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Chapter 1

Introduction

Discrete representations of three-dimensional shapes are of paramount impor-
tance in areas such as product design, surgical planning, scientific computing,
games and feature film production. To cope with the ever-growing demand in
efficient, reliable, and scalable processing tools, solid theoretical and algorith-
mic foundations have to be developed. To this end, the field of digital geometry
processing studies the entire lifecycle of a shape addressing the compression,
fairing, parametrization, modeling, and manufacturing of digital shapes to
name but a few stages of the processing pipeline. Because of their multiple
applications in areas such as computer graphics or architectural geometry, but
also due to technological advances such as the availability of low-end 3D print-
ing devices, digital geometry processing has been—and will be—a fast-growing
field of research.

An essential element of the geometry processing toolbox is the ability to edit
and manipulate digital shapes. Approaches for the modeling of shapes range
from purely geometric techniques to physics-based methods that account for
material properties and environmental constraints. A major advantage of the
latter schemes is that they allow for simple and intuitive user interfaces be-
cause they can produce physically meaningful deformations that match the
user’s experience of how shapes deform. However, treating a detailed digital
shape as a physical deformable object is computationally expensive making
interactive response times difficult to attain. For example, the dynamics of a
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Chapter 1 Introduction

deformable object are governed by partial differential equations and deforma-
tions of the object attained under static loading are solutions to variational
problems. Since analytical solutions for arbitrary shapes are not known, these
problems have to be solved numerically. Furthermore, the problems that ac-
curately describe large deformations of an object are nonlinear, effectively
prohibiting fully general interactive deformations of shapes with detailed ge-
ometry.

In this thesis, we present strategies for the construction of a simplified, low-
dimensional model that captures the main features of the original high-dimen-
sional system and is suitable for use in interactive computer graphics appli-
cations. Our approach is based on the observation that physical objects do
not just deform arbitrarily but rather tend to assume smooth typical defor-
mations. We thus restrict the deformations of objects to properly chosen low-
dimensional subspaces that include such characteristic shapes. The resulting
reduced systems involve much fewer degrees of freedom and hence hold the
promise of superior runtime performance over the original systems but with
some loss of accuracy. The subspace constructions we present are automatic
and are suitable for use in large deformation scenarios where nonlinear terms of
the systems are significant. Additionally, we provide schemes for fast approx-
imation of reduced internal forces for general, nonlinear materials of elastic
bodies. Thus, our model reduction techniques achieve runtime costs indepen-
dent of the geometric complexity of the deformable object. To demonstrate
the effectiveness of the new techniques we devise frameworks for real-time
simulation and interactive deformation-based modeling. For that purpose, we
propose efficient and robust methods for numerical integration and optimiza-
tion that are tailored to the reduced systems. We evaluate the frameworks
in experiments with elastic solids and shells and compare them to alternative
approaches.

Physical principles are not only advantageous for the manipulation of shapes
but also provide the means to gain insight into a shape. For example, many
recent works in shape analysis are based on the heat diffusion process on a sur-
face, which is a parabolic equation involving the Laplace–Beltrami operator.
The derived methods profit from properties of the heat equation like isometry
invariance and robustness to noise. Applications include segmentation, cor-
respondence finding, shape retrieval, and symmetry detection. Because of its
intrinsic nature, the Laplace–Beltrami operator is a powerful tool in applica-
tions where (almost) isometric deformations of a shape are considered (almost)
identical. However, this property can also be a disadvantage since extrinsic
features of a surface, like sharp bends, are of essential importance for some ap-
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1.1 Summary of main achievements

plications. In this thesis, we investigate discrete differential operators that can
serve as an alternative to the discrete Laplacians. The operators we consider
are derived from the mathematical models that describe the deformations of
a shape and hence are sensitive to the extrinsic geometry of curved shapes.
Based on these operators, we present the vibration signature – a multi-scale
signature that serves as a dense feature descriptor and can be used to measure
similarities of points on a shape.

Another element of digital geometry processing addressed in this thesis is the
compression of digital shapes – an essential approach to achieve compact stor-
age and fast transmission over bandwidth-limited channels. Unlike other types
of multimedia, e.g., sound and video, curved shapes do not admit straightfor-
ward application of signal processing techniques from the Euclidean setting like
the fast Fourier transform. However, many of these techniques can be gener-
alized to surfaces with arbitrary topology based on the notion of semiregular
meshes (also referred to as multiresolution meshes). These meshes result from
successive refinements of a coarse base mesh and are, for example, inherent
to multigrid methods for solving differential equations or level-of-detail visu-
alizations in virtual environments. Applying the refinement locally increases
the mesh resolution only where it is needed, but at the expense of a non-
trivial hierarchical structure. In this thesis, we present a lossless connectiv-
ity compression that is adapted to the special characteristics of such adaptive
multiresolution meshes. Using information theoretic strategies such as context-
based arithmetic coding, we take advantage of structural regularities that are
typically present in real-world data. Additionally, we present extensions that
exploit correlations of the refinement structure in sequences of time-dependent
meshes. We integrate this scheme with a wavelet-based coding of vertex po-
sitions for which we provide improved context modeling exploiting intraband
and composite statistical dependencies.

1.1 Summary of main achievements

• We propose new model reduction techniques for the construction of re-
duced shape spaces of deformable objects and for the approximation of
reduced internal forces that accelerate the construction of a reduced dy-
namical system, increase the accuracy of the approximation, and simplify
the implementation of model reduction.

• Based on the model reduction techniques, we propose frameworks for
deformation-based modeling and simulation of deformable objects that
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Chapter 1 Introduction

are interactive, robust and intuitive to use. We devise efficient numerical
methods to solve the inherent nonlinear problems that are tailored to
the reduced systems. We demonstrate the effectiveness in different ex-
periments with elastic solids and shells and compare them to alternative
approaches to illustrate the high performance of the frameworks.

• We study the spectra and eigenfunctions of discrete differential operators
that can serve as an alternative to the discrete Laplacians for applica-
tions in shape analysis. In particular, we construct such operators as
the Hessians of deformation energies, which are in consequence sensi-
tive to the extrinsic curvature, e.g., sharp bends. Based on the spectra
and eigenmodes, we derive the vibration signature that can be used to
measure the similarity of points on a surface.

• By taking advantage of structural regularities inherent to adaptive mul-
tiresolution meshes, we devise a lossless connectivity compression that
exceeds state-of-the-art coders by a factor of two to seven. In addition,
we provide extensions to sequences of meshes with varying refinement
that reduce the entropy even further. Using improved context modeling
to enhance the zerotree coding of wavelet coefficients, we achieve com-
pression factors that are four times smaller than those of leading coders
for irregular meshes.

1.2 Publications

The results presented in this dissertation were published in highly ranked jour-
nals, including ACM Transactions on Graphics, Computer Graphics Forum,
and Computer Aided Geometric Design. More specifically, the techniques
for model reduction and the derived schemes for interactive deformation-based
modeling and real-time simulation have been published in [von Tycowicz et al.,
2013] and [Hildebrandt et al., 2011]. The author also presented these results at
the top-tier computer graphics conferences SIGGRAPH 2012 and SIGGRAPH
Asia 2013. Furthermore, the concepts for modal shape analysis and the result-
ing vibration signature appeared in [Hildebrandt et al., 2012b] and [Hilde-
brandt et al., 2010]. In [von Tycowicz et al., 2011] and [Kälberer et al., 2009]
we published our compression scheme for adaptive multiresolution meshes. In
addition, our techniques address the storage demands inherent to high accu-
racy numerical simulations and optimal control of time-dependent processes.
To demonstrate its efficiency we integrated the connectivity compression with
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1.3 Overview

a lossy coding scheme for the compression of finite element solution trajectories
in [Götschel et al., 2013].

1.3 Overview

This thesis is organized around seven chapters: this introduction, one back-
ground chapter and five core chapters presenting this thesis’s contributions.
Each of the core chapters starts with an introduction of the addressed prob-
lem domain including a detailed overview of the related work. In addition to
our technical contributions derived in the core chapters, we provide various
experiments and in-depth comparisons to state-of-the-art methods.

This thesis is structured as follows. In the first part of the thesis we develop
methods for applications in geometry processing that are based on concepts
from continuum mechanics. In Chapter 2, we recall foundations of physically-
based discrete deformable objects. Chapter 3 is concerned with the construc-
tion of simplified, low-dimensional models that well-approximate the dynamics
of geometrically complex, nonlinear deformable objects. More specifically, we
present techniques for the efficient construction of reduced shape spaces and for
the approximation of reduced deformation energies and their derivatives. We
compare our reduction techniques in terms of both accuracy and computational
performance to state-of-the-art methods that are based on modal derivatives
and greedy cubature optimization. In Chapter 4 we derive a framework for real-
time simulation of deformable objects based on our model reduction techniques
and demonstrate its efficiency in different experiments with elastic solids and
shells. A framework for interactive deformation-based modeling is presented
in Chapter 5. We illustrate the performance of our framework in comparisons
to leading modelling approaches, i.e., embedded deformations and rigid cells.
In addition to simulation and modeling, we employ the physical models that
describe the deformations of a surface for shape analysis. In Chapter 6, we
investigate differential operators that are derived from the deformation energy
of a shape and hence can serve as alternatives to the Laplacian for applica-
tions in modal shape analysis. In the second part of the thesis, we address
the compression of digital shapes. In particular, in Chapter 7 we present a
lossless compression scheme that is adapted to the special characteristics of
adaptively refined, hierarchical meshes. We provide comparisons with leading
compression schemes for irregular as well as uniform multiresolution meshes.
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Chapter 2

Discrete deformable objects

Figure 2.1: Physically-based deformable objects have widespread application
in mature graphics areas, such as the animation of soft bodies.

2.1 Introduction

Physically-based deformable objects play an important role in fields like struc-
tural dynamics, surgical planning, and sound synthesis to name a few. Since
the seminal work by Terzopoulos et al. [1987] they are an active topic in com-
puter graphics and their use in key areas such as cloth simulation, deformation-
based editing and character animation have expanded tremendously. Numer-
ous contributions were made in the past decades and we refer to the excellent
surveys [Gibson and Mirtich, 1997; Nealen et al., 2006] for an overview.
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Chapter 2 Discrete deformable objects

The dynamics of a continuous object are governed by the equations of contin-
uum mechanics—a system of partial differential equations that depend on time
and spatial coordinates. There exist a multitude of approaches to discretize
real-world, deformable solids such as the finite element method (FEM), the
finite differences method, mass-spring systems or meshfree methods. Each of
these methods possess both benefits and drawbacks and have particular ap-
plications. However, mesh-based (approximate) continuum models, i.e., mod-
els that treat the object as a continuum with mass and energies distributed
throughout, are usually considered to be more accurate and reliable than those
modeling the solid using particle systems, cf. Gibson and Mirtich [1997]. Con-
tinuum models expect the entire space occupied by the object to be represented
by a mesh, e.g., by decomposing the object into tetrahedra. Typically, the de-
formable model is defined by the undeformed configuration of the mesh (also
called the rest state or initial configuration) and by a set of material parameters
that specify how the object deforms under applied forces.

Many discretizations are tailored to a particular type of mesh and admissible
deformations while others, e.g., FEM, can be applied to various representa-
tions. In this introduction, we focus on simplicial complexes with continuous,
piecewise linear shape functions. This setting is particularly popular in com-
puter graphics and is the one most commonly used by engineers for solving
second-order problems with conforming FEMs [Ciarlet, 2002]. In the remain-
der of this section, we first introduce simplicial complexes and then derive the
notion of a shape space.

2.1.1 Simplicial complexes

Triangle and tetrahedral meshes—or more generally simplicial complexes—
are among the most commonly used data structures to represent all kinds of
shapes in computer graphics and computational geometry. Compared to the
purely geometric description found in many textbooks, e.g. [Munkres, 1996;
Lee, 2010], practical mesh processing clearly differentiates between the combi-
natorial properties of a mesh and its geometric shape. Here, we present such a
distinguished treatment that allows us to represent a larger variety of shapes
including objects with self-intersections.

In topology, simplicial complexes are used to construct polyhedra by “gluing
together” points, lines segments, triangles, and their higher dimensional coun-
terparts. These n-dimensional building blocks are called simplices. We begin
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2.1 Introduction

with a combinatorial point of view by introducing abstract simplices and ab-
stract simplicial complexes.

Definition 1 An abstract simplicial complex is a collection K of finite
nonempty sets, such that if s is an element of K, so is every nonempty subset
of s. The element s is called an abstract simplex and any nonempty subset
of s is called a face of s. The dimension of s is one less than the number of
elements of s; the vertex set K0 is the union of all 0-dimensional simplices
of K.

For now, we consider points as abstract entities and do not care about their
specific nature. By combining one or more abstract points we specify a sim-
plex and if two simplices share common points they are glued together. In
particular, two s-dimensional simplices are said to be adjacent to each other
if they share a common s − 1 dimensional face.

The dimension of a simplicial complex is the maximum dimension of its
simplices. A k-dimensional complex is said to be pure if it contains only
simplices that are faces of k-dimensional simplices. Henceforth, we will restrict
our attention to finite complexes, i.e., complexes that are themselves finite
sets.

We perform the transition from the combinatorial to the geometric point of
view by defining the geometric representatives associated to the abstract sim-
plices. First, the set {p0, . . . , pk} of points in Rn is said to be geometrically
independent if and only if the vectors p1 − p0, . . . , pk − p0 are linearly inde-
pendent.

Definition 2 A k-simplex σk = [p0, . . . , pk] is the convex hull of k + 1 geo-
metrically independent points p0, . . . , pk in Rn, i.e.,

σp = {x ∈ Rn ∣ x = ∑k
i=0 µipi where µi ≥ 0 and ∑k

i=0 µi = 1} .
Any simplex spanned by a nonempty subset of {p0, . . . , pk} is called a face of
σp. The number k is called the dimension of the simplex.

With the notion of geometric k-simplices we can now obtain a geometric shape
from an abstract simplicial complex by relating abstract simplices to geometric
ones.
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Chapter 2 Discrete deformable objects

Definition 3 A (geometric) simplicial complex K in Rn is a collection
of simplices in Rn such that

1. Every face of a simplex of K is in K.

2. The intersection of any two simplices of K is a face of each of them.

If V is the vertex set of a simplicial complex K, let K be the collection of all
subsets {a0, . . . , ak} of V such that the vertices a0, . . . , ak span a simplex of K.
Then K is an abstract simplicial complex and is called the vertex scheme
of K. On the other hand, as K relates a geometric shape to the abstract
simplicial complex it is also referred to as a geometric realization of K.
Any geometric realization of an abstract simplicial complex into a Euclidian
space induces a topology on the simplicial complex. Explicitly, let ∣K ∣ ⊂ Rn

denote the union of all simplices in K. We define a topology on ∣K ∣ as the
natural topology as a subspace of Rn. The space ∣K ∣ is called the underlying
(topological) space of K. For our complexes to describe deformable objects,
we carry the notion of a topological manifold over to the context of a simplicial
complex.

Definition 4 A simplicial k-manifold K in Rn is a k-dimensional simpli-
cial complex whose underlying space ∣K ∣ is a topological submanifold of Rn.

In particular, we call a simplicial 2-manifold a simplicial surface and a sim-
plicial 3-manifold a simplicial volume. Furthermore, an abstract simplicial
complex is said to be manifold if it is the vertex scheme of a simplicial mani-
fold.

In computer graphics and computational geometry practice, digital shapes
are typically represented by meshes, where geometric positions are treated
separately from the connectivity of the vertices. This distinction allows for
self-intersections and even degenerated shapes, so this possibility should be
taken into account when working with discrete deformable objects. To this
end, we introduce the notion of a simplicial mesh:

Definition 5 A simplicial mesh N = (K, f) in Rd is an abstract simplicial
manifold K together with a correspondence f ∶ K0 → Rd such that for each{a0, . . . , ak} ∈ K the points f(a0), . . . , f(ak) are geometrically independent.
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2.1 Introduction

The correspondence f can be extended to a (unique) mapping f ′ of any geo-
metric realization K of K that is linear in each simplex. Note that although
this mapping is an immersion of each simplex in K, it can cause non-adjacent
simplices to intersect and hence K might lose its property of being a simplicial
complex under the application of f ′. For this reason we induce the topology
of N from a geometric realization K, but stick to the mesh’s metric induced
by the corresponding mapping f ′.

2.1.2 Shape space

Throughout the thesis, we will assume R3 to be the ambient space of the
deformable object though many of the presented ideas and concepts can be
applied equally well in other dimensions. Let Ω ⊂ R3 be the volumetric do-
main that represents the reference configuration of a deformable object. A
deformation φ ∶ Ω → R3 is a sufficiently smooth and orientation preserving
immersion of the object. Points in Ω are denoted by X and are called material
points, while spatial points in R3 are denoted by x = φ(X). Then, a motion of
the object is a time-dependent family of configurations φ(X, t). The velocity of
a material point X is regarded as a vector emanating from x and is defined by
V (X, t) = (∂/∂t)φ(X, t). The velocity viewed as a function of (x, t) is called
the spatial velocity and is denoted by v(x, t). Note that v(x, t) = V (X, t),
where x = φ(X, t). In order to derive a discrete dynamical model with finite
degrees of freedom, we approximate the continuous object using a simplicial
mesh N and additionally restrict the possible deformations to a finite dimen-
sional space. In particular, we consider the space F (N) of functions mapping
N → R that are continuous on N and linear on each simplex of N . This space
falls into the category of finite element spaces. We refer to [Ciarlet, 2002] for a
more detailed introduction to piecewise polygonal function spaces on simplicial
domains.

Functions in F (N) are spanned by the Lagrange basis functions {ϕ0, . . . , ϕn−1}
corresponding to the set of vertices {p0, . . . , pn−1} such that for each vertex pi
there is a function ϕi with ϕi(pj) = δij ∀i, j ∈ {0, . . . , n−1}. Thus a deformation
φ ∈ F (N) of the object is determined by the displacements of the n vertices
and has the unique representation

φ(X) =X + n−1∑
i=0
uiϕi(X) ∀X ∈ N,

where ui = φ(pi) ∈ R3. The displacements of the vertices can be written in one
3n-vector u = (u0, . . . , un−1) called the nodal vector. Hence, we can identify the

11



Chapter 2 Discrete deformable objects

space of all possible deformations of the object with R3n. This space is called
the shape space or configuration space and we denote it by C. We would like
to mention that the ideas presented in this section are also valid for different
choices of shape functions, e.g., piecewise quadratic or subdivision-based finite
element spaces. Note that n is the dimension of the function space and hence
can be different from the number of vertices.

The velocity V of an object is an element of the tangent space TφC at the
deformed shape φ(N). Since C equals R3n, the tangent space TφC can be
identified with R3n. We write u̇ = (u̇0, . . . , u̇n−1) to denote the nodal vector
that represents V in the Lagrange basis.

In the context of dynamical systems, a natural choice for a metric on C is given
by the kinetic energy Ekin(v) = 1/2 ∫φ(N) ρ(x) ⟨v(x), v(x)⟩dv, where ρ(x) is the
mass density of the body. By the polarization identity, the metric g(z,w)
for tangent vectors z,w ∈ TφC is then given by g(z,w) = 1/4(Ekin(z + w) −
Ekin(z − w)). Using the Lagrangian basis functions {ψ0, . . . , ψn−1} on φ(N),
i.e., ψi ○ φ = ϕi ∀i ∈ {0, . . . , n − 1}, the kinetic energy can be expressed as

Ekin(u̇) = 1

2

n−1∑
i=0

n−1∑
j=0
⟨u̇i, u̇j⟩∫

φ(N)
ρψiψj dv = u̇TMu̇,

where M is called the mass matrix. Let us assume from now on that for t = 0
the body is in the reference configuration, i.e., φ( ⋅ ,0) is the identity, and let
ρ̄(X) = ρ(x,0) denote the mass density at the rest state. If ρ(x, t) obeys the
conservation of mass principle, then ρ̄(X) = det(Dφ)ρ(x, t) for all x = φ(X, t)
(see [Marsden and Hughes, 1994]), where Dφ is the 3 × 3 matrix of partial
derivatives of φ with t held constant and is called the deformation gradient.
By the change of variables formula and the conservation of mass, the kinetic
energy can be expressed as Ekin(V ) = 1/2 ∫N ρ̄(X) ⟨V (X), V (X)⟩dV , i.e., an
integral over the reference configuration that depends on ρ̄ and V instead of
ρ and the spatial velocity. Thus, the mass matrix M does not depend on the
deformation of the object. For completeness, we would like to note that away
from the closed set of rank-deficient configurations φ, i.e., deformations with at
least one degenerate simplex, the space C equipped with g(⋅, ⋅) is a Riemannian
manifold.

Other choices of scalar products are possible as well. For example, omit-
ting the conservation of mass by assuming ρ ≡ 1 for all φ yields the discrete
L2 − product for vector fields on φ(N) as a scalar product on TφC and was
used for the numerical integration of gradient flows of geometric functionals
like the area (mean curvature flow) or the Willmore energy, see [Dziuk, 1991;
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2.2 Deformation energies

C

Figure 2.2: (Left) Each point in the shape space C corresponds to a deforma-
tion of the object. (Right) We can interpret an element of TφC as a vector
field on φ(N), which assigns a vector in R3 to every point x = φ(X).

