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Abstract
We describe a new subdivision scheme for unstructured tetrahedral meshes. Previous tetrahedral schemes based on
generalizations of box splines have encoded arbitrary directional preferences in their associated subdivision rules
that were not reflected in tetrahedral base mesh. Our method avoids thischoice of preferred directions resulting a
scheme that is simple to implement via repeated smoothing. In an extended appendix, we analyze this tetrahedral
scheme and prove that the scheme generates C2 deformations everywhere except along edges of the tetrahedral
base mesh. Along edges shared by four or more tetrahedra in the base mesh, we present strong evidence that the
scheme generates C1 deformations.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

Given a base meshp0, subdivision is a recursive process that
defines increasingly refined meshes via a relation of the form

pk+1 = Spk.

If the subdivision processS is chosen correctly, the limit
meshp∞ is guaranteed to be a smooth mesh that approxi-
mates the base meshp0. Using subdivision has become pop-
ular for geometric modeling because the subdivision process
places no restriction on the topological connectivity of the
base mesh.

While most work on subdivision has focused on surface
meshes, we consider the problem of subdividing volumetric
meshes. Perhaps the most obvious questions to ask concern-
ing volumetric subdivision is why bother with building such
schemes. Typically, volumetric subdivision schemes have
been proposed as a means to define deformations. However,
the existence of simple schemes for tensor product volumet-
ric meshes such as free-form deformations [SP86] reduces
this question to why subdivision scheme for unstructured
meshes are important.

Figure1 shows an application of subdivision to the prob-
lem of image deformation that illustrates the superiority
of unstructured methods. In this case, the image being de-
formed is a cross-section of a mouse brain where the pixel
intensities represent the cell density in different anatomi-

cal (colored) regions of the brain. On the left, the image
has been covered by a uniform base mesh. Subdividing this
quad mesh using bi-cubic subdivision yields aC2 mesh that
defines a smooth parameterization of the image. Perturbing
the vertices of the base mesh in the region of the cerebel-
lum (dark folds) induces a corresponding deformation of the
underlying image. On the right, the image has been cov-
ered by an unstructured quadrilateral mesh. A subset of the
edges in this mesh have been creased to define a network
of crease curves that partition the base mesh into anatomi-
cal regions. Now, this quadrilateral base mesh is subdivided
using Catmull-Clark subdivision to define a smooth param-
eterization of the underlying image. Perturbing the vertices
of the quadrilateral base mesh induces deformations that are
restricted to a single anatomical region. Thus, the use of
unstructured mesh allows the construction of deformations
with much finer control than those built using tensor product
methods.

1.1. Previous work

While previous work on subdivision of unstructured volu-
metric meshes has been limited, there are a few papers that
have addressed this problem. MacCracken and Joy [MJ96]
developed one of the first volumetric subdivision schemes.
This scheme was developed primarily to define deforma-
tions based on unstructured hexahedral meshes. Unfortu-
nately, the subdivision rules proposed in the paper were de-
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Figure 1: Close-up of the cerebellum on a cross-section of a mouse brain. Initial embedding in a uniform grid and its deforma-
tion using free-form deformations (left). Subdivision surface that models the boundaries of the different anatomical regions and
the explicit deformation of those boundaries (right).

veloped in a somewhat ad-hoc manner making any type of
proof of smoothness for the scheme very difficult. Later, Ba-
jaj et al [BSWX02] developed different subdivision rules for
hexahedral meshes, which generated deformations that were
provably smooth everywhere except at vertices of the hexa-
hedral base mesh.

Both of these schemes used hexahedra (topological cubes)
as their volumetric elements. Unfortunately, building un-
structured meshes of hexahedra that conform to specific
boundary shapes can be difficult. Traditionally, mesh gen-
eration methods generate unstructured meshes of tetrahe-
dra instead. The most relevant piece of previous work is a
subdivision scheme for unstructured tetrahedral meshes pro-
posed by Chang et al [CMQ02]. In that paper, the authors
build subdivision rules for unstructured tetrahedral meshes
by generalizing the subdivision rules for a particular class of
trivariate box-splines.

While this approach was successfully used by
Loop [Loo87] to generalize the subdivision rules for
the C2 three-direction quartic box splines to unstructured
triangular meshes, using trivariate box splines to generate
subdivision rules for unstructured tetrahedral grids is much
more difficult. The drawback of the subdivision rules
proposed in Chang et al’s is that these rules encode a
preferred direction in each tetrahedron of the base mesh.
(Section2.1 will elaborate on this point.) This directional
preference makes implementing the Chang et al scheme
tricky and proving any results concerning the smoothness of
the scheme extremely difficult.

