2020.3030462
http://dx.doi.org/10.1109/TVCG.2020.3030462
http://dx.doi.org/10.1177/1473871611415994
http://dx.doi.org/10.1145/1978942.1979444
http://dx.doi.org/10.1109/TVCG.2012.219
http://dx.doi.org/10.1145/3269206.3269227
http://dx.doi.org/https://doi.org/10.1111/cgf.12934
http://dx.doi.org/10.1007/s00158-009-0460-7
http://dx.doi.org/10.1007/s00158-009-0460-7
http://dx.doi.org/10.1086/257177
http://dx.doi.org/10.1016/S0305-0548(99)00115-X
http://dx.doi.org/10.1017/CBO9781139173933
http://dx.doi.org/10.1017/CBO9781139173933
http://sites.computer.org/debull/A00DEC-CD.pdf
http://dx.doi.org/10.1002/mcda.407
http://dx.doi.org/10.1109/TVCG.2014.2346441
http://dx.doi.org/10.1109/TVCG.2017.2745078
http://www.doi.org/10.4135/9781412985161
http://dx.doi.org/10.1109/TVCG.2006.72
http://dx.doi.org/10.1109/TVCG.2006.72