Clarenz et al., 2004]. Gradient flows of geometric functionals with respect to
alternative choices of scalar products are explored in [Eckstein et al., 2007].
Furthermore, Kilian et al. [2007] construct different semi-Riemannian metrics
that are tailored to certain design and modeling task, e.g., shape exploration
and morphing. However, as we are concerned with dynamical systems of de-
formable objects, we will employ the metric derived from the kinetic energy
with conservation of mass throughout this thesis.

2.2 Deformation energies

In this section, we consider discrete deformation energies defined for objects
whose reference configurations are represented by simplicial volume meshes N
in R3. For simplicity we assume that N is embedded in R3, i.e., it is itself a
simplicial volume in R3 and hence ∣N ∣ ⊂ R3. We will start this introduction
with basic notions and concepts from 3D elasticity and then present a concise
introduction to the theory of thin shells. As a supplement to this introduction
we highly recommend the textbooks [Marsden and Hughes, 1994] and [Bonet
and Wood, 2008].

Deformation energies measure the deformation of a mesh from a reference
configuration, i.e., a function on the shape space that, for every configuration
in the shape space, provides a quantitative assessment of the magnitude of
the deformation from the rest state. More precisely, we formulate the energy
as E ∶ C → R, which implies that the energy is uniquely determined by the
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Chapter 2 Discrete deformable objects

deformation φ ∈ C. This notation reflects the essential hypothesis that the
deformation energy does not depend on the deformation history, i.e., it does
not matter along which path the object was deformed to reach its current
configuration. This absence of hysteresis effects in the energy is a property
called hyperelasticity and is closely related to the fact that internal forces of
hyperelastic objects are conservative, i.e., the total work done by the elastic
forces depends solely on the initial and final configurations and not on the
trajectory. On the contrary, inelastic materials dependent on the deformation
history, e.g., materials that underwent plastic deformations will not return to
their original shape after the external forces have been released; thus the energy
before and after plastic deformation will be different for the same shape.

In continuum mechanics, the severity of a deformation is measured on a local
scale as different parts of a deforming object undergo different shape changes.
This approach leads to an energy density function Ψ(φ,X) that measures the
deformation energy per unit undeformed volume on an infinitesimal domain dV

around a material point X. The first step to deriving the energy density Ψ is
to define a quantitative descriptor for the severity of a given deformation called
strain. As the strain is intended to gauge the behavior of φ in an infinitesimal
neighborhood of a material point X̂, it is reasonable to approximate φ by its
first-order Taylor expansion: φ(X) ≈ φ(X̂)+Dφ∣X̂(X − X̂). Constant terms in
the approximation correspond to translations of the region around X̂ and hence
cause no change in strain energy. Thus, the energy density should be a function
of the deformation gradient Dφ and X alone, i.e., Ψ(φ,X) = Ψ(Dφ∣X ,X). We
refer to [Marsden and Hughes, 1994], in particular Theorems 2.4 and 2.6, for a
rigorous derivation of the dependencies of Ψ and the corresponding constitutive
axioms. Despite its descriptive power, the deformation gradient still contains
information that is unrelated to shape change. In particular, if φ represents
a rigid rotation R of the whole body, we have Dφ = R. Thus, Dφ is not
invariant under rigid motions. However, by the polar decomposition from
linear algebra, we can uniquely factorize the deformation gradient as Dφ =
RU = V R, where R is again a rotation matrix, and U and V are symmetric,
positive-definite matrices called right and left stretch tensors. Indeed, C =(Dφ)TDφ = UTRTRU = U2 is invariant under rigid body motions and is called
the right Cauchy-Green tensor. From the viewpoint of differential geometry, C
is the pullback of the first fundamental form (or metric tensor) of the deformed
to the reference configuration. The actual strain caused by a deformation can
thus be measured in terms of C based on the Green-Lagrange strain tensor
E = 1/2(C −1 ), where 1 is the metric tensor of the reference configuration and
is represented by the 3 × 3 identity matrix.
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2.2 Deformation energies

Both C and E depend solely on the deformation and are thus purely geometric
measures. However, the response of a material to stimuli depends on the
physical properties of that material such as compressibility or resistance to
shear. These physical traits are encoded by the stress of a material which,
in general, depends on strain (history), strain rate, and other field quantities.
The stress at a point is a measure of force per unit area acting on an elemental
area ds. This concept applies not only to points on the boundary of a solid
but can also be considered for surfaces created by (imaginarily) slicing the
deformed body with a plane. The force per unit area acting on ds is called
the stress vector and depends on the direction and magnitude of the force as
well as on the orientation of the surface on which it acts. The stress vector
acting on a plane perpendicular to n is denoted by τ(n). By Cauchy’s stress
theorem, the stress vector is a linear function of n and can thus be written as
τ(n) = n ⋅ σ, where σ is a second order tensor field called the Cauchy stress
tensor. Apart from the Cauchy stress tensor there are also other commonly
encountered formulations of stress that differ in whether they refer to stress
vectors and surface area elements measured in the reference state or in the
deformed body. In particular, the second Piola–Kirchhoff stress tensor S is
measured in the deformed body but referred to in the material coordinates X.
Thus, S is commonly used together with the Green–Lagrange strain E that is
also a function of X. Both stress measures are related by the so-called Piola
transformation [Bonet and Wood, 2008] and for small deformation problems
the difference between them disappears.

With stress and strain measures at hand, we can formulate the strain energy
density in material coordinates as Ψ(Dφ∣X ,X) = S ∶ E , where the colon denotes
tensor contraction. We can then obtain the total potential energy of elastic
forces by integrating the strain energy density over the entire domain N :

E(φ) = ∫
N
Ψ(Dφ∣X ,X)dV = ∫

N
S ∶ E dV.

The mathematical formulation that relates stress to strain for a hyperelas-
tic material is called its constitutive model. In general, these constitutive
equations can not be calculated using physical laws and are thus derived by
either fitting the model to experimental measurements or by arguing about
the underlying structure of a material. They must, however, satisfy certain
physical principles such as the condition of objectivity, or material frame in-
difference. Materials that exhibit direction-dependent properties, i.e., they are
more “stretchable” in some directions than in others, are said to be anisotropic.
An isotropic body, on the other hand, is one for which every material property
in all directions at a point is the same. If the material properties vary with
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Chapter 2 Discrete deformable objects

the position within the body, the material is called heterogeneous. Otherwise,
if the properties are the same throughout the body it is called homogeneous.
A heterogeneous or homogeneous material can be isotropic or anisotropic. In
general, the strain-stress relation can take many different forms and a detailed
discussion is beyond the scope of this thesis. Here we introduce hyperelas-
tic, isotropic materials for which stress is assumed to depend linear on strain.
However, the methods presented in this thesis are not limited to such linear
materials and, in particular, we provide experimental results from the materi-
ally nonlinear Mooney–Rivlin model. The linear strain-stress relation is also
referred to as the generalized Hooke’s law and is formulated as σ =C ∶ ǫ, where
C is the fourth-order stiffness tensor. We can think of C as a 3 × 3 × 3 × 3
multi-dimensional array. Due to symmetry inherent to the strain, stress and
stiffness tensor, there are only 21 independent coefficients in C. Moreover, for
isotropic media C depends only on two independent parameters λ,µ referred
to as the Lamé constants.

St. Venant–Kirchhoff material Linear materials are inherent to the field
of linear elasticity that provides efficient models for bodies undergoing small
deformations where nonlinear terms can be neglected. However, combining the
linear, isotropic model with the rotationally invariant Green-Lagrange strain E
gives rise to a geometrically nonlinear, yet simple model that exhibits plausible
material response in many large deformation scenarios. In particular, this
model is called the St.Venant–Kirchhoff material and it is given by the relation

S = λtr(E)1 + 2µE , (2.1)

where S is the second Piola–Kirchoff stress tensor and 1 denotes the 3 × 3
identity matrix. As Dφ depends linearly on φ, both E and S are quadratic in
φ. Therefore, the potential energy of the St.Venant–Kirchhoff material always
takes the shape of a fourth-order polynomial function of φ. The St. Venant–
Kirchhoff model is very popular in computer graphics due to its simplicity and
the benefits it offers over (geometrically) linear elastic models. However, its
scope is limited to applications that do not involve large volume compressions.
If a St. Venant–Kirchhoff elastic body is compressed, the restorative force ini-
tially grows but peaks once a critical compression threshold is reached. Fur-
ther compression beyond this point will cause the restorative force to decrease
and even vanish if the object is squashed down to zero volume. Increasing
the compressive load will then cause the body to invert and create elastic
forces that pushes it towards complete inversion. On the other hand, if the
body is stretched the restorative force will grow arbitrarily large as expected.
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2.2 Deformation energies

Therefore, this material typically produces visually plausible results for large
deformations with moderate volume compression.

2.2.1 Thin shells

The analysis of flexible shells and plates is an old and well-studied subject
and it has seen many solutions. The different approaches proposed in the
literature and relevant references thereof are too numerous to list here. We
refer the reader to the excellent books [Reddy, 2007; Ciarlet, 2000] and the
extensive references therein.

A plate is a planar structural element with small thickness compared to its
planform dimensions. Typically, the thickness is less than one-tenth of the
smallest in-plane dimension. Unlike plates, shells are not characterized by a
flat undeformed configuration but relax to a curved shape when unstressed.
Plates can thus be seen as a degenerate class of shells. Aluminium cans, car
bodies, fingernails, ship hulls and eggs are everyday examples of thin shells.
Because of the small thickness-to-width ratio, it is often not necessary to model
shells using three-dimensional elasticity equations. The aim of shell theory is
to replace the three-dimensional problem by a presumably much simpler two-
dimensional one.

Typically the undeformed body of a shell with uniform thickness h > 0 is
parametrized by a system {y1, y2, y3} of curvilinear coordinates:

Θ(y1, y2, y3) ∶= θ(y1, y2) + y3a3(y1, y2) for all y ∈ ω̄ × [−h/2, h/2] ,
where Σ = θ(ω̄) describes the parametrized middle surface and ω̄ ⊂ R2. Let
θ ∈ C3(ω̄;R3) be an immersion and let ∂α ∶= ∂/∂yα, then the two vectors

aα ∶= ∂αθ α ∈ {1,2}
are linearly independent at all points (y1, y2) ∈ ω̄ and thus span the tangent
plane to Σ at θ(y1, y2). The unit vector given by

a3 ∶= a1 × a2
∥a1 × a2∥

is normal to the middle surface at any point of Σ. The covarient basis vectors
of the shell are then given by

gα = ∂αΘ = aα + y3∂αa3 α ∈ {1,2},
g3 = ∂3Θ = a3,
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and the corresponding components of the covarient metric tensor (or first fun-
damental form of Θ) are gij = gi ⋅ gj for i, j ∈ {1,2,3} (recall that ∂αa3 is in the
tangent plane to Σ at θ(y1, y2) and therefore g3α = gα3 = 0 and g33 = 1).
Such a parametrized shell can now be modelled as a three-dimensional problem
by considering displacements of the points in Θ(ω̄ × [−h/2, h/2]). However,
to achieve a dimensional reduction assumptions are made as to the form of
the displacement field or stress field. Here we confine our attention to the
Kirchhoff-Love theory of thin shells which is based on the following kinematic
assumptions:

1. Straight lines perpendicular to the middle surface (i.e., transverse nor-
mals) in the undeformed configuration remain straight after deformation.

2. The transverse normals remain perpendicular to the middle surface after
deformation.

3. The thickness of the shell does not change (i.e., the transverse normals
are inextensible).

Under these assumptions, any displacement field η ∶ ω̄ → R3 of the middle
surface uniquely determines the deformed configuration of the shell which can
then be parametrized by

Θ
η(y1, y2, y3) ∶= θη(y1, y2) + y3aη3(y1, y2),

where θη ∶= θ + η and a
η
3

are the deformed middle surface and its normal,
respectively. The Green-Lagrange strain tensor E for such a parametrized
shell measures the difference between the metric tensors of the undeformed
and deformed configurations of the shell and its components are

Eij = 1/2(gηij − gij),
where gηij denotes the components of the covarient metric tensor of the de-
formed shell. By virtue of the assumed Kirchhoff-Love kinematics, the Eαβ for
α,β ∈ {1,2} are the only non-zero components of E and may be deduced from
the middle surface as

Eαβ = 1/2(aηαβ − aαβ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Gαβ

+y3 (bηαβ − bαβ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Rαβ

+1/2y23(eηαβ − eαβ),

where the components of the first, second and third fundamental forms of θη

and θ are denoted by aηαβ and aαβ, b
η
αβ and bαβ, and eηαβ and eαβ, respectively.
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2.2 Deformation energies

Therefore, since the three fundamental forms of a surface are linearly depen-
dent (cf. [Toponogov, 2006, Theorem 2.5.1]), the change in metric tensor Gαβ

and change in curvature tensor Rαβ furnish a complete description of the de-
formation of the shell. In particular, Gαβ encodes the stretching and shearing
of the middle surface, whereas Rαβ describes the bending of the middle sur-
face. Assuming a linear constitutive law, the elastic energy of the shell can be
formulated as in [Terzopoulos et al., 1987] by

E(η) = 1

2
∫
Σ

(∥G∥2mem + ∥R∥2bend) dA,
where dA = √det(aαβ)dy1dy2 denotes the area element of Σ and ∥ ∥mem and∥ ∥bend are certain matrix (semi)norms that measure the membrane strain
energy density and the bending strain energy density, respectively, and hence
encode the thickness and material properties of the shell.

Discrete shells Discretizations of the thin shell energy depend only on a
representation of the middle surface and its corresponding shape space. It is
clear from the form of the bending term that in a finite element discretization
the displacement fields must necessarily have square integrable first and second
derivatives, i.e., they belong to the Sobolev spaceH2(ω̄,R3). A major difficulty
of this requirement is guaranteeing the continuity across neighboring elements
which typically requires the introduction of additional variables like partial
derivatives. Cirak et al. [2000] circumvent such difficulties by introducing
shape functions based on the notion of subdivision surfaces that achieve the
required continuity due to their nonlocal nature.

An alternative approach to discretize the shell equations is based on principles
of discrete differential geometry and promises physically plausible, yet compu-
tationally efficient, discrete shell models. Let N denote the simplicial surface
mesh that represents the middle surface of the shell and let C be the corre-
sponding shape space spanned by continuous, piecewise linear shape functions
(as introduced in the previous section). Then, the Discrete Shells model [Grin-
spun et al., 2003] defines a discrete constitutive model using shape operators
derived from discrete geometric ideas. Analogous to the continuous case, the
energy that governs this model of thin shells is a weighted sum of a flexural
energy and a membrane energy,

E(u) = κbendE
F (u) + κmem (EL(u) +EA(u)). (2.2)

The weights κbend and κmem are the bending and membrane stiffness and reflect
the material properties to be simulated, e.g., in cloth simulation the membrane

19



Chapter 2 Discrete deformable objects

energy usually gets a high weight due to the stretch resistance of cloth. The
discrete bending (or flexural) energy is given as a summation over the internal
edges of N :

EF = 3

2
∑i

∥ēi∥2
Āei

(θei − θ̄ei)2 , (2.3)

where θei is the dihedral angle at the edge ei, Aei is the combined area of the
two triangles incident to ei and ∥ei∥ is the length of the edge. The quantities∥ēi∥ , Āei , and θ̄ei are measured on the reference configuration of the surface.
The membrane energy consists of two terms: one measuring the stretching of
the edges,

EL = 1

2
∑i

1∥ēi∥(∥ei∥ − ∥ēi∥)2, (2.4)

and one measuring the change of the triangle area Ai

EA = 1

2
∑i

1

Āi

(Ai − Āi)2. (2.5)

Here the second sum runs over the triangles of N . Alternatively, more recent
works like [Gingold et al., 2004; Heeren et al., 2012] employ the standard con-
stant strain triangle (CST) formulation that admits to represent the membrane
energy using the well-known Koiter’s shell model [Koiter, 1966].

2.3 Linear vibration modes

Vibration theory is concerned with oscillatory motion of physical systems and
provides ways to compute the vibration modes of a deformable object. We
refer to [Shabana, 1997] for a survey of the theory of vibrations of both dis-
crete and continuous systems. The oscillatory motion of a system depends on
boundary conditions, the geometry of the object as well as its material, and
can be observed around stable equilibrium configurations of the object with
respect to internal and external forces. Let ū ∈ C be such a stable equilibrium.
Then a small disturbance of the system from equilibrium results only in a
small bounded motion about ū. As the acting forces are in equilibrium, the
motion in the immediate neighborhood of ū is governed by the linear terms in a
Taylor expansion of the forces. Assuming conservative systems and vanishing
derivatives of external forces, the vibrations of the object are determined by
the eigenvalues and eigenmodes of the Hessian of the deformation energy E at
the configuration ū.
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2.3 Linear vibration modes

Figure 2.3: Visualization of vibration modes derived from the discrete thin
shell energy. In each row the left most image shows the rest state followed
by deformations captured by a vibration mode.

The Hessian of a deformation energy (or more generally of a function) does
not only depend on the differentiable structure of C but also on the metric on
C and hence is a quantity from Riemannian geometry.

We denote by ∂Eu the 3n-vector containing the first partial derivatives of E
at u and by ∂2Eu the matrix containing the second partial derivatives at u. The
matrix ∂2Eu is also referred to as the tangent stiffness matrix. We would like
to emphasize that ∂Eu and ∂2Eu do not depend on the metric on C, whereas
the gradient and the Hessian of E do. The gradient of E at u is given by

graduE =M−1∂Eu. (2.6)

The Hessian of E at a mesh u is the self-adjoint operator that maps any tangent
vector v ∈ TuC to the tangent vector hessuE(v) ∈ TuC given by

hessuE(v) = ∇vgraduE, (2.7)

where ∇ is the covariant derivative of C.

Hessian computation In general, it is a delicate task to derive an explicit
representation of the Hessian of a deformation energy and often only approxi-
mations of the Hessian are available. As pointed out in the preceding section,
deriving the metric of C from the kinetic energy with conservation of mass leads
to a constant mass matrix. The Hessian of E therefore takes the following form

hessuE =M−1∂2Eu, (2.8)
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as we do not need to consider derivatives of the metric. Since there can be
no motion of bodies while the kinetic energy remains zero, the metric of C is
always positive definite. Thus, the mass matrix is also positive definite and its
inverse exists.

Eigenvalue problem To obtain the eigenmodes Φi ∈ TūC of hessūE, we need
to solve the generalized eigenvalue problem

∂2EūΦi = ω2

i M Φi. (2.9)

Since both ∂2Eū and M are symmetric and positive definite (ū is a stable
equilibrium), all eigenvalues ω2

i are positive real numbers, and their square
roots ωi are called natural frequencies of the system. We would like to remark
that if the system admits motions that cause no change in energy E (e.g.,
rigid motions), ∂2Eū is only positive semi-definite and its kernel is the set
of all vectors in TūC tangent to those motions. An important property of the
eigenmodes, also called vibration modes or mode shapes, is their orthogonality
with respect to both ∂2Eū and M (see [Shabana, 1997]). Its utility for the
solution of dynamical systems will become apparent in the remainder of this
section.

The eigenvalue problem (2.9) typically involves large but sparse matrices. Fast
solvers for these problems are discussed in [Saad, 1992] and an example of a
software package that specializes in such problems is Arpack (see [Lehoucq
et al., 1998]).

Vibration modes and gradient flow To illustrate the concept of eigen-
modes of the Hessian of a deformation energy, we look at the vibrations of a
mesh in a force field induced by the energy. For simplicity, we consider the
case of free vibrations. In general, the dynamics of a time-dependent mesh
u(t) in the space C is governed by a system of non-linear second-order ODEs
of the form

Mü(t) = F (t, u(t), u̇(t)),
see [Baraff and Witkin, 1998]. Here, the mass matrixM represents the physical
mass of u and F represents the acting forces. We consider the force field that
has E as its potential, i.e.,

F (t, u(t), u̇(t)) = −∂Eu(t).

In the case of free vibrations, this is the only force. In a more general setting,
we could include damping and exterior forces, see [Pentland and Williams,
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1989]. The equations that govern the motion of a time-dependent mesh u(t)
during free vibration are

gradu(t)E + ü(t) = 0, (2.10)

where we use the definition of the gradient, Equation (2.6), to simplify the
formula. Since we are interested in meshes u that are (arbitrarily) close to ū,
we expand the force graduE into a Taylor series around ū. Using ∂Eū = 0 (no
force acts at the equilibrium ū) we get

graduE = hessūE(u − ū) +O(∥u − ū∥2). (2.11)

Then, if we omit the second order term in (2.11) and combine (2.10) and (2.11),
we get

hessūE v(t) + v̈(t) = 0, (2.12)

where v(t) = u(t) − ū. This is a system of second-order linear ODEs that are
coupled by hessūE. To solve the system we consider a normalized eigenbasis B
of hessūE. Written in such a basis, both matrices ∂2Eū and M are diagonal
matrices and Equation (2.12) takes the form

Λw(t) + ẅ(t) = 0, (2.13)

where w is the representation of v in the basis B and Λ is a diagonal matrix that
contains the eigenvalues. The system (2.13) is decoupled and can be solved
row by row. Each row describes an oscillation around ū with frequency ωi in
the direction of the eigenmode Φi corresponding to the eigenvalue ω2

i . This
means, that the eigenmodes of problem (2.9) describe the vibration modes of
the mesh ū (with respect to the deformation energy E). The vibrations of
a physical system are usually not free, but are affected by damping forces.
Common models for such forces are Rayleigh damping, see [Hauser et al.,
2003], and, even simpler, mass damping, see [Pentland and Williams, 1989].
We would like to mention that if Rayleigh (or mass) damping forces are added
to the system, it still has the same vibration modes, see [Hauser et al., 2003].