Contributions
In contrast to Chang et al, we develop volumetric subdivi-
sion rules for unstructured tetrahedral meshes that avoid the
assumption of any preferred direction in the base mesh. This
construction also generalizes the bivariate case and leads to
a trivariate scheme with two important properties:

• The scheme is simple to implement in terms of linear sub-
division and smoothing.

• The deformations induced by the scheme are provablyC2

everywhere except along edges of the base mesh. Along

edges shared by four or more tetrahedra, we present strong
evidence that the resulting deformations areC1.

The body of the paper presents the tetrahedral scheme and
considers several of its applications with no accompanying
theoretical analysis. In an extended appendix, we perform
a mathematical analysis of the smoothness of the scheme
using a combination of regularity analysis (Reif [Rei95]) and
spectral analysis (Levin/Levin [LL03]).

2. A tetrahedral subdivision scheme

Our proposed scheme is a combination of linear subdivision
followed by a smoothing pass. This structure is similar to
that of the several schemes proposed for subdividing surface
meshes [BSWX02, Sta01, ZS01]. As in the bivariate case,
implementing our scheme is quite simple and does not re-
quire neighbor finding or mesh traversal algorithms. To il-
lustrate the ease of implementation, we provide pseudocode
for the smoothing pass at the end of this section.

Figure 2: Splitting a tetrahedra generates an octahedron in
the middle. Splitting the octahedron into tetrahedra requires
the choice of a diagonal.

2.1. Linear subdivision

To perform linear subdivision on a mesh of tetrahedra, we
define a split on a single tetrahedron, which is then applied
to all tetrahedra in the mesh. Given a tetrahedron, we insert
new vertices at the midpoints of each edge and connect the
vertices together to form four new tetrahedra at the corners
of the original tetrahedron. Chopping these four children off
the corners of the parent tetrahedron leaves an octahedron
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Figure 3: Linear subdivision splits a tetrahedron into four
tetrahedra and an octahedron (top). An octahedron is split
into six octahedra and eight tetrahedra (bottom).

(see figure3 top). (Note that performing this corner chop-
ping on a triangle yields a triangle making linear subdivision
for triangular meshes much easier.)

At this point, we are faced with a dilemma. We can ei-
ther split the octahedron into four tetrahedra by choosing
a diagonal for the octahedron (see figure2) or leave the
octahedron alone and develop an analog of linear subdivi-
sion for octahedra. At first glance, splitting the octahedron
along a diagonal might seem like a simplifying choice. In
reality, this choice leads to substantial complications during
any attempt to analyze the smoothness of the associated sub-
division scheme. This choice of diagonal cause the result-
ing tetrahedral mesh to contain a preferred direction asso-
ciated with the choice of diagonal. To generate a provably
smooth subdivision scheme, this diagonal must be inherited
during linear subdivision. More crucially, each tetrahedron
in the base mesh must be assigned such a diagonal. Any type
of smoothness analysis that considers the interface between
two tetrahedra in the base mesh must enumerate all possible
choices for this diagonal.

Given that our goal is to create a scheme that contains no
preferred direction and is simple enough to prove smooth-
ness results about, we do not choose a diagonal for the mid-
dle octahedron and split a tetrahedron into four new tetrahe-
dra and an octahedron (see figure3). Since we have intro-
duced an octahedron into the volumetric mesh, our subdivi-
sion scheme is not simply a tetrahedral subdivision scheme,
but a tetrahedral/octahedral subdivision scheme. Therefore,
we must define a refinement rule for octahedra as well.

To refine an octahedron, we insert vertices at the mid-
points of each edge on the octahedron and at the centroid
of the octahedron, which is formed by averaging all of the

vertices of the octahedron together. Next, we connect the
vertices together to form six new octahedra (corresponding
to the six vertices of the original octahedron) and eight new
tetrahedra (corresponding to the eight faces of the original
octahedron). The entire refinement process is illustrated in
figure3.

While Chang et al’s tetrahedral scheme is similar to ours
in that it does not topologically split the octahedron, their
scheme generates subdivision rules that encode a preferred
diagonal along the octahedron. This preferred diagonal is a
natural result of their use of trivariate box splines in gener-
ating their subdivision rules. Due to the existence of a pre-
ferred diagonal, Chang et al’s scheme is guaranteed to be
smooth only on the interior of each tetrahedron in the base
mesh. In particular, Chang et al make no attempt to analyze
the smoothness of their scheme across the face shared by two
tetrahedra in the base mesh.

The need for such face/face analysis is somewhat surpris-
ing and was not even recognized by Chang et al. This failure
is understandable since a subdivided triangular mesh is uni-
form along the interior of edges in the base mesh. Similarly,
a subdivided hexahedral mesh is uniform along the interior
of quad faces of the base mesh. Unfortunately, a subdivided,
unstructured tetrahedral mesh isnot uniform across the in-
terior of triangular faces of the base mesh. Thus, substantial
care must be used in designing the subdivision rules of the
scheme if one hopes to construct a scheme that is provably
smooth across these faces. In the appendix, we use the joint
spectral radius techniques of Levin/Levin to prove that our
scheme isC2 across the interior of these faces.

Figure 4: Centroid masks for tetrahedra/octahedra. The
highlighted vertex is the vertex being repositioned by
smoothing.

2.2. Smoothing

After linear subdivision, we perform a smoothing pass over
the tetrahedral/octahedral mesh to reposition each vertex.
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// input: T is list of cells, p is an array of vertex positions
// a cell is a list of indices into p
newP← 0
val← 0
for eachTi

if ( Ti is a tetrahedron )
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val[Ti ]++
for eachnewPi

newPi /= val[i]
return mesh of{T,newP}

Figure 5: Smoothing pass for tet/oct subdivision

For each vertex in the mesh after linear subdivision, we find
each volumetric cell (tetrahedron or octahedron) containing
that vertex. Then we compute the weighted centroids shown
in figure 4 for each cell. For tetrahedra, this centroid com-
putes−1

16 of the vertex being repositioned and17
48 of the edge

adjacent vertices. To generate the centroid for octahedra we
take 3

8 of the vertex being repositioned,112 of the edge ad-
jacent vertices and7

24 of the cell-adjacent vertex. We then
average all of these centroids together to obtain the new lo-
cation of the repositioned vertex. Despite the fact that there
is a negative weight in the centroid mask for tetrahedra, the
subdivision rules produced by combining linear subdivision
and smoothing use only convex combinations.

Since this smoothing pass is described only in terms
of centroid masks, it yields a very simple implementation.
Given an unstructured tetrahedra/octahedra mesh, we first
apply linear subdivision. This operation can be implemented
on a cell by cell basis. For smoothing, we initialize the ver-
tices of a mesh with the same topology as the input to be
identically 0. Then, for each cell in the mesh, we compute
the centroid mask of figure4 in all possible orientations and
add that quantity to the vertex to be repositioned for that
orientation. Finally, we divide each vertex by its valence
(the number of cells containing that vertex). Figure5 illus-
trates pseudocode for the smoothing pass. This description
requires no neighbor finding in the mesh or external data
structures to traverse the mesh and is quite easy to imple-
ment.

We can also incorporate sharp features where we alter the
continuity of the volume to beC0 easily using the method
described by Hoppe et al [HDD∗94]. Figure8 shows a cylin-
drical volume with a crease surface defined by Loop subdi-
vision and crease edges, which form B-splines, around the
top and bottom of the cylinder.

3. Application to deformations

As alluded to in the introduction, volumetric subdivision
schemes find their main use in generating smooth volumetric
deformations. Given a volumeR, a volumetric deformation
f maps pointsx in R to new pointsf (x) in f (R). The defor-
mation f is Ck continuous if each coordinate function com-
prising f can be expressed locally as the graph of a function
with k continuous derivatives.

Figure 6: Subdivision defines a map f between points in a
rest configuration to a deformed configuration.

To construct volumetric deformations, we use the basic
technique described in MacCracken and Joy [MJ96]. Given
a base meshp0, we defineR to be the volume spanned by the
limit meshp∞. If the meshp∞ forms a one-to-one covering
of R, we can express each pointx in R as a unique point on
the limit meshp∞ of the form ∑i αi p

0
i where thep0

i are
vertices of the base meshp0 (see figure6). Perturbing the
vertices of the base mesh to form a new mesh ˆp0 defines an
associated deformationf of the form

f (x) = ∑
i

αi p̂
0
i . (1)

In the attached appendix, we show that the deformations in-
duced by our tetrahedral subdivision scheme are provably
C2 everywhere except along edges of the base mesh. Along
edges shared by four or more tetrahedra, we hypothesize the
scheme isC1 and provide strong evidence to back this claim.