Another possibility to interpret the eigenmodes of the Hessian is to consider
the gradient flow governed by the energy E that is given by the system

gradu(t)E + u̇(t) = 0 (2.14)

of first-order ODEs. It describes the evolution of an object in a velocity field
given by the negative gradient of the energy. Initial data for the equation is a
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position of the mesh u(t) for some time t0. Using Equation (2.11), we derive
the linearized gradient flow

hessūE v(t) + v̇(t) = 0. (2.15)

Analogously to Equation (2.12), this system can be decoupled employing the
orthogonality property of the eigenmodes of hessūE.
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Chapter 3

Model reduction of

nonlinear dynamical systems

Figure 3.1: Reduced simulation of a geometrically nonlinear deformable object
with 92k tetrahedra computed at over 120Hz after about four minutes of
preprocessing (see Table 3.3).

3.1 Introduction

Methods for real-time simulations of deformable objects based on model re-
duction have received much attention in recent years. These schemes construct
a low-dimensional approximation of the dynamical system underlying a sim-
ulation and thereby achieve a runtime that depends only on the complexity
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of the low-dimensional system. We focus on two problems of reduced nonlin-
ear systems: the subspace construction and the efficient approximation of the
reduced forces. We propose new techniques for both problems aiming at accel-
erating the construction of the approximate dynamical system, increasing the
accuracy of the approximation, and simplifying their implementation. Based
on this, we implement schemes for real-time simulations of deformable objects
in Chapter 4 and for deformation-based editing of triangular or tetrahedral
meshes in Chapter 5. Beyond these two applications, the developed tech-
niques are potentially useful for other applications including the acceleration
of large simulations and the reduction of constrained spacetime optimization
problems, e.g., for motion design.

Subspace construction Subspace construction based on linear modal anal-
ysis has become standard practice for the dimension reduction of linear second-
order dynamical systems. However, for nonlinear systems, such a basis cannot
capture the effects of the nonlinearities, which for the simulation of deformable
objects leads to artifacts for large deformations. We propose a simple, yet effec-
tive, technique for extending modal bases and demonstrate that the resulting
subspaces can better represent the nonlinear behavior of deformable objects.
The idea is to use linear transformations of R3 to create new basis vectors.
In contrast to common usage, we do not apply the linear transformations to
deform the geometry directly, but to “deform” the linear vibration modes. The
resulting new basis vectors depend not only on the geometry but also on the
material properties of the deformable object. Using this strategy, modal bases
are extended in such a way that the spanned subspaces better approximate
large deformations. In our experiments, we found the resulting effect com-
parable to that achieved by adding modal derivatives to linear modal bases.
Benefits of the proposed technique are that the construction is fast and simple
to implement.

Approximation of reduced forces In addition to dimension reduction,
the real-time simulations of deformable objects require a scheme for efficiently
approximating the nonlinear reduced forces. Here, we consider two approaches
to the resolution-independent approximation of reduced forces: one that fol-
lows the optimized cubature introduced by An et al. [2008], and one that is
based on coarsening the discrete geometry.

Typically, interior forces of a discrete deformable object can be written as a
sum whose summands depend only on the deformation of a local neighborhood
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of the object, e.g., a triangle or a tetrahedron. The idea of using a cubature-
based approximation is to exploit the correlations between these summands.
The dimension reduction restricts the system to a small number of degrees of
freedom, which in turn strengthens the correlations. The strategy is to select
a small number of summands and to approximate the reduced forces by a lin-
ear combination of these summands. The subset and weights are determined
through an optimization procedure in which the approximation error on an au-
tomatically generated set of training poses is minimized. This is a constrained
best subset selection problem. In Section 3.3.1, we devise a new scheme for
efficiently solving this problem, which is based on recent advances in the field
of sparse approximation. Our strategy for solving the subset selection prob-
lem is substantially different from that used in [An et al., 2008]. They use
a greedy strategy that iteratively constructs the selection set by successively
adding one entity per iteration. In contrast, our scheme constructs a complete
selection set in the first iteration and the whole selection set can be changed
in subsequent iterations. We demonstrate in a number of examples that our
scheme can produce a significantly smaller approximation error at lower com-
putational costs and is able to achieve a given training error with a smaller
selection set.

In addition to optimized cubature, we propose a scheme for force approxima-
tion that is based on a second reduced shape space for a low-resolution version
of the object. By construction, the two reduced shape spaces are isomorphic
and we can use the isomorphism to pull the energy from the shape space of
the simplified mesh to the shape space of the full mesh. Thus, the coarse
mesh provides means to exploit the spatially local coherence, while optimized
cubature exploits the coherence in the global motion of the object.

Related work

Using subspaces constructed from linear vibration modes to accelerate the inte-
gration of linear second-order dynamical systems is a standard technique with
a long tradition [Pentland and Williams, 1989]. Still, the question of how this
technique can be generalized to nonlinear systems is an active area of research.
One strategy is to compute the vibration modes around several states and to
use the span of the union of these modes. The drawback of this approach is
the high computational cost for solving several eigenvalue problems. An alter-
native approach is to enrich the modal basis with modal derivatives [Idelsohn
and Cardona, 1985; Barbič and James, 2005; Hildebrandt et al., 2011; Tiso,
2011]. Roughly speaking, a modal derivative, which is computed from a pair
of modes, describes how one mode changes when the object is deformed in the
direction of the other mode. A derivation of the modal derivatives as well as
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a discussion of their relation to energy descent directions will be covered in
Section 3.2.1. Another very common approach for creating a basis for non-
linear systems is to construct reduced spaces based on a principal component
analysis of a set of observations [Krysl et al., 2001].

After dimension reduction, the cost for evaluating the nonlinear interior forces
of a deformable object is still high as it requires computing and projecting the
unreduced forces. Optimized cubatures have been successfully applied for ap-
proximating the interior forces of different types of hyperelastic materials for
elastic solids [An et al., 2008] and thin shells [Chadwick et al., 2009]. Recently,
they were also used for reduced fluid re-simulations [Kim and Delaney, 2013].
Computing the cubature points requires solving a complex optimization prob-
lem: a best subset selection problem. To solve the problem, current schemes
use a greedy strategy that incrementally builds the selection set. An alternative
to force approximation is the exact evaluation of the reduced forces. For lin-
ear materials, e.g., the St.Venant–Kirchhoff model of elastic solids, the forces
are cubic polynomials on the shape space. In this case, the coefficients of the
restriction of the polynomials to the reduced space can be precomputed [Bar-
bič and James, 2005]. This yields an exact representation of the forces in the
reduced space and evaluation costs that depend only on the size of the sub-
space. However, the number of coefficients to be precomputed and evaluated
at runtime grows quartically with the dimension of the reduced space.

In addition to real-time simulations, model reduction has been used to accel-
erate large simulations [Kim and James, 2009] and for controlling the motion
of deformable objects [Barbič and Popović, 2008; Barbič et al., 2009, 2012;
Hildebrandt et al., 2012a] as well as characters [Safonova et al., 2004] and flu-
ids [Treuille et al., 2006; Wicke et al., 2009]. Moreover, in [Hahn et al., 2012],
simulations in reduced spaces obtained from animators’ rigs were considered
with the goal of simplifying the integration of simulation into the traditional
animation pipeline. Subset selection based on training poses has also been used
for facial articulation and global illumination by Meyer and Anderson [2007].

Alternative approaches for real-time simulations of deformable objects in a
reduced space are to use modal warping [Choi and Ko, 2005] and rotation
strain coordinates [Huang et al., 2011]. These schemes integrate a linearized
system in modal coordinates and warp the solutions to counteract artifacts
produced by the linearization.

In geometry processing, deformable objects are used for editing shapes. In
such a deformation-based editing system (see [Botsch and Sorkine, 2008; Botsch
et al., 2010] and references therein) a user can select parts of a geometry as
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handles and translate and rotate them in space. The system automatically
deforms the shape so that the handles interpolate or approximate the spec-
ified positions. This is done by computing static equilibrium states of the
deformable object subject to constraints or external forces that represent the
user’s input. A major advantage of deformation-based editing over traditional
modeling techniques, like NURBS or subdivision surfaces, is that many com-
plex editing tasks can be described by few constraints. This allows for efficient
and simple click-and-drag user interfaces. To obtain an interactive editing
system for larger models, methods that accelerate the computation based on
space deformation [Sumner et al., 2007; Botsch et al., 2007; Ben-Chen et al.,
2009], skinning [Jacobson et al., 2012], and model reduction [Hildebrandt et al.,
2011] have been proposed. Recently, reduced deformable objects were used to
create a system for modeling simulation-ready plants [Zhao and Barbič, 2013].
The deformation based editing system we implemented to test the proposed
subspaces and force approximation is detailed in Chapter 5.

3.2 Subspace construction

Simulating large-deformation dynamics in the full, unreduced shape space C of
an object leads to nonlinear and high-dimensional systems that are challeng-
ing to solve even if interactive rates are not mandatory. Although deformable
objects can, in general, assume arbitrary configurations in C, their motion
tends to be confined to a low-dimensional subspace of certain characteristic,
low-energy states. Our goal is therefore to find an affine subspace V of C that
is both low-dimensional and able to capture natural deformations of the ob-
ject. Furthermore, we are interested in subspace constructions that require
no advance knowledge of run-time forcing or pre-simulation of the unreduced
system and hence can be performed in an automatic preprocess. The choice
of subspace depends on the geometry, boundary conditions and the material
of the object. An established method in engineering is to use low-frequency
vibration modes (see Section 2.3) at the rest state of the object and is known
as linear modal analysis. The motivation to use these modes is that we are
searching for displacements in C with the least resistance to deformation, and
since the internal forces vanish at the rest state the low-frequency eigenmodes
of the Hessian point into the directions in C that (locally) cause the least in-
crease in elastic strain energy of the object. Linear modal analysis provides
quality deformation subspaces for small deformations as is typical in sound
simulation. However, for deformable objects undergoing large deformations,
these reduced spaces cannot capture the nonlinearities. This is reflected in
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a large increase of strain energy (and visible artifacts) when such a state is
projected onto the subspace. The effect is illustrated in Figure 3.7, in which
editing results computed in different subspaces are shown. A strategy to rem-
edy this problem is to enrich the basis of linear vibration modes by a second
set of deformations that compensate for the artifacts.

Let us assume that ū ∈ C is a static and stable equilibrium for some constant
external force. If the object is excited (by a small enough stimulus), it vibrates
around ū. The vibration modes Φi and frequencies ωi can be computed by
solving the sparse generalized eigenvalue problem 2.9. The modal bases we
use as a starting point for our construction of a reduced space consists of the
15-20 eigenmodes with the lowest frequencies. To compute the modes, we use
a shift-and-invert Lanczos scheme, see [Saad, 1992].

3.2.1 Modal derivatives

Let V be the linear span of the union of two sets V1 and V2 of vectors, where V1
contains low-frequency eigenmodes of the Hessian of a deformation energy E at
the rest state ū. To extend the reduced space spanned by V1, we collect vectors
that point into energy descent directions at points in ū+Span(V1) in the set
V2. Assume we are at some point u in ū+Span(V1). Then, an effective descent
direction in the full space C would be the Newton direction −∂2E−1u ∂Eu at u,
which is the direction in which a Newton solver would perform a line search.

To derive an approximation for the energy descent directions, we consider the
Taylor series of the Newton direction around ū given by

−∂2E−1u ∂Eu = −∂2E−1ū ∂Eū−∂(∂2E−1ū ∂Eū)(v)− 1
2
∂2(∂2E−1ū ∂Eū)(v, v)+. . . (3.1)

where v = u − ū. Since ∂Eū = 0 at the rest state (ū is a minimum), the first
term of the right-hand side vanishes, and we have

∂(∂2E−1ū ∂Eū) = ∂2E−1ū ∂2Eū = 1 ,
which shows that the second term reduces to −v. Indeed, ∂2E−1u ∂2Eu equals
the identity matrix at all u, which implies

0 = ∂(∂2E−1ū ∂2Eū) = ∂(∂2E−1ū )∂2Eū + ∂2E−1ū ∂3Eū,
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where ∂3Eū(⋅, ⋅, ⋅) is the third-rank tensor containing the third partial deriva-
tives of E at ū. Using these observations, we can show

∂2(∂2E−1ū ∂Eū) = ∂(∂(∂2E−1ū )∂Eū + ∂2E−1ū ∂2Eū)= ∂(∂2E−1ū )∂2Eū= −∂2E−1ū ∂3Eū.

We can show now that the Taylor series of the Newton direction indeed satisfies

−∂2E−1u ∂Eu = −v + 1

2
∂2E−1ū ∂

3Eū(v, v) +O(∥v∥3) (3.2)

where ∂3Eū(v, v) stands for the vector we obtain by plugging in v twice into
∂3Eū(⋅, ⋅, ⋅) (and transpose the resulting linear form).

Based on the insights of Equation (3.2), we define vectors Ψij as the solutions
to the equation

∂2EūΨij = ∂3Eū(Φi,Φj). (3.3)

Since ∂3Eū(⋅, ⋅, ⋅) is symmetric, we have Ψij = Ψji. Furthermore, if the de-
formable object is not equality constrained, the first six linear modes span
the (linearized) rigid motions, and the translations have vanishing derivatives.
Hence, from the first r linear modes, we can construct at most ((r − 3)2 + (r −
3))/2 and (r2 + r)/2 linear independent vectors Ψij by solving Equation (3.3)
for unconstrained and equality constrained objects, respectively. We collect
all the Ψij obtained from pairs of linear modes from V1 in the set V2. Then,
at every point u ∈ ū+Span(V1) the vector ∂2E−1ū ∂3Eū(v, v), which appears in
Equation (3.2), is in Span(V2). Therefore the affine space spanned by V1 and
V2 contains an approximation up to the third order in ∥u − ū∥ of the Newton
direction (3.2) at every point u ∈ ū+Span(V1). For completeness, we would
like to mention that Equations (3.2) and (3.3) are only defined up to the ker-
nel of ∂2Eū, which for most deformation energies of unconstrained objects are
the linearized rigid motions. However, since the kernel of ∂2Eū is contained
in Span(V1), the constructed reduced space is independent of the choice of
vectors Ψij that solve Equation (3.3).

Furthermore, we would like to remark that the construction of the vectors Ψij

is analogous to the simplified modal derivatives introduced by Idelsohn and
Cardona [1985], though their formulation does not use a potential energy and
is derived by differentiating the generalized eigenvalue problem (2.9). For this
reason we call the Ψij the modal derivatives. Examples of vibration modes
and modal derivatives of a simple shape (the bar) and of a complex shape (the
Chinese dragon) are shown in Figures 3.2 and 5.2. A physical interpretation
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Φ7 Φ8 Φ9 Φ10

Ψ7,7 Ψ7,8 Ψ7,9 Ψ7,10

Ψ8,8 Ψ8,9 Ψ8,10

Ψ9,9 Ψ9,10

Ψ10,10

Figure 3.2: Vibration modes and modal derivatives of the bar are shown:
vibration modes in the top row and corresponding modal derivatives be-
low. We leave out the first six modes because they span the linearized rigid
motions.

of the modal derivatives is that Ψij describes how the mode Φi changes (in the
first order) when the object is deformed in the direction Φj.

Deriving formulae for the partial derivatives of a deformation energy E by
hand can be laborious and time consuming. Thus, automatic differentiation
libraries can help immensely to reduce the effort needed for implementation
and debugging. While we employ an implementation for St. Venant–Kirchhoff
deformable solids that provides all necessary quantities, we use the ADOL-
C [Griewank et al., 1996] library to compute the second and third order partial
derivatives for the Discrete Shells energy. The memory costs for the tensor
∂3Eū(⋅, ⋅, ⋅) become prohibitive for highly detailed models. However, we do
not need to compute the full tensor; only the restriction of it to Span(V1).
Furthermore, the energies used in our experiments are defined as sums over
components which allows us to save on the main memory by directly reducing
the third derivatives of the individual summands. To compute the modal
derivatives, we need to solve the linear equation (3.3) several times. Since the
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3.2 Subspace construction

matrix ∂2Eū is the same in all these linear systems, it is sufficient to compute a
sparse factorization of the matrix once and to use it to solve all the systems.

To investigate the ability to well-approximate large, nonlinear deformations in
reduced spaces from linear vibration modes and modal derivatives, we com-
pute deformations of a bar model in subspaces of varying size. Figure 3.3
indicates that even remarkably low-dimensional subspaces contain substan-
tial nonlinear content to prescribe large deformations, e.g., the result in a
30-dimensional space is already visually close to the unreduced reference so-
lution of the bar. However, the performance of the reduced spaces depends
crucially on the strategy used to sample directions from Span(V2) as the num-
ber of modal derivatives quickly becomes prohibitive. For example, Barbič
and James [2005] provide an example of a 5-dimensional subspace that con-
tains extreme twists of a bar by hand-picking “twist” linear modes and their
derivatives.

Figure 3.3: A comparison of the results produced with reduced spaces with
varying sizes is shown. Number of linear modes and modal derivatives from
left to right: (8,6), (10,20), (15,52), (20,110), (30,270), full space.

3.2.2 Extended modal bases

In this section we propose an alternative technique for extending modal bases
that is simple, yet effective. The idea is to add new vectors to the basis that
are obtained by applying certain linear transformations to the vectors in the
modal basis. This provides the subspace with additional degrees of freedom
that can compensate for artifacts which would appear in the space spanned
by the modal basis. Our experiments show that the effect we achieve through
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this construction is comparable to that of enriching a modal basis with modal
derivatives.

Extended modal bases In the continuous setting, an element of the modal
basis is a vector field that assigns a vector in R3 to every point of the deformable
object (see Figure 2.2). Similarly, we can interpret a modal vector Φi ∈ R3n as
a discrete vector field consisting of n vectors in R3, e.g., an R3-vector at every
node of a triangle or tet mesh. To construct a new vector field from a mode
Φi, we consider a linear map on R3 and apply it (the same linear map) to all
n R3-vectors of the mode. For example, we fix an angle and an axis in R3 and
rotate all the n vectors by the same angle about the same axis.

Figure 3.4: Linearization of rotations (first image) introduce artifacts (second
image). By rotating the vectors of the linearized rotation by 90○ (third
image), one obtains a vector field that can be used to compensate for the
artifacts (fourth image).

Let us look at the simple example shown in Figure 3.4. It illustrates that
extending a basis using this construction can help to compensate for lineariza-
tion artifacts. We consider a 2D object in the plane (a square in the figure)
and a vector field pointing into the direction of a linearized rotation (around
some center c). Moving the vertices of the object along the direction of the
vector field, rotates the object, but at the same time produces an artifact: the
volume of the object is increased. Now we construct a second vector field by
rotating every vector of the linearized rotation by 90○. Then, any rotation of
the object around c can be exactly described as a linear combination of the
two vector fields.

Motivated by such examples, we propose using this construction for extending
modal bases. If a modal basis consists of r modes, then the extended basis can
have at most 9r vectors since there are only nine linear independent linear maps
on R3. The scheme for extending a modal basis is outlined in Algorithm 1.
In the first step, 9r vectors are constructed based on the r modes. Then, the
(modified) Gram–Schmidt process is applied to get an orthonormal basis of
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the corresponding reduced space. A basis in the space of linear maps on R3 is
formed by the nine matrices Bkl that have only one non-vanishing entry, which
takes the value 1. By applying each of the matrices Bkl to the n R3-vectors of
a mode, we obtain the desired nine new R3n-vectors. The construction of all
9r vectors can be implemented in four nested for-loops. The first loop (index
i in Algorithm 1) iterates over all modes, the second (index j) over all n R3-
vectors of the ith mode, and the third and fourth (indices k and l) over the
9 matrices Bkl. The body of the inner loop multiplies the matrix Bkl by the
jth R3-vector of the ith mode and inserts the result into the corresponding
vector of the extended basis. This requires only one assignment since after a
multiplication with Bkl, a R3-vector has only one non-zero component. The
construction of the 9r vectors requires only 9rn assignments and, therefore,
is fast compared to the construction of the modal basis. In Algorithm 1, the
R3n-vectors successively list the x-coordinates the n R3-vectors, then the n
y-coordinates, and finally the z-coordinates.

If the object is unconstrained, the first six eigenmodes span the translations
and the linearized rotations of the object. In this case, we modify the con-
struction. In the first step, we apply the extension strategy to the modes{Φ7,Φ8, . . . ,Φr}. In the second step, we add 12 basis vectors that span all
affine transformations, i.e., linear transformations and translations, of the ob-
ject to the basis. Together, the extended modal basis has a maximum of 9r
(constrained object) or 9(r−6)+12 (unconstrained object) vectors. The num-
ber of elements in the basis can be smaller if the generated vectors are linearly
dependent. Examples of vectors in the extended modal basis are shown in
Figure 3.5.