Figure7 shows an application of our method to the prob-
lem of deforming a dinosaur skeleton. First, we embed the
skeleton in a tetrahedral base meshp0. Next, we perform
several rounds of subdivision on the base mesh to form a
refined meshpk. Each new vertex inserted in the tetrahe-
dral/octahedral meshpk is represented as an convex combi-
nation of the vertices of the base meshp0. Then, for each
vertexx of the skeleton, we find the tetrahedra or octahedra
in the refined meshpk that contains that vertex and compute
the barycentric coordinates of that vertex with respect to its
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Figure 7: Surface deformation via tetrahedral subdivision. Initial shape shown (left)and three deformed poses (right).

enclosing cell. Since all vertices of the cell are convex com-
binations of vertices ofp0, the skeleton vertexx can then be
represented as a convex combination of the vertices ofp0.
Perturbing the vertices of the base mesh forms a new base
mesh ˆp0 that defines a deformationf (x) of the vertices of
the skeleton as given in equation1.

Figure7 illustrates several different deformations of the
dinosaur model. Since we use an unstructured grid of tetra-
hedra, we can encase the surfaces to be deformed in far fewer
volumetric elements than would be required by free-form
deformations using structured grids. Therefore, this sparse
embedding yields deformations that require relatively few
tetrahedral vertices and can be performed in real-time.

Figure8 depicts another example in which a 3D test pat-
tern is deformed using our scheme. The base meshp0 is a
tetrahedral mesh approximating the shape of a cylinder. To
generate the sharp circular edges along the top and bottom
of the cylinder, we have creased the appropriate edges of
the cylinder. The left part of the figure shows the tetrahedral
mesh in wireframe. The middle and right portions of the fig-
ure show the 3D test pattern before and after perturbation of
the base mesh.

4. Conclusions

We have presented a simple subdivision scheme for unstruc-
tured tetrahedral mesh. This scheme consists of linear subdi-
vision followed a smoothing pass. Implementing the pass of
the scheme requires only a standard topological mesh repre-
sentation without the need for any auxiliary adjacency infor-
mation. The key to the simplicity of the scheme is the sym-
metric treatment of the octahedron generated by chopping
off the corners of a tetrahedron. As we show in the appendix,
this choice makes smoothness analysis possible.
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Appendix A: Smoothness analysis

Given a tetrahedral base meshp0, we consider the smooth-
ness of a deformationf (x) induced by a perturbation of the
base mesh. In particular, our smoothness analysis considers
four cases:

• x lies in the interior of a tetrahedron of the base mesh,
• x lies on the interior of a face shared by two tetrahedra of

the base mesh,
• x lies on the interior of an edges shared by several tetra-

hedra of the base mesh,
• x lies at a vertex of the base mesh.

Interior of a base tetrahedron

To begin our analysis, we first consider the structure of
the uniform mesh generated by linearly subdividing a sin-
gle tetrahedron repeatedly. If this base tetrahedron has ver-
tices of the form(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),
k rounds of linear subdivision generate a uniform 3D mesh
whose vertices have barycentric coordinates of the form
1
2k (i0, i1, i2, i3) where thei j are non-negative integers that

sum to 2k. (The embedding of the base tetrahedron in the
plane x0 + x1 + x2 + x3 = 1 allows the coordinates to be
treated symmetrically and avoids the use of any preferred
direction in our construction.)

Relaxing the restriction that the coordinates of the mesh
vertices are non-negative yields a sequence of infinite uni-
form meshesMk associated with the subdivision process.
Unfortunately, the scaling relation between consecutive
meshesMk andMk+1 is subtle due to the use of barycen-
tric coordinates. However, if we translate the base meshM0

to interpolate the origin, the resulting meshMc lies on the
planex0 + x1 + x2 + x3 = 0 and has vertices of the form
(i0, i1, i2, i3) where thei j are integers whose sum is 0. After

translation, linearly subdividing the meshMc yields a dilated
mesh of the form1

2Mc.

For this scale-invariant mesh, we now consider the hat
functionn(x) centered at the origin that is generated by lin-
ear subdivision with no smoothing. Based on the splitting
rules for linear subdivision,n(x) satisfies a scaling relation
of the form

n(x) = n(2x)+
1
2

12

∑
j=1

n(2x−δ j )+
1
6

6

∑
j=1

n(2x− γ j ) (2)

where the vectorsδ j andγ j define integer offsets in the uni-
form meshM. These offsets correspond to vertices ofMc

that lie in the one-ring of the origin (see the left portion of
figure9) and correspond to

δ = Permutations(1,−1,0,0)
γ = Permutations(1,1,−1,−1)

where Permutations yields a set without duplication (δ con-
tains 12 elements whileγ has 6). The right portion of figure9
shows the 3D subdivision mask formed by the coefficients of
equation2.

Figure 9: The subdivision mask for the linear subdivision on
the uniform grid M.

We next consider the effect of the smoothing pass on
the mesh formed by linear subdivision. If we apply the
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Figure 10: Two face-adjacent tetrahedra subdivided and
opened at the shared face. Subdivision generates tet/tet and
oct/oct pairs along that face.

weighted-centroid averaging rules for this pass to the one-
ring of the origin, the smoothing mask that results is also
supported over the one-ring of origin and is exactly1

8 of the
subdivision mask for linear subdivision. (The agreement is
no coincidence as we chose the weights used in the smooth-
ing pass to ensure this agreement.)

Now, the subdivision mask for the composite scheme
formed by linear subdivision and smoothing is simply1

8 of
the discrete convolution of the mask of figure9 with itself.
As shown in [War95], the discrete convolution of two subdi-
vision masks yields a new subdivision mask whose associ-
ated basis function is the continuous convolution of the ba-
sis functions associated with each original mask. In our case,
the convolution of the hat functionn(x) with itself is the ba-
sis function for our composite scheme. Since the continuous
convolution of twoC0 functions (n(x) with itself) is always a
C2 function, our scheme generatesC2 deformations on uni-
form meshes.

Faces of the base mesh

While the smoothness of our subdivision scheme on the in-
terior of a base tetrahedron follows by appealing to convolu-
tion, we must verify smoothness of our scheme in the other
cases using spectral methods suitable for analysis of non-
uniform schemes. This difference is due to the fact that the
mesh formed by applying linear subdivision to an unstruc-
tured tetrahedral mesh is uniform only on the interior of base
tetrahedra and is no longer uniform across the faces of the
base mesh. In particular, the uniform meshMc generated on
the interior of a base tetrahedron has the property that every
face in the grid is shared by a tet/oct pair. On the other hand,
the infinite meshM f generated by applying linear subdivi-
sion to two face-adjacent tetrahedra consists of two copies of
Mc joined along a triangular interface formed by tet/tet pairs
and oct/oct pairs. (see figure10.)

To prove that our scheme isC2 on the meshM f , we

use the joint spectral radius test originally developed by
Levin/Levin [LL03] to analyze the smoothness of trian-
gle/quad subdivision along the interface between triangles
and quads. Note that the mesh structure in their triangle/quad
analysis is similar to the mesh structure ofM f : two uniform
meshes separated by planar interface.

If S is the subdivision matrix associated withM f , we first
compute the eigenvaluesλ j and eigenvectorszj of the form
Szj = λ jzj . The Levin/LevinC2 smoothness test involves
checking three conditions:

• First, check whether the eigenvaluesλ j (ordered in de-
scending value) have the form

1,
1
2
,
1
2
,
1
2
,
1
4
,
1
4
,
1
4
,
1
4
,
1
4
,
1
4

> .. . (3)

Note that the subdominant eigenvectors(z1,z2,z3) repro-
duce the gridM f . As a result, the eigenfunctions associ-
ated with these eigenvectors define a characteristic map
that produces a one-to-one covering of space.

• Next, we check whether the eigenfunctions associated
with eigenvectorsz4, . . . ,z9 are quadratic functions when
plotted over the characteristic map.

• Finally, the joint spectral radius of the subdivision scheme
must be less than14 .

The first test is simple to check and involves only extrac-
tion of the eigenvalues and eigenvectors of the subdivision
matrix. The second condition can be checked using quasi-
interpolants as in Levin/Levin [LL03]. However, the joint
spectral radius test requires more work.

Figure10 (left) shows a portion ofM f with the interface
between a tet/tet and oct/oct pair highlighted. This pair forms
a patch on the face between two tetrahedra. To perform the
joint spectral radius test, we must construct 4 subdivision
matricesSi that map the support of the patch on figure10
(left) to the support of each of the four sub-quads formed
after one round of subdivision (figure10 right). Each sub-
quad is a scaled and translated version of the original quad
and yields a square subdivision matrixSi .