There are also alternative schemes for computing a basis that spans the same
reduced space. For example, one could use another basis of the space of linear

Figure 3.5: Three linear modes (left) and two vectors obtained through our
basis extension for each of the three modes are shown.
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Algorithm: Extend Modal Basis

Data: Φ1,Φ2, . . . ,Φr ∈ R3n

Result: e1, e2, . . . , ed ∈ R3n

allocate b1, b2, . . . , b9r = 0 ∈ R3n;
for i = 1,2, . . . , r do

for j = 1,2, . . . , n do
for k = 1,2,3 do

for l = 1,2,3 do
b9(i−1)+3(k−1)+l[(l − 1)n + j] = Φi[(k − 1)n + j];

end

end

end

end
{ei}← orthonormalize({bi});

Algorithm 1: Construction of the extended modal basis.

maps on R3 to construct the 9r vectors. We chose to use the basis Bkl because
the sparsity of the matrices Bkl reduces the number of required arithmetic
operations.

Most of our experiments consider homogeneous materials. Still, since our
construction of a reduced space includes a modal basis, it is material-aware.
Figure 3.6 shows an example of a deformation of an inhomogeneous block made
from two different materials. The reduced space adapts to the inhomogeneous
material. For comparison, we show the unreduced (reference) solution.

3.2.3 Results and comparison

To evaluate how well our extended modal bases can represent large deforma-
tions, we compare simulation and editing results obtained in different sub-
spaces: modal bases, extended modal bases, and modal bases augmented with
modal derivatives. In particular, we conducted the experiments using the
schemes for real-time simulation and interactive modeling derived in Chap-
ter 4 and 5, respectively. For the examples of static states shown in Figure 3.7
and the simulation of a dragon model shown in Figure 3.1, Table 3.1 lists the
relative L2-error, i.e., the L2-norm of the difference of the reduced and the unre-
duced reference solutions divided by the area/volume of the rest state. The
configurations that define the four static states are taken from [Botsch and
Sorkine, 2008], where they were tested using different linear editing schemes,
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Figure 3.6: Deformations of an object with inhomogeneous material. Left: ini-
tial state with color-coding of Young’s modulus (red and green denote values
of 8 × 104 and 1 × 104, respectively); middle: unreduced solution; right: so-
lution in a 138-dimensional subspace.

e.g., based on linearized thin shells. None of the linear schemes could deal with
all four poses without developing visible artifacts.

Model #v d Our M.D. Linear

Bar 6k 93 0.0109 0.0113 0.0851
Cactus 5k 93 0.0131 0.0057 0.0933
Cylinder 5k 93 0.0089 0.0080 0.0565
Plate 40k 93 0.0109 0.0136 0.0266
Dragon 26k 135 0.0170 0.0225 0.0440

Table 3.1: Subspace Fidelity. From left to right: number of vertices, sub-
space dimension, L2-norms of the differences between the unreduced solution
to those obtained in subspaces from our construction, modal derivatives, and
linear modes only. See Figure 3.7 for shell examples and Figure 3.1 for snap-
shots from the simulation of the dragon.

For the comparisons, we used subspaces of the same dimension. In most cases,
we used 15 eigenmodes to construct the extended modal basis. This yields 93-
or 135-dimensional spaces depending on whether the object is constrained or
unconstrained, see Section 3.2.2. For some unconstrained objects, we used 20
eigenmodes, resulting in 138-dimensional subspaces. To construct subspaces of
equal dimension using modal derivatives, we start with the same number r of
linear modes, compute all modal derivatives, and choose the required number
of basis vectors from the span of the computed derivatives. For example, for
an unconstrained object and r = 15, all modal derivatives are used.
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Figure 3.7: Comparison of deformations found in 93-dimensional subspaces.
Reference solution in unreduced space and rest states as superscripts (top
row), our reduced space (second row), linear modes and modal derivatives
(third row), only linear modes (bottom row).

For all examples, our construction as well as the spaces enriched with modal
derivatives yield better approximations of the unreduced reference solution
than the spaces constructed only from linear modes. The results obtained with
our construction and with modal derivatives are of comparable approximation
quality. We want to remark that this comparison is limited to hyperelastic,
isotropic, and homogeneous materials and the ratio of linear modes and modal
derivatives described above.

We found the results promising since compared to modal derivatives the pro-
posed basis extension from Section 3.2.2 is easier to implement and faster to
execute. To illustrate the lowered computational cost, we list computation
times for the construction of the linear modes, our extended modes, and the
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Model #v d (r) Φ Our M.D.

ChineseDragon 130k 138 (20) 102s 8s 407s
Dinosaur 56k 135 (15) 38s 3s 169s
Elephant 25k 135 (15) 17s 1s 81s
Dragon 26k 135 (15) 9s 1s 28s
Vertebrae 16k 135 (15) 7s 1s 21s

Table 3.2: Subspace construction times measured on a 2012 MacBook Pro
Retina 2.6GHz. From left to right: number of vertices, subspace dimension
(number of used vibration modes), time for computation of vibration modes,
our extended modes and modal derivatives.

modal derivatives in Table 3.2. Of course, these times may vary depending on
what solvers are used for the computation of the eigenmodes and the modal
derivatives. To compute the eigenmodes, we use our own implementation of the
shift-and-invert Lanczos method. Since the computation of the modal deriva-
tives involves solving a number of linear systems with the same matrix, we use
a sparse direct solver for the systems (reusing the factorization). Additionally,
we set up the right-hand sides of the systems in parallel.

3.3 Approximation of reduced internal forces

Applying dimensional model reduction to complex, nonlinear systems can sig-
nificantly improve the runtime performance. However, evaluating the reduced
internal forces F̄ int by computing the unreduced forces F int and projecting it
into the subspace becomes expensive when the mesh size increases. To make
the computational costs independent of the size of the full problem, an efficient
evaluation of the reduced internal forces is needed. In the remainder of this
chapter, we present two techniques that provide approximations of the reduced
internal forces that are independent of the resolution of the unreduced system
and thus hold the promise of superior runtime performance.

3.3.1 Optimized cubature

The optimized cubature, proposed by An et al. [2008], constructs an approxima-
tion of the reduced forces based on a best subset selection problem. We follow
this approach and set up a similar optimization problem in Equation (3.8).
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However, we propose a completely different strategy to solve the best subset
selection problem in Section 3.3.1. A comparison of running times and accu-
racy of the proposed scheme and the greedy solver used in [An et al., 2008] on
a set of different models and parameter settings can be found in Table 3.3.

We assume that the internal forces can be written as a sum of m summands

F int(u) = m∑
i=1
f int
i (u), (3.4)

where any f int
i depends only on a local neighborhood, e.g., the four vertices for

a tetrahedron. A wide range of discretizations, e.g., finite elements, represent
F int(u) in such a form.

Let {bi}i∈{1,2,...,d} be a basis of a d-dimensional subspace V of C ≃ R3n, then the
matrix U = [b1, b2, ..., bd] ∈ R3n×d maps the reduced coordinates q in V onto the
corresponding displacement vector u ∈ R3n,

u = U q. (3.5)

Combining Equations (3.4) and (3.5) the reduced force F̄ int can be expressed
in terms of the reduced coordinates

F̄ int(q) = m∑
i=1
UTf int

i (Uq) = m∑
i=1
f̄ int
i (q),

where f̄ int
i (q) = UTf int

i (Uq). The idea behind the approximation of F̄ int is
to exploit the correlations between the f̄ int

i s. We carefully select a subset of
the f̄ int

i s and assign a non-negative weight wi to any selected f̄ int
i . Then,

the approximate reduced force is a linear combination of the selected f̄ int
i s.

Formally, we store the weights and indices of the selected f̄ int
i s in a sparse

m-dimensional vector w. An nonzero entry wi in w, means that f̄ int
i is in the

selection set and has the weight wi. Then, we define

F̄ int(q) ≈ F̃ int
w (q) = ∑

i∈supp(w)
wif̄

int
i (q), (3.6)

where supp(w) denotes the support w, e.g., the set of indices with non-zero
entries of w. The motivation for restricting the weights to be positive is that
we want to preserve the structure of F int and reduce the potential of overfitting
the model function to the training data.

Determining a good subset of components and weights, is a non-trivial task
for general, nonlinear materials and geometrically complex objects. We deal
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Figure 3.8: Optimal set of components used for the approximation of the re-
duced forces. Left: tets in a solid model of the dragon; right: edge flaps in
the shell model of the elephant (see Table 3.3).

with this problem by using a data-driven approach that learns the best sub-
set and weights from a set of T automatically generated training poses (and
corresponding forces). Let {qt}t=1,...,T be the set of training poses. Then, the
relative fitting error of F̃ int

w to the training forces is

ǫ(w) =
¿ÁÁÁÀ 1

T

T∑
t=1

ǫt(w)2∣∣F̄ int(qt)∣∣2 , (3.7)

where ǫt(w) = ∣∣F̄ int(qt) − F̃ int
w (qt)∣∣ is the absolute approximation error to

F̄ int(qt). The problem of finding a sparse approximation can now be stated in
terms of an optimization problem in which we try to minimize the fitting error

min
w

ǫ(w)2 subject to w ≥ 0, ∣supp(w)∣ ≤ s, (3.8)

where ∣supp(w)∣ denotes the cardinality of supp(w). As ǫ(w)2 depends quadrat-
ically on w, (3.8) is a best subset selection problem with non-negativity con-
straints. This can be seen by reformulating the error as ǫ(w) = 1√

T
∣∣Aw − b∣∣,
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where A ∈ RdT×m and b ∈ RdT are defined by

A =
⎡⎢⎢⎢⎢⎢⎢⎣

f̄ int
1
(q1)

∣∣F̄ int(q1)∣∣ . . .
f̄ int
m (q1)

∣∣F̄ int(q1)∣∣⋮ ⋱ ⋮
f̄ int
1
(qT )

∣∣F̄ int(qT )∣∣ . . .
f̄ int
m (qT )

∣∣F̄ int(qT )∣∣

⎤⎥⎥⎥⎥⎥⎥⎦
, b =

⎡⎢⎢⎢⎢⎢⎢⎣

F̄ int(q1)
∣∣F̄ int(q1)∣∣⋮
F̄ int(qT )
∣∣F̄ int(qT )∣∣

⎤⎥⎥⎥⎥⎥⎥⎦
.

In the remainder of this section, we provide details of the individual steps
needed to estimate an optimal subset, i.e., a solution to (3.8). The complete
optimization scheme is summarized in Algorithm 2.

Algorithm: NN-HTP

Data: f , initial guess w0, tolerance τ
Result: optimal subset w∗

w0 ←H+s (w0);
for i = 1,2, . . . do

(Lazy) evaluate ∇f(wi);
if ∣∣∇f(wi)∣∣ ≤ τ then return wi;
Determine S i via (3.10) using H+s ;
Determine µi via (3.11);
wi+1 ←H+s (wi − µi∇Sif(wi));
X i+1 ← supp(wi+1);
if X i+1 = X i then return wi;
wi+1 ← argmin{v∣supp(v)⊆X i+1,v≥0} f(v);

end
Algorithm 2: Non-negativity-constrained hard thresholding pursuit.

Optimal subsets via sparse approximation Best subset selection prob-
lems are ubiquitous in a variety of disciplines and much research has been de-
voted to their efficient solution. In particular, their presence in the field of com-
pressed sensing received significant attention and triggered further advance-
ments, one of them being the normalized iterative hard thresholding (NIHT)
algorithm [Blumensath and Davies, 2010].

Let f(w) = Tǫ(w)2 be the objective function. Then, an iteration of the NIHT
algorithm is given by

wi+1 =Hs(wi − µi∇f(wi)), (3.9)

where ∇f(wi) = 2AT (Awi−b) and Hs is a combinatorial projection that sets all
but the s largest (in magnitude) entries of a vector to zero. Increased stability
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over the traditional hard thresholding algorithm is due to choosing the step
length µi adaptively at every iteration. Before we proceed to the estimation
of µi, we remark that the support of wi+1 will be necessarily contained in the
2s-element set

S i = supp(wi) ∪ supp(Hs(−∇I∖supp(wi)f(wi))). (3.10)

Here ∇Kf denotes the gradient of f with all entries not in the set K set to zero
and I = {1, . . . ,m}. Based on Si, the step length is computed to be

µi = ∣∣∇Sif(wi)∣∣2∣∣A∇Sif(wi)∣∣2 . (3.11)

Despite its simplicity, under certain conditions, NIHT has a linear rate of
convergence and can approximate sparse solutions with near optimal accuracy.
However, NIHT can be further accelerated (see [Cevher, 2011]). One of the
most effective acceleration methods is the hard thresholding pursuit (HTP) by
[Foucart, 2011] which adds a second step to the NIHT algorithm. In every
iteration, the projected gradient descent step in (3.9) is preceded by the low-
dimensional minimization

w∗,i+1 = argmin{v∣supp(v)⊆supp(wi+1)}f(v). (3.12)

We propose a novel algorithm, called non-negativity-constrained HTP (NN-
HTP) that extends HTP by an efficient treatment of non-negativity con-
straints. First, we define a new projection operator H+s (w) that projects w
to the new feasible region, i.e., ignores all negative entries and keeps only the
s largest ones. To satisfy the constraints, we replace the projection opera-
tor in (3.9) by H+s . Accordingly, we account for the adjustments in (3.9) by
applying H+s in (3.10) to ensure the correct support estimation.

The second step is to incorporate the non-negativity constraints in the s-
dimensional minimization (3.12). Let A′ ∈ RdT×s denote the submatrix of
A containing only the columns corresponding to elements in supp(wi) and
w′ ∈ Rs the associated subvector of wi. Then, we can determine the minimizer
w∗,i+1 by solving the non-negative least squares (NNLS) problem A′w′ = b
with w′ ≥ 0. In our experiments, these NNLS problems proved to be too
stiff for projection-based solvers like L-BFGS-B [Morales and Nocedal, 2011].
Therefore, we employ the efficient FNNLS solver by Bro and De Jong [1997],
an active set solver that accelerates the solution of the normal equations by
precomputing the matrix A′TA′.
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Chapter 3 Model reduction of nonlinear dynamical systems

Figure 3.9: Runtime accuracy. Lateral displacement of a vertex at the head
of the dragon model (see Figure 3.1 and Table 3.3) for the full and different
reduced simulations.

Lazy optimization In every iteration of our NN-HTP solver, at most s new
components can enter the subset. Considering all remaining components as
candidates comes at a significant computational cost; especially since matrix
A requires a storage size of O(dTm) and is therefore evaluated only partially
when needed.

To reduce the costs of the subset optimization, we introduce a parameter c
that specifies the number of considered components. This parameter allows us
to trade-off convergence speed against iteration costs of our NN-HTP solver.
In every iteration, we randomly choose c of the remaining components and
calculate only the corresponding columns of A. In fact, we found that consid-
ering only a subset can even increase the convergence of the algorithm. For
our examples, we achieved the best results with c ≈ 5s.
Automatic training pose generation Given the material and a subspace
deformation model for a deformable object we can generate training poses
automatically by randomly sampling points in the subspace. To acquire a
material-aware sampling that roughly balances the ratio of configurations with
high and low strain energy, we perform the sampling in the basis Φ̄1, Φ̄2, . . . , Φ̄d

of vibrations modes in the reduced space. In particular, qt = ∑d
i rnd(ω̄−1i )Φ̄i,

where rnd(ω̄−1i ) generates normally distributed random numbers with standard
deviations proportional to the inverse of the frequency ω̄i.

Results and comparison to greedy cubature The total time needed
to set up the reduced deformable models is dominated by the subspace con-
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3.3 Approximation of reduced internal forces

Figure 3.10: Achieved subset op-
timization error with increas-
ing sparsity constraints for
NN-HTP and the Greedy Cu-
bature by [An et al., 2008].
The plot shows optimization
results for the elephant shell
model in a 135-dimensional
subspace (cf. Table 3.3 for
s = 500).

struction (cf. Section 3.2.2), training force evaluation and subset optimization.
Table 3.3 provides the times for each of the steps. Figure 3.8 visualizes opti-
mal sets of components, i.e., tetrahedra and edge flaps used to approximate
the St.Venant–Kirchhoff material and the Discrete Shells energy, respectively.
Clearly, component selection is not based on purely geometric criteria. In par-
ticular, components tend to cluster in certain regions of the objects, e.g., the
jaw of the dragon and the right foreleg of the elephant; both regions proved to
exhibit more versatile deformation behavior as compared with regions having
fewer components.

An advantage of the proposed solver compared to the greedy strategy of An
et al. [2008] is that the NN-HTP scheme reduced the number of iterations
required to construct a selection set. The greedy strategy adds one component
to the selection set in every iteration, hence, requires as many iterations as the
cardinality of the selection set. In contrast, the NN-HTP builds a complete
selection set in the first iteration and then updates this set at every iteration.
In our experiments, we typically needed ten or less iterations to construct the
selection set. As a consequence, the number of NNLS problems that need
to be solved to construct a selection set decreases. In addition, we use the
FNNLS routine to solve the NNLS problems, which we found more effective
than the Lawson–Hanson algorithm, see [Lawson and Hanson, 1974], used by
An et al. [2008]. We want to remark that, independent from our work, Kim
and Delaney [2013] proposed a modified greedy cubature construction that
reduces the number of iterations and uses FNNLS.

Table 3.3 provides a comparison of our optimization algorithm (NN-HTP) to
the greedy optimization approach by An et al. [2008] (using the implemen-
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Chapter 3 Model reduction of nonlinear dynamical systems

Figure 3.11: Comparison
between our NN-HTP
and Greedy Cubature
by [An et al., 2008] for
the dinosaur model (see
Table 3.3). (∗) Disabling
subset training in greedy
solver increases runtime
immensely with only
marginal improvements in
convergence.

tation by Steven An with enabled parallelization). For the comparisons we
used St.Venant–Kirchhoff and Mooney–Rivlin materials and Discrete Shells.
The results illustrate the advantages of NN-HTP—it produces a significantly
smaller approximation error in considerably less time. Furthermore, it is able
to achieve a given training error with a smaller selection set yielding force
approximations with considerably higher runtime performance. In particu-
lar, Figure 3.10 extends the elephant experiment from Table 3.3 by showing
approximation errors as a function of the sparsity constraints. Greedy cuba-
ture reaches 3.7% training error with a sparsity constraint of 1474 components
(almost three times as many as needed by NN-HTP). Tests of the greedy algo-
rithm were performed using runtime-favoring configurations as reported in [An
et al., 2008] (∣C∣ = 100, Ts = 10). However, as shown in Figure 3.11, disabling
the subset training only slightly improves the approximation error from 11.0%

to 8.5% but significantly increases runtime. On the other hand, NN-HTP is
able to find a solution with 2.3% error in only ten iterations. The benefit of a
more accurate force approximation for simulation is illustrated in the accom-
panying video and Figure 3.9. The video contains a sequence that compares
the full simulation of the dragon model with reduced simulations using force
approximations computed by our method and by greedy cubature with the
same cardinality constraints (for details, see Table 3.3). Furthermore, the fig-
ure shows the lateral displacement of the mesh vertex with the largest initial
velocity for the different simulations.
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3.3 Approximation of reduced internal forces

3.3.2 Coarsening of elastic materials

An alternative strategy to approximate internal forces is to exploit the spatially
local coherence of an elastic material by using a coarse geometric representation
of the underlying deformable object. For this, we construct a low resolution
version N s of the triangulation N that represents the initial complex shape.
In addition, we simplify the subspace basis {bi}. Each bi is a vector field on
N , we compute corresponding vector fields bsi on the simplified mesh N s and
define the reduced shape space of the simplified mesh as V s = ūs+Span{bsi}.
Every u ∈ V has a unique representation in the basis {bi}, u = ū + ∑iqibi,
and the linear map given by ū +∑iqibi → ūs +∑iqib

s
i is an isomorphism of the

reduced shape spaces V and V s. To approximate the reduced internal force of
the configuration ū+∑iqibi ∈ V , we can compute the reduced internal force for
the coarse mesh ūs +∑iqib

s
i .

Let vs be a vertex of the coarse mesh and let {v1, v2, ..., vn} be the set of vertices
on the fine mesh that are collapsed to vs. We construct the simplified basis
vectors bsi by setting bsi(vs) = 1

n∑kbi(vk). If the initial mesh is strongly irregular,
it is reasonable to include the masses of the vertices into this averaging process.
In particular, we use an edge-collapse scheme for simplicial surfaces to generate
the coarse triangulation. Edge-collapse schemes implicitly generate a map from
the vertices of the fine mesh to the vertices of the coarse mesh: for every vertex
of the fine mesh there is exactly one vertex on the coarse mesh to which it has
been collapsed.

We emphasize that though we approximate the dynamical behavior of a coarse
mesh, the fine mesh varies in a space spanned by nice and smooth basis vectors
that are computed from the fine mesh. Actually, the simplified mesh is never
shown to or handled by the user, therefore, we call it the ghost.

Figure 3.12: Editing results using approximations based on different ghost
sizes. Number of vertices (faces) from left to right: 37 (50), 67 (100),
283 (500), and 544 (1000). The ghosts are shown in the bottom row.
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Chapter 3 Model reduction of nonlinear dynamical systems

Figure 3.13: Different approximations of the potential energy E in a one-
dimensional affine subspace of the shape space are shown as graphs. The
minima of the energies are indicated by dots. Graphs of the full energy, a
second-order and a third-order Taylor series of E , and approximations using
ghosts with 1k, 5k, and 10k vertices are shown.