After building theSi , we then construct a diagonalizing
matrixW usingS1 such that

W−1S1W =

(

Λ C1
0 Y1

)

W−1SiW =

(

θi Ci
0 Yi

)

i 6= 1

whereΛ is a diagonal matrix whose entries are the speci-
fied eigenvalues in equation3 andθi is an upper triangular
matrix that shares the same diagonal entries asΛ. W can be
constructed using the eigenvectors inS1 corresponding to the
eigenvalues inΛ and the null space of those vectors.

Finally, to perform the joint spectral radius test, we com-
pute

ρ[k](Y1, ...,Y4) = (Max‖YεkYεk−1 . . .Yε1‖∞)
1
k
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Figure 11: Characteristic map for edges of valence3
through10.

whereεi ∈ {1, ...,4}. If ρ[k]
<

1
4 for somek, then the scheme

is C2 over that extraordinary complex. For our four subdivi-
sion matrices we computedρ[9] = 0.238 and conclude that
our scheme isC2 along the face shared by two tetrahedra.

Edges of the base mesh

To analyze the smoothness of our scheme along edges of
the base mesh is more difficult than the face case since the
structure of the infinite meshMe form by subdividingn tetra-
hedra sharing a common edge depends onn. In practice, we
know of no analysis technique capable of establishing the
smoothness of our scheme along this edge. However, we
hypothesize that a combination of the analysis methods of
Levin/Levin [LL03] and Reif [Rei95] can be used to analyze
the smooth of volumetric scheme in configurations of this
type.

Given the subdivision matrixS for the meshMe, we hy-
pothesize that the scheme isC1 if:

• Its eigenvalues are of the form 1> λ1 ≥ λ2 ≥ λ3 > .. .

• The characteristic map formed by the eigenvectors
z1,z2,z3 is regular and injective.

• Finally, the joint-spectral radius of the scheme
(ρ[k](Y1,Y2)) must be less thanλ3.

The core of our hypothesis is that the second condition al-
lows the smoothness analysis to be reduced to the functional
case used in the joint spectral radius test.

We have checked these three criteria for our scheme.
Since the meshMe is parameterized by the number of tetra-
hedra sharing the edge of the base mesh, the subdivision ma-
tricesS will contain a block circulant structure that makes
extraction of the eigenvectorsz1,z2,z3 as a symbolic func-
tion of n possible. However, it is unclear how the block cir-
culant structure interacts with the joint spectral radius test.
Therefore, we have numerically computed the characteristic
map for edge valences 3 through 10 and visually inspected
their shape (see figure11).

To apply the joint spectral radius test, we construct sub-
division matricesS1,S2 corresponding to one of two shifts

Figure 12: Characteristic maps for several low valence con-
figurations of tetrahedra around a vertex.

along the edge. For our scheme, these matrices have eigen-
values of the form 1,λ1,λ1,

1
2 , ... and satisfy the joint spec-

tral radius test for valences 10≥ n > 3. Forn = 3, we could
not find ak that satisfied the joint spectral radius condition.
While this failure does not mean the scheme isC0, we vi-
sually inspected the smoothness of the volumes using the
3D test patterns shown in figure8 and the deformations pro-
duced are not smooth. For other valences 10≥ n> 3, the 3D
test patterns undergoes visually smooth deformation.

Vertices of the base mesh

As for the edge case, we know of no analysis method for
proving that our scheme is smoothness at a vertex of the base
mesh. However, we again hypothesis that the conditions for
the edge case suffice to establish smoothness at a vertex. In
the vertex case, the third test is redundant since there is only
a single matrixS1 = S used in computing the joint spectral
radius.

Similar to the edge case, we only consider arbitrary pack-
ing of tetrahedra around a base vertex. Unfortunately, the
simple parameterization by valence used in analyzing sur-
face subdivision schemes is unavailable for volume schemes
and no block circulant structures can be exploited to analyze
the smoothness of the scheme. Therefore, we enumerated
through all configurations of tetrahedra around a vertex for
valences 4 through 10 and tested random configurations of
tetrahedra for higher valences. Each configuration of tetra-
hedra passed the eigenvalue and characteristic map test. Fig-
ure12shows several characteristic maps produced for differ-
ent configurations and number of tetrahedra around a vertex.
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