Results Figure 3.13 shows a comparison of different approximations of the
potential energy E as used in our deformation-based modeling framework from
Chapter 5. Internal forces (and their potential) are based on the Discrete Shells
energy. The full energy, a second-order (quadratic) and a third-order (cubic)
Taylor series of E around the rest state ū, and approximations using ghosts
with 1k, 5k, and 10k vertices are shown as graphs over a one-dimensional affine
subspace of the shape space. To illustrate which subspace was used, we attach
images that show shapes in the subspace to the x-axis of the image. The
results of our modeling method depend on the location of the minima rather
than on the values of the energy, therefore, we added dots to the graphs that
indicate the location of the minima. The figure illustrates the experimental
observation that our technique to approximate the energy using a ghost mesh
produces a smaller approximation error than a Taylor expansion up to second
or third order. Furthermore, it demonstrates that the approximation error
reduces with increasing size of the ghost mesh.

If necessary, the number of vertices of the coarse mesh can thus be increased
to improve the approximation quality. Still, the quality of the force approxi-
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3.3 Approximation of reduced internal forces

mation scheme is directly connected to the insensitivity of the discrete energy
against simplification of the mesh. Furthermore, objects with high structural
complexity or non-homogeneous material require meshes fine enough to re-
solve the fine-scale heterogeneities to capture the proper material response.
Kharevych et al. [2009] present a coarsening method that generates dynami-
cally similar coarse meshes based on homogenization theory. However, their
scheme is limited to linear elasticity, and, to the best of our knowledge, an
extension to (geometrically) nonlinear deformation energies is still an open
problem.
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Chapter 4

Real-time simulation of

deformable objects

Figure 4.1: User interaction with a real-time simulation of an elephant model
(see Table 3.3).

4.1 Introduction

The simulation of nonlinear dynamical systems is notorious for being computa-
tionally demanding. Therefore, to keep up with ever larger and more complex
models ever more elaborate methods are needed. Based on the results of the
previous chapter, we present a fast and robust scheme for the simulation of
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Chapter 4 Real-time simulation of deformable objects

nonlinear deformable objects based on model reduction that is suitable for
interactive applications.

Related work

Since the pioneering work of Terzopoulos et al. [1987], which introduced de-
formable objects in computer graphics, numerous strategies were devised to
address the problem of efficiency, robustness, and scalability. Schemes for the
numerical treatment of the nonlinear systems have seen great improvements
through the use of fast and stable integration schemes [Baraff and Witkin,
1998; Müller et al., 2001] as well as multiresolution techniques [Debunne et al.,
2001; Grinspun et al., 2002; Capell et al., 2002] that employ adaptive refine-
ment of the simulation guided by, e.g., the local amount of deformation.

Another string of contributions focuses on simplified physical models to re-
duce computational requirements, leading to a revival of linear elasticity [Bro-
Nielsen, 1997; James and Pai, 1999]. Corotational methods [Müller et al., 2002;
Müller and Gross, 2004; Georgii and Westermann, 2008; Hecht et al., 2012] ex-
tend linear elasticity models by exploiting local frames of reference at each
node or element. Geometric nonlinearity is then injected into the simulation
which compensates for the well-known limitations of linear models for large
deformations. However, corotational methods require extracting rotations for
each node or element at every timestep, e.g., by performing a polar decompo-
sition of the deformation gradient, incurring computational costs that depend
on the resolution of the deformable object.

A simple, yet efficient, way to simulate highly resolved models at low costs
is to embed the complex shape in a coarse volumetric mesh (also referred to
as cage). Such cage-based methods [Sederberg and Parry, 1986; Müller et al.,
2004; Wojtan and Turk, 2008] animate the coarse mesh to induce deformations
of the complex embedded shape and hence provide cheap approximations of
its dynamical behavior. As the cage is typically defined purely based on the
space occupied by the object, it neither uses the information on the spatial
distribution of material parameters nor accounts for fine-scale geometric de-
tails.

As pointed out earlier, model reduction techniques construct a low-dimensional
approximation of the dynamical system underlying the simulation and thereby
achieve a runtime that is independent of the resolution of the simulated mesh.
In recent years, model reduction has seen widespread application in computer
graphics and we refer the reader to the introduction of Chapter 3 for an
overview of related work.
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4.2 Reduced equations of motion

4.2 Reduced equations of motion

In this section, we briefly review the basics of model reduction for the physical
simulation of deformable objects and introduce our notation. For a recent
introduction to model reduction for the simulation of deformable objects, we
refer to [Sifakis and Barbic, 2012].

There are different physical models of deformable objects and various ways to
discretize them. We keep our presentation general so that it covers a broad
class of discrete deformable objects; the specific setting used for our exper-
iments is treated in Section 4.4. We consider a discrete deformable object
with n degrees of freedom, i.e., the nodal vector u encoding a displacement is
n-dimensional and the configuration space C can be identified with Rn. For
example, for simplicial meshes in R3 equipped with continuous and piecewise
linear shape functions, n is three times the number of free vertices.

The dynamics of a deformable object are described by the equations of motion,
which read

M ü(t) = F (t, u(t), u̇(t)),
where F represents the acting forces and M is the positive definite and sym-
metric mass matrix. The forces F are a superposition of internal deformation
forces F int(u(t)) of the elastic shape, external forces F ext(t, u(t), u̇(t)), and
damping forces F damp(u(t), u̇(t)).
Dimension reduction restricts the configuration space to a d-dimensional sub-
space V of Rn. Explicitly, we employ the extended modal basis construction
that is treated in Section 3.2.2. Let {bi}i∈{1,2,...,d} be a basis of V , then the
matrix U = [b1, b2, ..., bd] ∈ Rn×d maps the reduced coordinates q in V onto the
corresponding displacement vector u ∈ Rn,

u = U q.
The reduced equations of motion are

M̄ q̈(t) = F̄ (t, q(t), q̇(t)), (4.1)

where
M̄ = UTMU and F̄ (t, q(t), q̇(t)) = UTF (t,Uq(t), U q̇(t))

are the reduced mass matrix and the reduced forces.

Since d ≪ n, the reduced system in Equation (4.1) can be integrated much
faster than the unreduced equation of motions, albeit with some loss of ac-
curacy. In addition, we employ our cubature-based force approximation (see
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Chapter 4 Real-time simulation of deformable objects

Section 3.3.1) that depends on d instead of n and thus yields simulation costs
independent of the resolution of the unreduced system.

In our implementation, we model the damping forces based on linear Rayleigh
damping

F̄ damp(q(t), q̇(t)) = (α1M̄ + α2K̄) q̇(t),
where M̄ and K̄ are the reduced mass and tangent stiffness matrices. The two
parameters α1 and α2 can be adjusted to control the damping of the low- and
high-frequency components of the deformation.

To enable a user to interact with the deformable object, we provide a sim-
ple click-and-drag interface that allows to pull at vertices of the (boundary)
surface. More precisely, we apply external forces to the clicked vertices that
are modeled as ideal Hookean springs connecting the vertices and the mouse
cursor.

4.3 Efficient subspace integration

To simulate the dynamics of a reduced deformable object, the system (4.1) is
numerically integrated over time. Due to the nonlinear forcing terms and the
high-frequency components contained in our large-deformation model, explicit
schemes can be hard to control as numerical stiffness causes the integrator to
become unstable. Because stability is crucial for interactive applications, we
opt for a second-order accurate, implicit Newmark integrator.

Let qi, q̇i, and q̈i denote the solutions to Equation (4.1) at time t, then the
Newmark method consists of the following equations:

M̄ q̈i+1 = F̄ ext
i+1 + F̄ int(qi+1) − C̄ q̇i+1 (4.2)

qi+1 = qi + δtq̇i + δt2
2
[(1 − 2β)q̈i + 2βq̈i+1] (4.3)

q̇i+1 = q̇i + δt [(1 − γ)q̈i + γq̈i+1] (4.4)

where C̄ is the reduced damping matrix and qi+1, q̇i+1, and q̈i+1 are the approxi-
mations of q(t+δt), q̇(t+δt), and q̈(t+δt). The vector F̄ ext

i+1 denotes the reduced
external force at time t + δt and is assumed to be known. Equation (4.2) is
the reduced equation of motion in terms of the approximate solutions, and
Equations (4.3) and (4.4) describe the evolution of q, q̇, and q̈ using finite
differences. The Newmark family includes many well-known and established
methods each corresponding to a particular choice of the parameters β and γ.
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4.3 Efficient subspace integration

Some classical methods and their properties are summarized in [Hughes, 2000].
In particular, we use the average acceleration method (β =1/4, γ =1/2), which
is unconditionally stable and widely used in structural dynamics.

There are several possible ways to implement the Newmark method. One
form of implementation eliminates q̇i+1 and q̈i+1 from (4.2) using (4.3) and
(4.4) which yields the relation

( 1

βδt2
M̄ + γ

βδt
C̄)qi+1 + F̄ int(qi+1) = F̄ ext

i+1 + M̄ã + C̄ṽ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
b

, (4.5)

where ã = 1

βδt2
qi+ 1

βδt
q̇i+( 1

2β
−1)q̈i and ṽ = γ

βδt
qi+( γβ −1)q̇i+(1− γ

2β
)δtq̈i. Note that

in this implementation the right-hand side b in (4.5) does not entail stiffness
computations. Advancing the solution of the dynamical system to time t + δt
then essentially consists of solving the equilibrium equations (4.5), i.e., finding
reduced coordinates q for which

R(q) = ( 1

βδt2
M̄ + γ

βδt
C̄)q + F̄ int(q) − b = 0d,

where R(⋅) is a d-dimensional, nonlinear function describing the residual. So-
lutions to R(q) = 0d can be computed iteratively using Newton-like methods
which construct estimates qj+1 by solving for roots of an affine approxima-
tion R′(q) = R(qj) +B(qj)(q − qj). For example, adopting the Jacobian ma-
trix ∂R(qj) of the residual as B(qj) yields the well-known Newton-Raphson
scheme. One step of the Newmark subspace integration is summarized in Al-
gorithm 3.

Solving the nonlinear system of equations to determine qi+1 is the most ex-
pensive operation in each step of the implicit Newmark integration. In our
experiments, we found a quasi-Newton solver that constructs an approxima-
tion of the inverse of the Jacobian matrix on the fly to be very effective for this.
Explicitly, we used a variant of Broyden’s method (see [Dennis and Schnabel,
1987]), which achieves superlinear convergence, but in each iteration merely
requires the evaluation of the internal forces, a low-rank matrix update, and
matrix-vector operations. Using the force approximation from Section 3.3.1,
all these operations can be performed at O(d2) cost. To achieve a warm start,
we compute the inverse Jacobian at the rest state during the preprocess and
use it as a preconditioner for the nonlinear system. An alternative to the
quasi-Newton scheme would be to use a Newton-Raphson solver.
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Chapter 4 Real-time simulation of deformable objects

Algorithm: Newmark method

Data: qi, q̇i, q̈i, F̄ ext
i+1 , max. iterations jmax, tolerance τ , δt

Result: qi+1, q̇i+1, q̈i+1
qi+1 ← qi;
Compute right-hand side b of (4.5);
for j = 0, . . . , jmax do

Evaluate R(qi+1);
if ∥R(qi+1)∥ ≤ τ then break;
Evaluate B−1(qi+1);
qi+1 ← qi+1 −B−1(qi+1)R(qi+1);

end
Determine q̇i+1 and q̈i+1 via (4.3) and (4.4);

Algorithm 3: One-step algorithm for the reduced equations of motion.

4.4 Results and discussion

We evaluate the presented system using finite element discretizations of the
St.Venant–Kirchhoff and Mooney–Rivlin material for simplicial volume meshes
as well as the Discrete Shells model [Grinspun et al., 2003] for simplicial surface
meshes.

Figure 4.2: Comparison of simulations of a spring pulling at a deformable ob-
ject. From left to right: reference full simulation, simulation using the pro-
posed space reduction and force approximation, results of a nonlinear sim-
ulation in a reduced space spanned by linear modes. Reduced spaces have
the same dimensions.

We provide runtime statistics of reduced simulations for various geometries
and parameter settings in Table 3.3. This includes timings for the evaluation
of the reduced forces and one step of an implicit Newmark integration. In
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addition, the resulting time-stepping rate of subspace integration (as average
measured over 1k timesteps with constant external loads) is listed. Depending
on the parameter settings, the reduced simulations achieve rates of 50-5000 im-
plicit Newmark integration steps per second which shows the suitability of our
simulation system for real-time applications.

The reduced internal forces of a single component (tet or edge flap) can be
evaluated at O(d) cost. As in [An et al., 2008], we observed that the number
of components needed to achieve a given error tolerance grows linearly with
the subspace dimension. Thus, our reduced-order simulation achieves force
approximation independently of the full shape space at O(d2) cost.

To evaluate the fidelity of the reduced simulation, we measured the deviation of
the reduced from the reference-full simulation for a dragon model with 92k tets
(see Figure 3.1). The average L2-distance over all frames is listed in Table 3.1.
Additionally, we show both simulations in the accompanying video and plot
the lateral displacement of the mesh vertex with the largest initial velocity (a
vertex at the side of the head) in Figure 3.9. The example illustrates that
the proposed scheme is able to closely match the unreduced trajectory while
featuring superior runtime performance—a more than 6000-fold increase in
simulation speed after only about four minutes of preprocessing.
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Interactive deformation-based

modeling

Figure 5.1: Large deformations of the Chinese dragon model (130k vertices)
computed by our modeling framework in a 130-dimensional shape space
using a 1k ghost.

5.1 Introduction

In recent years, a special focus in geometric modeling has been on schemes for
deformation-based surface editing. A major advantage of such schemes over
traditional modeling techniques like NURBS or subdivision surfaces is that
typical modeling operations can be described by few constraints. This allows
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for efficient and simple click-and-drag user interfaces. To provide intuitive us-
ability, the computed deformations must be physically meaningful to match the
user’s intuition and experience on how shapes deform. This leads to nonlinear
optimization problems that, to achieve interactivity, have to be solved within
fractions of a second. The surfaces to be edited are often rich in detail and
thus of high resolution. We distinguish between local and global deformations.
Local deformations are restricted to a small area with the rest of the surface
fixed. The resulting optimization problems are of small scale; still, it is chal-
lenging to solve them at interactive rates. The focus of this work is on global
shape deformations which lead to optimization problems that, due to their
size, cannot be solved at interactive rates. Since interactivity is of paramount
importance, the challenge is to design methods that find as-good-as-possible
approximations at a low computational cost.

Instead of manipulating the surface directly, recent schemes for global inter-
active deformation-based editing manipulate a part of the ambient space that
surrounds the surface and therefore implicitly edit the surface. The deforma-
tions of the space are often induced by a cage, which in turn is manipulated
by a deformation-based editing scheme. The advantage of this concept is that
the size of the optimization problem now depends on the resolution of the cage
and is independent of the resolution of the surface.

In this chapter we derive a framework for deformation-based modeling that is
interactive, robust, intuitive to use, and works with various deformation ener-
gies. The main idea is to reduce the complexity of the optimization problem in
two ways: by using a low-dimensional shape space and by approximating the
energy and its gradient and Hessian. The motivation for the space reduction
is the observation that a modeling session typically requires only a fraction of
the full shape space of the underlying model. We construct a reduced shape
space as the linear span of two sets V1 and V2 of vectors. The set V1 comprises
the linearized vibration modes at the rest state of the object corresponding to
the lowest frequencies (see Section 2.3). The span of these vectors contains
the deformations that locally cause the least increase of energy and is there-
fore well-suited to generate small deformations. However, large deformations
in Span(V1) often develop artifacts and thus have high energy values. To im-
prove the representation of large deformations in the reduced space, we collect
modal derivatives that correspond to vibration modes in V1 in the set V2. These
directions are constructed using the third partial derivatives of the underlying
deformation energy. In Section 3.2.1 we provide a derivation the modal deriva-
tives in terms of a Taylor expansion of the Newton descent direction. For the
approximation of the energy and its derivatives, we propose a scheme based
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on a second reduced shape space for a simplified mesh (in Section 3.3.2). By
construction, the two reduced shape spaces are isomorphic and we can use the
isomorphism to pull the energy from the shape space of the simplified mesh
to the shape space of the full mesh. Finally, the resulting reduced problem is
independent of the resolution of the mesh and our experiments show typical
modeling operations, including large deformations, that are reasonably well
approximated. To solve the reduced optimization problem, we use a quasi-
Newton method that maintains an approximation of the inverse of the Hessian
and generates descent directions at the cost of gradient evaluations while still
producing superlinear convergence.

Our approach is an alternative to space deformation schemes. Space defor-
mations are controlled by some object, e.g., a cage around the surface (other
objects like a volumetric mesh or a skeleton have been used as well). Then,
the set of possible deformations of the surface depends on the cage and a space
warping scheme. In contrast, our method does not depend on an artificial cage
and a space warping scheme, but the subspaces we consider depend on geo-
metric properties of the surface. A resulting advantage of our approach is that
we do not need to deal with interpolation artifacts that many space warping
schemes create. Furthermore, our scheme does not need to construct a cage,
which often is a manual process. Instead the preprocess of our scheme is auto-
matic and the computed basis can be stored on a hard disc with the surface.
The subspaces our method produces are effective: we demonstrate that even
67-dimensional spaces can produce good approximations for typical modeling
operations. In contrast, the coarsest cages that are used for space deformation
have 200-500 vertices, hence generate a 600-1500 dimensional shape space. In
addition, our approach is flexible. We can use the same energies as in the unre-
duced case, like PriMo [Botsch et al., 2006] or as-rigid-as-possible [Sorkine and
Alexa, 2007]. The approximation quality of the energy is adjustable and the
size of the reduced space can be increased. Increasing both parameters will
lead to the exact solution of the unreduced problem. Both parameters, quality
of energy approximation and size of reduced space are independent.

Related work

Deformation-based modeling of surfaces describes shape editing operations rel-
ative to an initial surface, e.g., a surface generated by a 3d-scanner. Such
methods are driven by a deformation energy, i.e., a function on a shape space
of surfaces that, for every surface in the shape space, provides a quantitative
assessment of the magnitude of the deformation of the surface from the initial
surface. Methods for deformation-based modeling can be classified into three
categories: linear, non-linear, and space deformation schemes. In addition,
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Figure 5.2: Linear vibration modes and modal derivatives of the Discrete
Shells energy on the Chinese dragon model. Figure shows: the rest state
(top left), two linear modes (left), and two modal derivatives (right).

our work is linked to dimension reduction in physical simulations and modal
analysis in geometry processing.

Linear surface modeling Linear methods for surface modeling employ a
quadratic deformation energy. Such energies are based on linearized thin shells,
or, alternatively, on Laplacian coordinates or differential coordinates. Ener-
gies based on Laplacian coordinates assess the magnitude of a deformation of
a mesh from an initial mesh by summing up the (squared norms of the) de-
viations of the local Laplace coordinates (which can be seen as discrete mean
curvature vectors) at all vertices. The recent survey [Botsch and Sorkine, 2008]
provides a detailed overview of linear approaches and includes a comparison
of various schemes. The main advantage of linear methods is that the min-
imization problem to be solved is comparably simple. For example, if the
constraints are also modeled as a quadratic energy, as in [Lipman et al., 2004;
Sorkine et al., 2004; Nealen et al., 2005] for example, the deformed surface can
be computed by solving a sparse linear system. These methods are designed
for small deformations around the initial surface and often produce unintuitive
results for large deformations.

Non-linear surface modeling Physical models of elastic shells are strongly
non-linear and discretizations yield stiff discrete energies. The resulting opti-
mization problems are challenging, especially if real-time solvers are desired.
The non-linear PriMo energy [Botsch et al., 2006, 2007] aims at numerical
robustness and physically plausible solutions. The idea is to extended the
triangles of a mesh to volumetric prisms, which are coupled through elastic
forces. During deformations of the mesh the prisms are transformed only
rigidly, which increases the robustness of the energy since the prisms cannot
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degenerate. As an alternative to elastic shells, non-linear methods based on
Laplacian coordinates have been proposed. One idea, which can be found in
several approaches, is to measure the change of the length of the Laplacian
coordinates instead of measuring the change of the full vector. Dual Lapla-
cian editing [Au et al., 2006] iteratively solves quadratic problems and after
each iteration rotates the prescribed Laplacian coordinates to match with the
surface normal directions of the current iterate. Huang et al. [Huang et al.,
2006] describe the prescribed Laplacian coordinates at each vertex in a local
coordinate system that is used to update the direction of the prescribed coor-
dinates. Pyramid coordinates [Kraevoy and Sheffer, 2006] can also be seen as
non-linear rotation-invariant Laplacian coordinates. For any vertex v there is
a rotation that minimizes, in a least squares sense, the distance between the
1-ring of v on the initial and on the actual surface. The as-rigid-as-possible
energy [Sorkine and Alexa, 2007] is a weighted sum of these minima over all
vertices. Recently, Chao et al. [Chao et al., 2010] proposed to use the distance
between the differential of a deformation and the rotation group as a principle
for a geometric model for elasticity. This model includes a material model
with standard elastic moduli (Lamé parameters) and is connected to the Biot
strain of mechanics. The connection of this model of elasticity to energies used
in geometric modeling, like the as-rigid-as-possible energy, opens the door to
an analysis of the link of these energies and the Biot strain. The drawback of
using non-linear energies for surface modeling is that directly solving the re-
sulting minimization problem is costly, thus interactive performance is limited
by the size of the meshes.

Space deformation Instead of deforming the surface directly, the idea of
space deformation methods is to deform the ambient space around the surface
and, therefore, implicitly also the surface. To control the space deformations,
a cage is built around the surface. The interior of the cage is described by
a boundary representation, i.e., every point in the interior of the volume is
represented by coordinates that relate to the vertices of the cage. When the
cage is deformed, the coordinates assign a new location to every point inside
the cage. Some of the different boundary representations that have been pro-
posed for this purpose are: mean value coordinates [Ju et al., 2005], harmonic
coordinates [Joshi et al., 2007], and Green coordinates [Lipman et al., 2008;
Ben-Chen et al., 2009]. The advantage of space deformations is that the com-
plexity of the cage is independent of the resolution of the surface. Since it is
inconvenient to model the cage directly, the cage can be modeled by a surface
deformation scheme [Huang et al., 2006]. Alternatively, space deformations
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Figure 5.3: Large deformations of the dinosaur model (56k vertices) computed
by our method using the as-rigid-as-possible energy as the objective func-
tional. We use a 130-dimensional shape space (20 linear modes and 110

modal derivatives) and a ghost with 1k vertices.

can be induced by a skeleton [Shi et al., 2007], a volumetric mesh [Botsch
et al., 2007], or a graph structure [Sumner et al., 2007; Adams et al., 2008].

5.2 Reduced-order shape editing

Deformation-based editing allows a user to model a shape by first selecting
arbitrary regions of the shape as handles and then translating and rotating
them in space. The modeling system automatically computes shapes that
follow the handles. This is realized by treating the shape as a deformable object
and translating the user input into forces that act on the object. We assume
that the internal forces are conservative and denote the potential (deformation
energy) by E(u). Our method can work with any energy that is defined for
a shape space of meshes and has continuous third derivatives at the reference
configuration. However, the quality of our energy approximation scheme is
directly connected to the insensitivity of the energy against simplification of
the mesh. In our experiments, we used two different energies: the Discrete
Shells (see Section 2.2 for a definition) and the as-rigid-as-possible energy. The
external forces that encode the user constraints are based on Hookean zero-
length springs, which act on the handles and pull them towards a prescribed
position. We denote the potential of the springs by EC(u) and set

E(u) = E(u) + κCEC(u). (5.1)

The deformed shape is the minimizer

argmin
u∈C

E(u), (5.2)
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Figure 5.4: Approximation quality of the reduced space with 67 dimensions in
all images is demonstrated on the test suite of models and poses introduced
in [Botsch and Sorkine, 2008]. Two even larger deformations have been
added.

where C denotes the shape space of the discrete deformable object. For small
weights κC the constraints are soft and allow for some flexibility, and for larger
values of κC the constraints tend towards equality constraints. Since the ge-
ometries are often highly resolved, e.g., 3D-scan data, this is a high-dimensional
nonlinear optimization problem.

This framework for shape editing is linked to physical simulation of elastic
shapes. The dynamics of a time-dependent configuration u(t), which repre-
sents an elastic shape, is described by a system of second order ODE’s of the
form

Mü(t) = F (t, u(t), u̇(t)), (5.3)

where F represents the acting forces and M is the mass matrix, cf. Section 4.2.
The forces F are a superposition of internal deformation forces F int(u(t))
of the elastic shape, external forces F ext(t, u(t), u̇(t)), and damping forces
F damp(u̇(t)). In our setting, the deformation energy E is the potential en-
ergy of the internal forces: F int(u(t)) = −∂E(u(t)). In addition, the external
forces equal the negative gradient of the energy κCEC , F ext(t, u(t), u̇(t)) =−κC∂EC(u(t)). The physical energy of the system is the sum of the kinetic
energy T (u̇(t)) and the potential energy V (u(t)), where V in our case equals
the energy E defined in Equation (5.1). Due to damping, the system dissipates
energy:

d

dt
(T + V ) ≤ 0. (5.4)

This inequality is strict for all t with ∥u̇(t)∥ ≠ 0. For t → ∞ the kinetic
energy vanishes and u(t) takes the position of a (local) minimum of E . This
means that the deformations our scheme computes are static equilibrium states
of the deformable object under the external forces that incorporate the user
constraints.
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For general meshes, solving the optimization problem, Equation (5.2), is too
costly to achieve interactive rates. Even for coarse meshes with 5k-10k vertices,
it is challenging to reach a rate of 1fps. Analogous to the simulation system
in Chapter 4, we can use model reduction to get an interactive framework for
deformation-based editing. Thus, we reduce the complexity of the problem
by restricting the optimization to an affine subspace V of the shape space C.
Then, the reduced optimization problem is

argmin
q∈V

E(Uq), (5.5)

where the matrix U maps the reduced coordinates q in V to the corresponding
configurations u ∈ C. We will write Ē(q) to denote the reduced energy E(Uq).
An adequate space V should be as small as possible but still contain reasonable
approximations of the desired deformations. To construct such a subspace,
we employ the linearized vibration modes together with modal derivatives as
described in Section 3.2.1.

In our experiments, we often did not use all modal derivatives Ψij. We found
that using half of the number of possible Ψij is a good tradeoff between approx-
imation quality and size of the reduced space. For example, the 67-dimensional
basis that we used for many figures includes 52 linearly independent Ψij, com-
puted in two for -loops over i and j, thus favoring Φis with lower frequencies.

In our scheme, the generation of the reduced space is part of a preprocess,
before the actual modeling session. To obtain a subspace that is suitable for
various types of user interaction, we exclude the energy EC from this pro-
cess. As a consequence, the constraints, e.g., the positions of handles, can be
modified without forcing a recomputation or adjustment of the subspace.

5.3 Efficient solver

The reduced optimization problem in Equation (5.5) is low-dimensional. How-
ever, due to the nonlinearity, it is still challenging to solve at interactive rates.
In this section, we derive an optimization scheme that requires only evalua-
tions of the reduced energy and its first partial derivatives, but, unlike steepest
descent, features a superlinear convergence. Henceforth, we will consider a
mass-orthogonal basis of the subspace, i.e., UTMU = 1 .

Solving the reduced optimization problem (5.5) is related to finding the roots
of the nonlinear system of equation arising from implicit Newmark integra-
tion. Since the Hessian of the reduced energy is the Jacobian matrix of the
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Figure 5.5: Deformation results produced in reduced spaces spanned by the
first 130 linear modes. For each model a small and a large deformation is
shown. The larger deformation is produced with the same constraints as
used in Figures 5.3 and 5.4.

d-dimensional system of equations ∂
∂q
Ē(q) = 0d, it could be approximated

with the same techniques used for implicit subspace integration. However,
we would neglect important properties inherent to the minimization problem,
e.g., the Hessian of the energy is symmetric. In addition, the reduced Hessian
is low-dimensional and dense. An efficient quasi-Newton solver which incorpo-
rates these properties and again approximates the inverse Hessian (saving the
costs of linear system solves) is the BFGS method (see [Dennis and Schnabel,
1987]).

Instead of computing the approximate inverse Hessian from scratch at each
iteration, the BFGS method uses the change of the gradients at the recent
step to update the matrix. Explicitly, the inverse Hessian update is given
by

Bk+1 = (1 − ρkskyTk )Bk(1 − ρkyksTk ) + ρksksTk ,
where Bk is the approximate inverse Hessian at iteration k, yk = ∂Ēk+1−∂Ēk the
change of gradients, sk = qk+1−qk the change of position, and ρk = 1/yTk sk. The
classic BFGS method uses the identity 1 as the initial matrix B1; this means
it starts as a gradient descent and becomes more Newton-like during run time.
To achieve a warm start of our solver, we compute the inverse of the reduced
Hessian at the initial mesh once during the preprocess and use this matrix as
the initial approximate inverse Hessian B1 in the interactive phase. In our
experiments, the BFGS solver (with warm start) requires a similar number of
iterations to reach a local minimum as a Newton solver, which computes the
full Hessian in each iteration (see Figure 5.6).
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Figure 5.6: Comparison of the performance of different optimization schemes:
Newton’s method, BFGS with and without warm start, and steepest descent.

5.4 Results and discussion

Eigenvibrations of an elastic shape with small amplitude often look like natural
deformations of the shape, as illustrated in Figure 5.2, and shape spaces con-
structed from linear modes are well-suited to approximate small deformations.
But for larger deformations, approximations in such spaces often develop dis-
tortions. This is illustrated in Figure 5.5, which shows results obtained in
spaces created only by linear modes for small and larger deformations. Our
concept to extend the shape space by adding the modal derivatives Ψij largely
improves the quality of the results. The large deformations shown in Figure 5.5
can be compared to the results shown in Figures 5.3 and 5.4 that are produced
with the same poses but in spaces constructed from linear modes and modal
derivatives. Examples of vibration modes and modal derivatives are shown in
Figures 5.2 and 3.2. Results produced by our method in a reduced space with
67 dimensions (15 linear modes and 52 modal derivatives) on a set of typical
test deformations are shown in Figure 5.4. Considering the small size of the re-
duced space, even the large deformations are astonishingly well approximated.
The results shown in Figure 5.4 can be compared with (unreduced) results
of various schemes, including PriMo, shown in a comparison table in [Botsch
and Sorkine, 2008]. Our scheme is not limited to the Discrete Shells energy,
but works with other shape deformation energies as well. To use it with other
energies, it suffices to exchange the objective functional used for the optimiza-
tion; if desired, the computation of the modes and modal derivatives can be
done with other energies as well. Figure 5.3 shows results produced with the
as-rigid-as-possible energy as objective functional.

In our experiments, the modeling framework runs robustly on various models,
for small and large deformations, and with different parameter settings, like
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(Emb. Deforms.) (Rigid Cells) (Our method)

Figure 5.7: Comparison of results of the Embedded Deformations and the
Rigid Cells scheme with our method.

the dimension of the reduced space and the resolution of the coarse mesh. Our
model reduction has an enormous effect in increasing the stability and reducing
the stiffness of the optimization problem. Reasons for this effect are that the
reduced shape spaces are low-dimensional and spanned by smooth vector fields
that point into directions in which the energy increases slowly. To demonstrate
the stabilizing effect of our model reduction, we choose the Discrete Shells
energy for most of our experiments, instead of the numerically more stable
PriMo energy or as-rigid-as-possible energy. All figures are produced with
both material parameters of the Discrete Shells energy, κbend and κmem in
Equation (2.2), equal to 1 and we scaled each surface such that the longest
edge of the bounding box has length 10. Figure 5.8 shows the ghosts used to
produce Figures 5.1, 5.3, and 5.4. All ghosts are irregular and coarse meshes.
We show experiments with various sizes of the reduced shape spaces and the
ghosts in Figures 3.12 and 3.3.

Running times Table 5.1 shows running times of the configurations we used
to produce the figures and running times for modeling the Chinese dragon
model with varying parameters. This demonstrates that our framework pro-
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Figure 5.8: The ghosts that were used to produce Figures 5.1, 5.3, and 5.4 are
shown.

duces interactive rates even for large meshes with 100k+ vertices. The time
needed to solve the optimization problem mainly depends on the size of the
reduced space and on the resolution of the coarse mesh. In our experiments,
the time needed for one Newton iteration was between 4 and 33ms. During the
interactive-modeling phase the constraints, which implement the user input,
vary continuously. Therefore, we do not completely solve each optimization
problem, but we update the constraints after either a fixed number of itera-
tions is exceeded or an optimality criterion is satisfied. We use the optimality
criterion discussed in [Gill et al., 1982], which, for a given ǫ, checks conditions
on the change in energy Ē , the convergence of the sequence {qk}, and the
magnitude of the gradient:

Ēk−1 − Ēk < ǫ(1 + ∣Ēk∣)∥qk−1 − qk∥∞ <
√
ǫ(1 + ∥qk∥∞) (5.6)∥∂Ēk∥∞ < 3
√
ǫ(1 + ∣Ē(qk)∣).

In our experiments, we choose a maximum number of 5-10 iterations between
updates of the constraints, which yields frame rates of 10+fps. After 5-10 itera-
tions the optimality criterion is usually satisfied with ǫ between 10−3 and 10−4.
Still, we set ǫ = 10−6 to allow for further iterations if the constraints are not
modified. This criterion is usually satisfied after about 15 Newton iterations.
The reason that the running time for the as-rigid-as-possible energy (last row
of Table 1) is much longer than the others is that our current implementation of
the energy and gradient evaluation of this energy is very inefficient. Figure 5.6
demonstrates the performance of different optimization schemes. It illustrates
that our solver, BFGS with warm start, needs a similar number of iterations
to converge as a Newton solver and shows that a BFGS without warm start
still converges much faster than steepest descent. Steepest descent required
5806 iterations to converge and still did not reach the same energy level as the
Newton or the BFGS solver. The drawback of our approach is that we need to
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generate the reduced shape space in a preprocess before the actual modeling
session can start. In our prototype implementation, which leaves much room
for optimization, the preprocess for the 40k bumpy plane took 51

2
minutes and

for the Chinese dragon model with 130k vertices it took almost 20 minutes.
Most of the time is spent on calculating the modal derivatives. But, for every
model we only need to compute the reduced basis once and it can be stored
with the mesh. Then, after loading, the modeling session can start almost
immediately. Also, choosing new handles or changing the resolution of the
coarse mesh does not require recomputation of the basis. Alternatively, the
extended modal bases presented in Section 3.2.2 can be used instead of modal
derivatives. Figure 5.9 shows editing results in a 138-dimensional subspace
from extended modes of the same Chinese dragon model used in Figure 5.1.
For this example of a hyperelastic, isotropic and homogeneous material the re-
duced space constructed using extended modes produces results of comparable
quality, but at considerably less computational costs. Note that the timings in
Table 3.3 and 5.1 are obtained on different hardware—we refer to the results
in Table 3.2 for a more unbiased comparison of subspace construction times.

Figure 5.9: Interactive deformation-based editing of a Chinese dragon model
in a subspace constructed using the extended modal bases (see Table 3.3 for
statistics).

Comparison to previous work We compare the results of our method with
two state-of-the-art deformation schemes: Embedded Deformations [Sumner
et al., 2007] and Rigid Cells [Botsch et al., 2007]. The implementations of the
methods were kindly provided by their respective authors. Figure 5.7 shows
deformations of the cylinder, the bar, and the head of the raptor model. The
graph of Embedded Deformations, the cell complex of Rigid Cells, and the
ghost of our method are shown on the right of every deformed model. The left
column shows results of Embedded Deformations (with a graph of 200 vertices
for the cylinder and raptor and 400 for the bar), the middle column of Rigid
Cells (with 650 cells for the cylinder, 576 cells for the bar, and 1318 cells for the
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Model #Vert. Dim. Ghost Solve Df. Total Prep. Fig.

Bumpy plane 40k 67 1k 5 3 53(10) 325 5.4
Cylinder 5k 67 1k 5 1 51(10) 38 5.4
Bar 6k 67 1k 5 1 51(10) 48 5.4
Cactus 5k 67 5k 32 1 161(5) 44 5.4
Ch.Dragon 130k 67 0.5k 4 8 48(10) 1067
Ch.Dragon 130k 67 1k 5 8 58(10) 1067
Ch.Dragon 130k 67 2.5k 14 8 78(5) 1066
Ch.Dragon 130k 67 5k 33 8 173(5) 1064
Ch.Dragon 130k 130 0.5k 7 13 69(8) 1185
Ch.Dragon 130k 130 1k 10 13 93(8) 1185 5.1
Dinosaur 56k 130 1k 10 6 86(8) 511
Dinosaur (ARAP) 56k 130 1k 72 6 366(5) 511 5.3

Table 5.1: Statistics measured on a 2010 MacBook Pro with a 2.66GHz CPU.
From left to right: number of vertices, dimension of reduced space, number
of vertices of the ghost, time in milliseconds for one BFGS iteration, time for
mapping reduced solution into full shape space, time for full optimization
(with maximum number of iterations), time in seconds for the preprocess,
and figure that shows the configuration.

raptor), the right column of our method (with a 67-dimensional shape space
for the cylinder and bar, a 130-dimensional space for the raptor, and a ghost
of 1000 vertices for all). Compared to Embedded Deformations, the results our
method produces are visually more appealing since Embedded Deformations
produces some noise artifacts. The results of Rigid Cells are comparable to
those of our method, but our method is considerably faster (see Table 1). There
are three reasons for this. First, Rigid Cells requires an expensive interpolation
scheme (using radial basis functions) to avoid noise artifacts, which we do not
need. Second, our method decouples the approximation quality of the energy
(the size of the ghost) from the size of the reduced space, which allows us to
use smaller reduced spaces while keeping a reasonable approximation quality of
the energy; and, third, Rigid Cells is using volume meshes, which are typically
larger than surface meshes.

Local deformations A general problem of model reduction schemes for
shape modeling is that detail editing is either impossible or requires special
treatment. Figure 5.10 and the two rightmost images of Figure 5.3 demon-
strate that a certain degree of locality is possible with our scheme, e.g., the
head of the dinosaur can turn around or the arm can move without affecting
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Figure 5.10: Local deformations of Chinese dragon in a 130-dimensional shape
space. The reference model is shown on the top-left.

other parts of the body. But Figure 5.10 also shows (left image of the bottom
row) that local deformations can introduce artifacts, in the shown example the
mouth opens and lower jaw increases in size when the horn below the mouth is
edited. Creating a method that integrates local and global edits by extending
the subspace basis on the fly is still an open problem. For reduced simulations,
a method that extends a reduced space during runtime, e.g., to represent colli-
sions more accurately, was recently proposed by Harmon and Zorin [2013]. An
alternative approach would be to integrate local editing methods, e.g., PriMo
or as-rigid-as-possible, to seamlessly switch between modeling of details, and
global modeling that preserves these detail edits. A benefit of our method for
such an integration is that the same energy can be used for both local and
global editing.
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Chapter 6

Modal shape analysis

beyond Laplacian

v

Figure 6.1: The vibration distance on the Chinese dragon model in various
resolutions: 10k, 50k, and 130k vertices. Distance to vertex v in continu-
ous coloring: from white being similar to red being dissimilar. Results are
visually close indicating that distances can be well-approximated on coarse
meshes.

6.1 Introduction

The spectrum and the eigenfunctions of the Laplace–Beltrami operator of a
surface have stimulated much recent work in shape analysis and geometry pro-
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cessing ranging from parametrization, segmentation, and symmetry detection
to shape signatures and mesh filtering. Such methods profit from properties of
the eigenfunctions of the Laplace–Beltrami operator. For example, on a curved
surface they form an orthogonal basis of the space of L2-functions on the sur-
face. Furthermore, the Laplacian depends only on the metric of the surface,
hence the eigenvalues and eigenfunctions are invariant under isometric defor-
mations of the surface. However, there are disadvantages as well. For example,
a consequence of the invariance to isometric deformations is an insensitivity to
extrinsic features of the surface, like sharp bends, that are essential for some
applications.

In this chapter we investigate operators, whose eigenmodes and spectra can
serve as alternatives to the spectrum and modes of the Laplacian for appli-
cations in geometry processing and shape analysis. On the one hand, the
eigenfunctions of these operators share properties with the eigenfunctions of
the Laplacian, e.g., they form an orthogonal basis of a space of variations of
the surface. On the other hand, there are fundamental differences, e.g., these
eigenfunctions depend (not only on intrinsic quantities but also) on the ex-
trinsic curvature of the surface. In particular, we consider the linear vibration
modes and frequencies given as the eigenmodes and eigenvalues of the Hessian
of a deformation energy.

On a planar domain, the eigenfunctions of the Laplacian serve as a model for
the vibration modes of a flat plate (Chladni plates). For curved surfaces more
elaborate models are required to describe the vibration modes of a surface.
We consider a physical model that describes vibration modes of a simplicial
surface mesh as introduced in Chapter 2.

As application of the vibration modes, we propose a (multi-scale) signature,
the vibration signature, to which we associate a (multi-scale) pseudo-metric
on the surface. The resulting vibration distance can be used as a similarity
measure on the surface. We prove a lemma that relates the vibration signature
to the linearized gradient flow of the deformation energy (see Section 2.3). This
gives further insight on the choice of the weights for the signature and reveals
the geometry behind the signature.

Related work

Recently, we have seen a boom of papers that use the eigenvalues and eigen-
functions of the Laplace–Beltrami operator as an ingredient in algorithms in
geometry processing and shape analysis. An overview of this development can
be found in the survey by Zhang et al. [2010] and in the course notes of a
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Siggraph Asia 2009 course held by Lévy and Zhang [2009]. Here, we briefly
outline the work that has been most relevant to our approach.

The spectrum of the Laplace–Beltrami operator of a Riemannian manifold con-
tains a significant amount of information about the manifold and the metric.
Though it does not fully determine the Riemannian manifold, it can be used
as a powerful shape descriptor of a class of isometric Riemannian manifolds.
Reuter et al. [2005, 2006] use the spectrum of the Laplace–Beltrami oper-
ator to construct a fingerprint of surfaces, which they call the Shape-DNA.
By construction this fingerprint is invariant under isometric deformations of
a surface. Among other applications the Shape-DNA can be used for shape
matching, copyright protection, and database retrieval. Rustamov [2007] de-
veloped the Global Point Signature (GPS), a signature that can be used to
classify shapes up to isometry. Based on the GPS, Ovsjanikov et al. [2008] de-
veloped a method for the detection of global symmetries in shapes. Dong et al.
[2006] present an elegant technique that uses the Morse–Smale complex (and
the quasi-dual complex) of a carefully chosen Laplace eigenfunction to generate
a coarse quadrangulation of a surface mesh. This approach was extended by
Huang et al. [2008], who design a least-squares optimization routine that mod-
ifies the selected Laplace eigenfunction (and hence its Morse–Smale complex)
and provides the user with control of the shape, size, orientation, and feature
alignment of the faces of the resulting quadrangulation. The computation of
the spectrum and eigenfunctions of the Laplacian is a delicate and computa-
tionally expensive task, even for medium sized meshes. Vallet and Lévy [2008]
propose an efficient shift-and-invert Lanczos method and present an implemen-
tation that is designed to handle even large meshes. Using the eigenfunctions
of the Laplacian, one can compute the heat kernel of the surface. Sun et al.
[2009] propose the heat kernel signature, a surface signature based on the heat
kernel which they use to derive a measure for the geometric similarity of dif-
ferent regions of the surface. Due to its construction, this measure is invariant
under isometric deformations of the surface. Independent of this work, Gebal
et al. [2009] propose a similar signature, named the Auto Diffusion Function,
and use it for mesh skeletonization and segmentation. In the context of shape
matching and retrieval, [Dey et al., 2010] use persistent extrema of the heat
kernel signature to construct a robust and efficient pose-oblivious matching
algorithm for 3D shapes. Given a corresponding pair of points on two shapes,
[Ovsjanikov et al., 2010] use the heat kernel to construct an isometric map
between the shapes which allows them to find intrinsic symmetries and match
partial, incomplete or isometrically deformed shapes.
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Modal analysis is a well-established technique in structural mechanics and
mechanical engineering that aims at computing the modes and frequencies of
an object during vibration. In graphics, it is mainly used to speed up physical
simulations (see [Pentland and Williams, 1989; Hauser et al., 2003; Barbič and
James, 2005; Choi and Ko, 2005]). Recently, Huang et al. [2009] use vibration
modes of a surface to decompose it into physically meaningful parts. They
compute the modes of the surface from the Hessian of a simplification of the
as-rigid-as-possible deformation energy, which was proposed by Sorkine and
Alexa [2007].

In physical simulation, thin shell models describe the dynamics of a thin flexible
structure that has a curved undeformed configuration. For example, in cloth
simulation thin shells are used to describe folds and wrinkles [Bridson et al.,
2003]. Common discrete models [Baraff and Witkin, 1998; Bridson et al., 2003;
Grinspun et al., 2003; Garg et al., 2007] describe the middle surface of a thin
shell by a mesh and measure the bending of the surface at the edges of the
mesh. Of particular interest for this work is the model of Grinspun et al.
[2003] that uses a discrete energy to simulate thin shells (see Section 2.2 for
details).

6.2 Vibration signature

In this section we introduce the vibration signature: a multi-scale surface sig-
nature based on the vibration modes of the surface with respect to the Discrete
Shells energy. The construction of the vibration signature follows the construc-
tion of the heat kernel signature defined in [Sun et al., 2009].

The modal signatures we consider are multi-scale signatures, which take a
positive scale parameter t as input. For every t such a signature is a function
on the mesh, i.e., it associates a real value to every vertex of the mesh. Let v
be a vertex of a simplicial surface mesh with reference configuration u ∈ C and
let t be a positive value. Then, we define the vibration signature of u at vertex
v and scale t by

SV ib
t (v) = ∑

j

e−λjt ∥Φj(v)∥2R3 , (6.1)

where λj and Φj denote the eigenvalues and the L2-normalized vector-valued
vibration modes of a configuration u with respect to the Discrete Shells energy.
The value ∥Φj(v)∥R3 describes the displacement of the vertex v under the
L2-normalized vibration mode Φj. For a fixed t the vibration signature of
v measures a weighted average displacement of the vertex over all vibration
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modes, where the weight of the jth eigenmode is e−λjt. The weights depend
on the eigenvalues and on the scale parameter. For increasing λ, the function
e−λ t rapidly decreases, e.g., the modes with smaller eigenvalue receive higher
weights than the modes with large eigenvalues. Furthermore, for increasing
t all weights decrease, and, more importantly, the weights of the vibration
modes with smaller eigenvalues increases relative to the weights of the modes
with larger eigenvalues.

In addition to Equation (6.1), the vibration signature can be computed using
the linearized gradient flow, which we defined in Equation (2.15). Before we
explain this point of view in the next lemma, we introduce some notation. Let{b1, b2, b3} be the standard basis of R3 and α ∈ {1,2,3}. We denote by δvα the
vector field in TuC that satisfies

⟨δvα,Φ⟩L2 = ⟨Φ(v), bα⟩R3 . (6.2)

for all Φ ∈ TuC. Explicitly δvα is given by

δvα =M−1evα,

where evα is the vector field on u that satisfies evα(v) = bα and vanishes at all
other vertices. If a diagonal mass matrix is used, then δvα = 1

mv
evα. Here mv is

the diagonal entry of the mass matrix corresponding to the vertex v; in the
case of the lumped mass matrix, mv is a third of the combined area of all
triangles adjacent to v.

Lemma 1 Let v be a vertex of u, and let x1(t), x2(t), and x3(t) be the
solutions of the linearized gradient flow equation (2.15) with initial values
xα(0) = δvα. Then, the vibration signature satisfies

SV ib
2t (v) = 3∑

α=1

∥xα(t)∥
2

L2 (6.3)

for all t.

Proof. Using the vibration modes Φj we can derive the following explicit
representation of the functions xα(t):

xα(t) = ∑
j

⟨δvα,Φj⟩L2 e
−λjtΦj = ∑

j

⟨Φj(v), bα⟩R3 e
−λjtΦj,
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v

Figure 6.2: Vertices (blue) similar to vertex v based on heat kernel signa-
ture [Sun et al., 2009] (top row) and our vibration signature (lower row).
Left and right column depict similarity based on a small range of t’s and
middle column on a large range of t’s.

where we use Equation (6.2) in the last equality. Then, from the property that
the vibration modes Φj are orthonormal, we get

3∑
α=1

∥xα(t)∥2L2 = ∑
j

e−2λjt
3∑

α=1

⟨Φj(v), bα⟩
2

R3 = ∑
j

e−2λjt ∥Φj(v)∥
2

R3 = SV ib
2t (v),

which proves the lemma.

We can interpret the initial value condition xα(0) = δvα as an initial deforma-
tion of the surface. Then xα(t) describes how this deformation evolves under
the linearized gradient flow; for t→∞, the surface reaches the rest state of the
energy. The signature measures for every t the sum of the L2-norms of x1(t/2),
x2(t/2), and x3(t/2). The signature is independent of the choice of an orthonor-
mal basis {b1, b2, b3} in R3 (which determines the initial value conditions). The
lemma gives a motivation for the choice of the weights e−λjt, that appear in the
definition of the vibration signature. Furthermore, the lemma shows that one
can compute the signature without computing the eigenmodes and spectrum
first. An algorithm based on Equation (6.3) would not be efficient for our pur-
poses, since we would need to solve the diffusion equation for every vertex of
the mesh. Still, if the goal is to evaluate the signature only at certain vertices

80



6.2 Vibration signature

v

Figure 6.3: Comparison of two similarity measures. Distance to vertex v in
binary as well as continuous coloring based on our vibration signature (left
most) and the heat kernel signature (right most).

or for small time values, a computation based on Equation (6.3) can be more
effective than a scheme that involves solving the eigenvalue problem.

Multi-scale distance From the vibration signature we can construct the
following (multi-scale) pseudo-metric on the mesh: let v, ṽ be vertices of the
mesh u, then we define

δ[t1,t2](v, ṽ) = ⎛⎝∫
t2

t1

(SV ib
t (v) − SV ib

t (ṽ)
∑ke

−λkt
)2 d log t

⎞⎠
1

2

. (6.4)

By construction, for any pair of scale values t1 < t2, δ[t1,t2] is positive semi-
definite and symmetric, and one can show that it satisfies the triangle inequal-
ity. We call this pseudo-metric constructed from the vibration signature SV ib

t

the vibration distance.

The idea behind the construction of the pseudo-metric is to use the inte-
gral ∫ t2

t1
(SV ib

t (v) − SV ib
t (ṽ))2dt. However, the actual definition additionally

includes two heuristics. First, since for increasing t the values SV ib
t (v) de-

creases for all v, we normalize the value SV ib
t (v)−SV ib

t (ṽ) by dividing it by the
discrete L1-norm of SV ib

t ,

∥SV ib
t ∥L1

= ∑ke
−λkt.

Second, for a fixed vertex v, the signature SV ib
t (v) varies more for small values

of t compared to large t. To increase the discriminative power of the pseudo-
metric, we associate a higher weight to the small t and a lower weight to the
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v

Figure 6.4: Vibration distance to the marked vertex v of the Armadillo model
in three colorings: continuous coloring from white being similar to red being
dissimilar to v and binary colorings with two different thresholds where blue
vertices are similar to v.

larger t. We achieved this by using a weighted integral with weight function
dlog t = 1

t
dt. This is a Riemann–Stieltjes integral that we evaluate numeri-

cally based on a uniform decomposition of the logarithmically scaled interval
[t1, t2].

6.3 Results and discussion

We experiment with the vibration modes of the Discrete Shells energy as well
as, for comparison, the eigenfunctions of the cotan-Laplace operator [Pinkall
and Polthier, 1993]. As a discrete L2-scalar product we use the diagonal (or
lumped) mass matrix M . The diagonal entry in the ith row of the matrix
is a third of the combined area of the triangles adjacent to the ith vertex of
the mesh. To compute the eigenmodes of a mesh, we solve the generalized
eigenvalue problem (2.9). Since M is a diagonal matrix, this problem can
be transformed into a standard eigenvalue problem as described in [Vallet and
Lévy, 2008]. Then, we solve the resulting standard eigenvalue problem with the
shift-and-invert Lanczos scheme described in [Saad, 1992]. For most examples
and applications we do not need to compute the full spectrum, but only the
lower part of the spectrum.

Figure 2.3 shows eigenvibrations with respect to the Discrete Shells energy.
The images on the left (top and bottom row) show the reference mesh and
each of the other images visualizes a vibration mode. The Discrete Shells
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energy is a weighted sum of a flexural and a membrane energy. If we decrease
the weight of the membrane energy, i.e. κmem in Equation (2.2), the resulting
vibration modes include stretching and squashing of the surface (see Figure 2.3
top row second and third images). In contrast, if we put a large weight on
the membrane energy, the resulting eigenmodes try to preserve the metric.
Examples of such modes are given in Figure 2.3 top row fourth image, bottom
row second and third images.

To examine the properties of the vibration signature SV ib
t defined in Equa-

tion (6.1) we compare it to the heat kernel signature (HKS) introduced in [Sun
et al., 2009]. As noted in Section 6.2, SV ib

t (v) encodes the vibration behavior
of a vertex v on multiple scales, i.e., vertices that oscillate with similar inten-
sity throughout the eigenmodes will be close in terms of the vibration distance
δ[t1,t2](⋅, ⋅). We illustrate this property in Figure 6.4 for the Armadillo model
(16k vertices). On the left we color plot the vibration distance δ[t1,t2](v, ⋅) to
the marked vertex v. Two further binary colorings are given, colorizing vertices
that are closer to v than a threshold in blue and the other vertices in white.
For a small threshold the vertices on both feet are close to v; increasing the
threshold causes parts of the hands to be colored in blue as well.

Figure 6.2 provides another comparison of SV ib
t to the HKS. Every image of the

hand model (40k vertices) depicts the vertices that are closer to the marked ver-
tex v. In the first column similar results are achieved for HKS and SV ib

t . Since
the HKS is constructed using the spectrum and eigenfunctions of the Lapla-
cian, the signature depends only on intrinsic properties of the surface. Thus
the signature is incapable of differentiating between isometrically deformed
parts of a surface. The vibration signature however is sensitive to extrinsic
information and hence represents an alternative to the HKS. This character-
istic of SV ib

t becomes especially apparent in the second column of Figure 6.2.
Here the middle finger of the hand is almost isometrically deformed. The HKS
cannot distinguish this situation from the undeformed one; hence it recognizes
the tips of the three longest fingers of the hand as similar to vertex v. As
the deformation alters the vibration behavior of the bent finger, SV ib

t detects
only the tips of the unbent ones. Like the HKS, the vibration distance can be
evaluated at different scales (different choices of [t1, t2]). Choosing smaller val-
ues of t increases the weights (cf. Equation (6.1)) for eigenmodes with higher
frequency. Therefore, more local vibrations described by these eigenmodes
contribute more to the vibration distance. An example is shown on the right
side of the lower row of Figure 6.2. For smaller t, δ[t1,t2](v, ⋅) captures vi-
brations of the fingertips as well and thus classifies the vertices on all tips as
similar to v.
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In Figure 6.3 we provide the final comparison of the vibration signature and
the HKS for the camel model (10k vertices). The vibration distance shown on
the left, finds both pairs of knees (at the forelegs and at the hind legs) to be
the closest to vertex v. For the HKS, shown on the right, the results are not
as intuitive: the vertices at the mouth and ears of the camel are closer to the
vertex v than the vertices at the hind legs, even closer than the vertices at the
knees of the hind legs. This behavior of the HKS was the same at different
scales and it is difficult to interpret the results. An indication for this behavior
can be found by inspecting the Fiedler vector, which is the eigenfunction of
the discrete Laplacian associated to the lowest (non-zero) eigenvalue. Of all
eigenfunctions, this one gets the highest weight in the heat kernel distance. On
the camel model, the Fiedler vector has one type of extrema, e.g., its minima,
at tips of the toes of the hind legs at the tip of the tail and the other type of
extrema, e.g., its maxima, at the tips of the toes of the forelegs, at the tips of
the ears, and the tip of the snout. The function values at the tips of the ears
and the tip of the snout are about the same as the function values at the knees
of the forelegs. Hence, the contribution of this eigenfunction to the heat kernel
distance is almost zero. This behavior repeats at some of the higher modes.

Implementation details and timings The computation of the eigenmodes
and eigenvalues of an energy splits in two steps: setting up the Hessian matrix
and solving the eigenproblem. To compute the signatures and distances, we
additionally need to evaluate formulae (6.1) and (6.4). The time required for
the construction of the Hessians is negligible compared to solving the sparse
generalized eigenvalue problem. One way to solve such a generalized eigen-
problem is to transform it into a standard eigenvalue problem. In our case
the mass matrix is a positive definite diagonal matrix. Therefore such a basis
transformation requires only rescaling of the Lagrange basis vectors. Details
for this procedure can be found in [Vallet and Lévy, 2008]. To compute the
signatures and distance, only a fraction of the lower part of the spectrum is
required, because the weights e−λjt rapidly decrease with increasing eigenvalue.
Typically the first 300 eigenvalues and modes yield a faithful approximation
of the signatures and distances. To efficiently compute a lower portion of the
spectrum and its corresponding eigenvectors we employ the shift-and-invert
Lanczos method which does not need the inverse matrix explicitly. Instead
only a matrix vector product has to be provided which can be evaluated by
solving a linear system of equations. We solve these systems using the sparse
direct solver implemented in MUMPS (see [Amestoy et al., 2001]). Once the
eigenvalues are computed, the evaluation of the signatures and distances is
relatively fast. To discretize the integral in Equation (6.4), we use a numeric
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quadrature. We place the samples of the interval [t1, t2] such that they are
equidistant on the logarithmic scale, which yields equal weights for all points
in the quadrature.

In our experiments, we found that coarse meshes already provide a good ap-
proximation of the eigenmodes of the energy. Hence, for applications where
computation time is crucial, it seems reasonable to first sub-sample the mesh
and to compute the spectrum and eigenvectors of the simplified model. Fig-
ure 6.1 shows similarity results of the vibration distance for the Chinese dragon
model at different mesh-resolutions. Although the model is simplified signif-
icantly, the similarity results still resemble the results of the fine mesh, indi-
cating that the signature and the distance can be well-approximated on coarse
meshes. Table 6.1 provides timings for computing the vibration signature of
different versions of the Chinese dragon model.

Model #Vertices Hessian Eigenproblem SV ib
t

Ch. dragon (Fig. 6.1, left) 10k 1 s 58 s 4 s
Ch. dragon (Fig. 6.1, middle) 50k 4 s 326 s 30 s
Ch. dragon (Fig. 6.1, right) 130k 11 s 1122 s 100 s

Table 6.1: Timings for the Chinese dragon model measured on a 2010 Mac-
Book Pro with a 2.66GHz CPU. From left to right: model, number of ver-
tices, timings in seconds for constructing the Hessian, solving the eigenprob-
lem, and computing the vibration signature at all points.

Future work Linear vibration modes provide a quality basis for small defor-
mations away from the reference configuration and our results in the preceding
chapters show their utility for the dimensional model reduction for dynamical
systems. In addition, the vibration modes and more generally operators de-
rived from Hessians of corresponding deformation energies hold the promise of
spawning novel methods in shape analysis and geometry processing. Explicitly,
we started experimenting with the vibration modes for the problem of spectral
quadrangulations. In contrast to the modes of the Laplacian, the modes of
the energies considered in this work are sensitive to the extrinsic curvature of
the surface. Our goal is to produce quadrangualtions that align with salient
surface features.
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Chapter 7

Compression of adaptive

multiresolution meshes

Figure 7.1: Adaptive refinement of a bone model. Elements are colored accord-
ing to our coding scheme. We store one bit for each blue and red triangle,
specifying whether it is refined or not. These bits are sufficient to reconstruct
the connectivity of the model. All other triangles can be reconstructed using
rules of the refinement scheme.
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7.1 Introduction

Multiresolution meshes, i.e., meshes obtained through successive subdivision of
a coarse base complex, are commonplace in a variety of areas such as the movie
industry, computer aided design and in numerical simulations. The computing
power of today’s computer systems and the availability of advanced modeling
software make it easy to generate grids with up to several million vertices.
Storing those meshes in a raw data format is notoriously expensive due to the
sheer amount of data. This is where compression comes into play.

Adaptive refinement, i.e., the introduction of detail only where it is needed,
is an essential strategy to master the processing, rendering, transmission and
storage of such meshes. For uniform refinement, the connectivity of the mesh
can be represented by a coarse base complex and the number of subdivision
levels. In contrast, adaptively refined meshes exhibit a non-trivial hierarchical
structure. To the best of our knowledge, the lossless compression of adaptive
hierarchies has not been researched into before.

Generally, compression comes in two stages: The first is a lossy stage, where
essential information of the input is extracted and negligible data is dropped.
The data decimation is then followed by lossless encoding in which the remain-
ing data is transcoded into a compact byte stream, typically using entropy
coding like Huffman or arithmetic coding.

In view of mesh coding, the mesh data consists of connectivity, geometry, and
possibly attribute data such as colors and texture coordinates. 3D mesh coders
are often referred to as lossless if they preserve the original connectivity of the
mesh, even if floating point data of coordinates and attributes are truncated
to a fixed precision. This tolerance within the “lossless” category may be
due to the fact that geometry data will never be free from errors, and errors
introduced by truncating the least significant bits of a float value are often
negligible compared to noise, discretization, and quantization errors during
mesh acquisition.

Lossy mesh coders consider the connectivity of the mesh as auxiliary informa-
tion that does not contribute to the shape of the model. In the same manner,
tangential positions of vertices within the surface are regarded as negligible.
The intention of those coders is usually the best reproduction of the shape with
respect to some distance norm within a given byte limit. The mesh is often
remeshed to a semi-regular mesh that allows wavelet analysis to compress the
geometry data.
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We consider connectivity compression a vital issue since the outcome of many
algorithms from geometry processing and numerical analysis depend on an
exact reproduction of connectivity—think of animation or morphing. In our
work we assume that the data reduction has already taken place. Our input
models are hierarchical models that are adaptively refined. We assume that
important details have been carefully selected and negligible ones pave been
pruned by some criterion, be it by preservation of shape, normals, visual im-
pact, or by some numerical criteria. The use of a lossy black box encoder is
prohibitive if no further detail should be lost. Such situations arise for example
in optimal control problems with time-dependent PDEs where several frames
with varying refinement structure have to be stored. In this case, the base
mesh is stored just once, with different refinement stages for each time step.
The storage of view-dependent refinements of objects in virtual environments
creates a similar situation.

Related work

Numerous compression schemes for surface meshes have been developed for
single-rate coding (compressing the whole mesh in a region-growing fashion)
as well as progressive coding (encoding the model from coarse to fine). On the
single-rate side Edgebreaker [Rossignac, 1999] and the method of Touma and
Gotsman [1998] are the most prominent coders for triangle meshes which have
spawned a wealth of variants and improvements. Among the best-performing
variants for connectivity compression is the early-split coder of Isenburg and
Snoeyink [2006] and the optimized Edgebreaker encoding of Szymczak [2002].
These coders profit from mesh regularity and are able to push the bit rate well
below the Tutte limit [Tutte, 1962] of roughly 3.24 bits per vertex. Many trian-
gle mesh coders have been generalized to polygonal meshes, such as Isenburg’s
method [Isenburg, 2002] which extends the Touma-Gotsman coder.

The FreeLence [Kälberer et al., 2005] and Angle Analyzer [Lee et al., 2002]
algorithm exploit correlation between connectivity and geometry by accessing
already encoded geometry data when encoding connectivity and vice versa,
allowing it to push the bit rates below that of [Isenburg and Snoeyink, 2006]
and [Szymczak, 2002]. While FreeLence is especially performant in the trian-
gular case, Angle Analyzer outperforms it for quadrangular meshes.

For progressive transmission, models are often simplified or remeshed [Lee
et al., 1998; Guskov et al., 2000] to generate a simple base mesh from arbi-
trary connectivity meshes. In this context, wavelet-based coding has proven
itself as one of the most efficient approaches for compression. Wavelet trans-
forms recursively construct lower resolution approximations of a given input
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model, decorrelating high- and low-frequency geometry data. The difference
of the details to predictions based on the coarse data are stored as wavelet
coefficients. These typically feature a smaller entropy than the original data,
yielding superb compression rates.

Wavelet-based coding schemes exist for both irregular and semi-regular meshes.
The first group is based on mesh simplification methods that progressively
remove vertices which cause the smallest distortion. Bits are written to identify
a vertex within the mesh as well as its geometric position in order to be able
to reconstruct the original mesh. Prominent coders of this group are [Isenburg
and Snoeyink, 1999; Alliez and Desbrun, 2001; Valette and Prost, 2004].

The best results for geometry compression, however, have been achieved for
semi-regular meshes. Based on stencils from subdivision schemes, efficient
wavelet transforms have been derived. The best known wavelet-based coder in
this category is the progressive geometry compression (PGC) codec by Kho-
dakovsky et al. [2000] adapting the renowned zerotree coding scheme [Shapiro,
1993] from image compression. A wealth of descendants have been proposed
extending PGC to different types of meshes [Khodakovsky and Guskov, 2003],
resolution scalability [Avilés et al., 2005] and efficient embedded quantiza-
tion [Payan and Antonini, 2005]. However, these coders only aim at the com-
pression of the geometry and do not allow lossless reconstruction of the con-
nectivity even for meshes generated through adaptive refinement. (Although
the normal mesh compression by Khodakovsky and Guskov [2003] is able to
generate such meshes, the adaptivity is controlled by the coder, thus neglecting
any original criteria.)

Adaptively refined hierarchies also play a major role in point cloud compres-
sion. In [Botsch et al., 2002] and many follow-ups, a bounding box is adap-
tively refined up to a certain degree, and the leaf cells at the finest level then
represent the point positions. Although these methods also compress adaptive
trees, we propose optimization strategies specialized for the situations inherent
to surface meshes, such as non-trivial root domains, red-green conformity, and
balanced refinement. On the contrary, point cloud compression schemes utilize
characteristics of surface geometry. For instance, nearby points are expected
to be nearly coplanar, as done in [Schnabel and Klein, 2006].
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7.2 Hierarchy coding

In this section we explain how we encode the hierarchical structure of adap-
tive multiresolution meshes and their connectivity. First we will explain the
concepts of adaptive triangular and quadrilateral refinement, before we outline
our encoding procedure in Section 7.2.2. Sections 7.2.3 to 7.2.6 then elaborate
on the details.

7.2.1 Adaptive refinement schemes

In the field of subdivision surfaces and FEM a variety of refinement schemes
have been devised. Among them, the dyadic split (cf. Butterfly [Dyn et al.,
1990] or Loop [Loop, 1987]) for triangle surfaces and the face split (cf. Catmull–
Clark [Catmull and Clark, 1978]) for polygonal surfaces are widely spread. The
dyadic split operation divides each triangle into four congruent subtriangles.
First, new vertices are introduced at each edge midpoint dividing the edges
into two. Connecting the three edge midpoints within each triangle then splits
the triangle into four. Consequently, this scheme is often referred to as 1-to-4
split. The face split can be applied to elements of arbitrary degree. New
vertices are inserted not only at edge midpoints but also at the center of the
element. Then the vertices at the edge midpoints are connected to the center
vertex, thus splitting an n-gon into n quadrilaterals. Figure 7.2 illustrates both
the dyadic and face split refinements.

Unlike global mesh refinement where all elements in the mesh are subdivided
to obtain a finer mesh, adaptive or local mesh refinement performs the split
operation only for selected elements. The transition between elements of dif-
ferent refinement levels requires extra care since a new vertex is inserted on an
edge of the refined element, but the coarse neighboring face still contains the
edge undivided. These irregular vertices are called hanging nodes. To resolve
the non-conforming situations between elements of various refinement grades,
the adjacent unrefined elements must also be refined. To maintain locality
of the conformization, non-conformal elements must be split without intro-
ducing additional hanging nodes (see Figure 7.3, top). In the finite element
community, triangles introduced to resolve hanging nodes are called green tri-
angles, whereas elements that are generated by the dyadic split are called red
triangles (hence the name red-green refinement [Bank et al., 1983]). Several
conformization schemes exist for quadrilateral hierarchies, some of them in-
troducing non-quadrilateral elements. We implemented the scheme described
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Figure 7.2: Uniform refinement of coarse domains using the dyadic split (top)
and face split (bottom).

in [Settgast et al., 2004] (see Figure 7.3, bottom). Following the aforemen-
tioned terminology, elements inserted by these schemes will also be referred to
as green elements.

Since green elements are less shape regular than their parents, the adaptive
refinement is usually restricted to balanced meshes where the refinement level
of neighboring elements must not differ by more than one level. This bounds
the number of hanging nodes on each edge to one, preventing the refinement
of green elements and therefore ever thinner faces.

The refinement strategy yields a canonical hierarchical structure where each
split element acts as a parent for the new sub-elements. Therefore each element
of the coarse base mesh will have an associated tree that specifies its refine-
ment. We refer to the entities of the trees as nodes to underline the parental
relationship between elements at different resolutions of the mesh. For a split
element we assign the sub-element incident to the n-th vertex as the n-th child
of the related node. In the triangle setting, the remaining central sub-element
will be the fourth child. Figure 7.4 shows three root elements with associated
refinement trees as well as the represented adaptive grid.

7.2.2 Encoding

Akin to existing progressive coders we separately encode the root grid from
the hierarchy. Typically the root grid is described by a small, carefully laid out
mesh that can be compressed well using single-rate coders. Our prototype uses
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7.2 Hierarchy coding

Figure 7.3: Conformization of hanging nodes. Up to symmetry, these are the
only configurations of green elements that can occur in balanced meshes.

FreeLence [Kälberer et al., 2005] and PMC [Isenburg, 2002] to losslessly encode
the triangular and quadrilateral root grids, respectively. This compression will
generally alter the order of the base domain elements as well the as their local
indexing, i.e., the ordering of references to vertices. To ensure the compatibility
of the refinement hierarchy, the root grid and its associated refinement forest
is matched to the reconstructed deterministic output of the FreeLence decoder
so that refinement trees can be bijectively mapped to root elements without
coding of further information.

Starting from the root grid, encoding the refinement hierarchy is sufficient
to reconstruct the connectivity of the mesh at any level of detail. Provided
that the encoder and decoder agree on a common node traversal strategy,
the refinement hierarchy can be stored with one bit per node where each bit
specifies whether or not the node has children (is refined). Exceptions are
made when the conformization schemes leaves freedom of choice, e.g., triangles
with two hanging nodes (see Figure 7.3). The other possibility to resolve this
non-conforming situation arises by flipping the diagonal edge. In practice,
the concrete conformization is often determined exclusively by local indexing.
Since we change the local indexing during the compression of the base mesh,
the original indexing is lost. Therefore we need to store additional symbols
to determine the conformizations. For the triangle hierarchies these will be
one bit per triangle with two hanging nodes. Using a conformization scheme
that introduces only quadrilaterals (see e.g., [Schneiders, 1996]) at most one
bit for each border between regions of different refinement must be coded for
quadrilateral hierarchies. The conformization scheme of Settgast et al. [2004]
on the other hand has no such ambiguities.

We entropy code these conformization bits, but found that they were virtually
incompressible without knowing the exact implementation of the grid manager.
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Figure 7.4: Base mesh with refinement trees and its corresponding red-green
refined hierarchical mesh.

If, however, a geometric criterion is used to determine the conformizations, we
can omit these bits altogether. The same is true if the application does not
expect any green elements and the conformization is constructed on the fly, for
example, the Progressive Geometry Compression software from Caltech [Kho-
dakovsky et al., 2000].

Due to the deterministic conversion of the hierarchical structure to a bit stream
we can estimate an upper bound for the code size. Let us begin with hierarchies
generated by face splits. Except for the root level, each parent is split into four
children. Therefore, the number of bits in the stream will sum to one bit per
leaf plus one 1

4
bit for their parents, a 1

42
bit for their grandparents and so on

until reaching a 1

4d−1
bit for the first level, where d is the depth of the leaf in

the tree. Additionally, we have to add a 1

4d−1
1

n
bit for the n-gon contained in

the root level. We can write this sum as

d−1∑
i=0

1

4i
+ 1

4d−1
1

n
= 4

3
+ 1

4d−1
(−1

3
+ 1

n
) ≤ 4

3

bits per leaf. This bound also holds for the triangle hierarchies since they are
composed entirely of quad trees so the n in the last term will be 4. Since the
number of leaves in the hierarchy is no greater than the number f of elements
of the finest resolution, our stream will contain no more than 4

3
f bits. So

far we did not account for symbols needed to resolve multiple possibilities of
conformization. In these cases we have to store additional bits, but in fact, we
already counted multiple green elements in f that where represented by just
one node in the hierarchy.

To maintain the progressivity of the generated bit code we traverse the hierar-
chy breadth-first, so that we can successively visit the nodes at a certain depth
in all trees before switching to the next finer level. Finally, the generated bit
stream is entropy encoded. In the following sections the algorithm is explained
in more detail.
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7.2 Hierarchy coding

7.2.3 Redundant symbols

We can further improve the hierarchy compression by culling out nodes from
the bit stream whose state can be implicitly reconstructed. As the hierarchy
is directly related to the mesh, the mesh constraints implied by the refinement
scheme are mirrored in the hierarchy’s structure. These dependencies can be
exploited by the following extensions.

Hanging nodes Some implementations of adaptive refinement prohibit more
than a certain number of hanging nodes per element. In these setups, the hang-
ing nodes are conformized by applying the usual split operation, introducing
hanging nodes in adjacent coarse elements. During compression, if all neigh-
bors of the current node are already processed, the number of hanging nodes
within the element will be known to the coder. Hence, elements that exceed the
maximum number of allowed hanging nodes can be split immediately and no
symbol has to be coded. Anyhow, we do not need to treat these cases explicitly
since they will be handled by our coder without overhead (cf. Section 7.2.4).

1-Regularity As mentioned before, adaptive refinement

Marked faces can’t
be further refined
due to green faces
in the parent level.

produces balanced meshes. There will be at most one hang-
ing node per side of an element. Moreover, since the nodes
of the hierarchy are conquered level-wise, we already know
whether the neighbors of the node in question are green ele-
ments that resolved a non-conforming situation in the parent
level. As a consequence, nodes representing faces adjacent
to coarse green elements cannot be refined and can thus be
skipped by the encoder.

Uniform refinement Uniformly refined meshes exhibit a featureless hier-
archical structure—the whole forest can be described by a single scalar that
specifies the overall height of the refinement trees. Because many meshes in
practice are uniformly refined to a certain degree, we exploit this property
to reduce the number of code symbols. We store a single byte encoding the
degree of uniform refinement separately, allowing the coder to skip all nodes
on coarser levels.

Stream truncation Note that decoding a 0 from the stream has no effect
on the hierarchy while a 1 causes a refinement of the current node (or its
associated element, respectively). As the refinement forest is conquered in a
breadth-first manner, nodes at the finest level are visited last, thus concluding
the output stream. These are all 0 entries and are only needed for closing
the forest, i.e., generating a valid hierarchical structure. This structure can be
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constructed by the decoder without using these entries. Therefore the encoder
omits the finest nodes from the output and even truncates 0’s written after the
last 1 as these can be implied (cf. [Said, 2004]). The decoder thus simply skips
nodes for which no bit was stored, i.e., the code contains no further symbols
that can be read).

Model f #n 0s 1-Reg. Unif. #Left Code Size

bones 5622 5k 8% 16% 0.0% 76% (4k) 2k (2k)
fandisk3 86092 96k 34% 23% 0.0% 43% (41k) 23k (41k)
feline 254044 303k 37% 16% 0.8% 46%(139k) 60k(139k)
femur 8944 11k 26% 13% 0.0% 60% (6k) 2k (5k)
heat transfer 96412 115k 5% 15% 0.6% 79% (91k) 29k (83k)
horse 96368 113k 37% 18% 0.2% 46% (52k) 25k (51k)
rabbit 68506 79k 23% 21% 1.3% 55% (43k) 21k (43k)
venus 138672 155k 40% 24% 0.0% 36% (56k) 36k (50k)

blade 51157 36k 16% 36% 0.0% 49% (17k) 10k (17k)
fandisk4 24595 31k 24% 3% 0.0% 73% (23k) 1k (18k)
fertility 192635 129k 14% 37% 0.0% 49% (64k) 43k (64k)
shoulder 108361 77k 16% 34% 0.4% 49% (38k) 23k (38k)
rockerarm 30747 27k 30% 21% 6.8% 42% (11k) 5k (11k)
torso 54918 39k 12% 36% 0.7% 52% (20k) 12k (20k)

Average 72111 87k 23% 22% 0.8% 54% (43k) 21k (42k)

Table 7.1: Removal of redundant symbols. From left to right: number of
faces, number of tree nodes, i.e., the number of binary decisions the decoder
has to make, percentage of bits that can be omitted by dropping trailing
zeros, exploiting 1-regularity, and storing the number of levels of uniform
refinement, percentage (actual number) of bits that have to be coded, and
the size of the compressed code in bits with (and without) the use of context
groups.

Encoding the degree of uniform refinement in combination with the omission
of trailing zeros guarantees that not a single symbol ends up in the output
when a uniformly refined mesh is compressed. The results of the number of
symbols that have to be coded for our benchmark models are shown in Table
7.1. Among the described optimizations, stream truncation and 1-regularity
perform best and contribute most to the reduction of symbols. Because uni-
form refinement only affects the coarsest levels only a few symbols are omitted
for our adaptive test models. Overall, the number of symbols that have to be
coded averages out to around half the number of nodes.
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7.2.4 Context groups

With the steps in the previous section, we used the rules of the refinement
scheme to eliminate code symbols in the cases where the refinement scheme
leaves no room for choice. The steps above reduce the binary representation
of the refinement tree to a compact, redundancy-free representation without
even looking at the characteristics of the particular input model. Models that
appear in practice, however, do show certain characteristics. Just like two
adjacent pixels in a digital photograph are likely to be similar, the refinement
grades in hierarchical meshes typically tend to be locally similar.

Luckily, our forest structure admits the definition of neighbors, which lets us
easily determine the effects of locality. We call two nodes within one level of the
hierarchy adjacent if their element counterparts in the mesh of that level share
an edge. Due to the locality of the refinement depth, the split information of
two adjacent nodes is highly correlated, so the refinement state of the neighbor
node is a valuable hint. For instance, 23k of the 96k nodes of the fandisk model
have children, which gives each hierarchy triangle the probability of 24% of
being split. Given the knowledge that a particular neighbor is a leaf, the
probability of being subdivided drops to 7%. If all three direct neighbors are
leaves, that probability is a mere 1.2%.

Let X be the binary stream of split data. As shown by Shannon [1948], the
entropy

H(X) = 1∑
i=0

−p(i) log(p(i)),
measured in bits per symbol, is the information content of X. It poses a lower
bound for the code length of any encoding of the message X, where p(0) and
p(1) are the probabilities of X being 0 or 1, respectively. Good entropy coders,
such as arithmetic coding [Witten et al., 1987], approach this lower bound in
the limit and are thus optimal in that sense.

If we do have additional information about X, for instance the state of the
neighbor elements, the code length can be reduced. Let Y be an informa-
tion source that is correlated to X (in our case y ∈ Y describes a particular
configuration of refinement states of the neighbor elements). The amount of
information that actually has to be stored is measured by the conditional en-
tropy

H(X ∣Y ) = ∑
y∈Y

p(Y =y) 1∑
i=0

−p(i∣Y =y) log p(i∣Y =y),
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that is, the amount of new information in X, given that we already know Y .
If X and Y are correlated, H(X ∣Y ) is strictly less than H(X).
In our implementation, we use context groups as a simple measure to take
advantage of the correlation of hierarchy elements. Recall that we specify with
one bit whether the current node is refined as we traverse the nodes in the
trees level by level. Whenever a binary code symbol is produced, we check
the status of the neighbors. If the neighbor has already been visited during
traversal, its refinement status will be known to the decoder. Thus we can
use the refinement status of already processed neighbors as the definition of
contexts: a neighbor can either be refined (△▽ ), not refined (△), or it has not
been processed before (?).

The status of the neighbor elements define the context group in which the
symbol is encoded. We write symbols of different context groups in separate
arrays, which are entropy coded independently. With arithmetic coding, each
context group y will compress to

H(X ∣Y =y) = 1∑
i=0

−p(i∣Y =y) log(p(i∣Y =y))
in the limit. The total code size per symbol is obtained by averaging the
entropies individual contexts weighted by their respective probabilities,

∑
y∈Y

p(Y =y)H(X ∣Y =y) =H(X ∣Y ),
which proves that contexts are an appropriate tool to capture all the mutual
information that is inherent in the correlation of neighboring elements.

So far we have not specified exactly how we define the contexts. The contexts
arise from the number of △▽ , △, and ? neighbors of a hierarchy node. We
write (x, y, z) to denote the context with x △▽ situations, y △ situations, and
z ? situations. For the triangle hierarchy setting, all of the possible cases are
listed in Table 7.2.

7.2.5 Traversal order

In this section we review the compression rates within the single context groups
and discuss the impact of the hierarchy traversal strategy on them.

The level-wise traversal of the hierarchy is essential to a progressive coding.
Still it leaves freedom to choose any iteration of nodes within each level. This
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Group Naïve Traversal Improved Traversal
(△▽ ,△,?) #symb %1’s bits/symb #symb %1’s bits/symb

(0, 3, 0) 13606 2% 0.123 681 10% 0.517
(1, 2, 0) 5603 37% 0.954 30 50% 1.400
(2, 1, 0) 5913 82% 0.693 91 78% 0.945
(3, 0, 0) 12146 100% 0.003 685 100% 0.041
(0, 2, 1) 14314 6% 0.340 29789 5% 0.289
(1, 1, 1) 6373 43% 0.992 12079 72% 0.860
(2, 0, 1) 14130 99% 0.049 33227 98% 0.129
(0, 1, 2) 17256 10% 0.487 40996 23% 0.772
(1, 0, 2) 18520 94% 0.342 20944 96% 0.222
(0, 0, 3) 30855 55% 0.994 1 100% 5.000
Culled 164356 0 164549 0

Total 303072 0.23 303072 0.20

Table 7.2: Population of the context groups for the naïve and improved traver-
sal strategy on the feline model. For each strategy we provided the number
of symbols in each context group, the percentage of 1’s among those symbols,
and the efficiency in bits per symbol.

choice directly affects the distribution of the symbols over the context groups
as the context of a node solely depends on the refinement state of its neighbors
and therefore on the fact whether these have been already visited.

A customary traversal scheme would visit the children of each node in a fixed
ordering. Table 7.2 shows the distribution of the symbols in each context
group for one of our test models. Here naïve traversal refers to a strategy
where children are visited in order.

In our implementation the elements incident to the parent’s vertices are visited
first. Additionally, local indexing of parent elements determines the order of its
children. Hence context group (0,0, n), where none of the neighbors is known,
contains the most entries. This group, though, is virtually incompressible as
we cannot takte advantage of mutual information. The same holds for context
groups where the extra information is rather ambiguous, e.g., (1,1,1), (1,2,0),
and (2,1,0) in the triangle setting. On the contrary, the other context groups
perform very well but are less populated.

The positive effects of an adaptive traversal order have been observed in Angle-
Analyzer [Lee et al., 2002] for surface meshes. Also, Schnabel and Klein [2006]
optimize the octree traversal in each level. In this spirit, we designed a new

99



Chapter 7 Compression of adaptive multiresolution meshes

(a) feline
(127020, 504)

(b) horse
(48186, 220)

(c) heat transfer
(48652, 2)

(d) femur
(4474, 532)

(e)
rabbit

(34k, 210)

(f) bones
(2809, 3882)

(g) venus
(69338, 388)

(h) fandisk3
(43048, 4828)

(i) fandisk4
(23312, 258)

(j) shoulder
(66366, 293)

(k) blade
(30866, 497)

(l) rockerarm
(22171, 368)

(m) torso
(33334, 265)

(n) fertility
(113097, 265)

Figure 7.5: The test set used in our experiments (the number of vertices at the
finest resolution, and the number of elements of the base mesh).

traversal scheme (Improved Traversal in Table 7.2) to redistribute the symbols
and maximize the overall compression. Instead of ordering the children in a
fixed manner, we first iterate over every tree and collect all nodes at a certain
depth. This allows for a global optimization of the level-wise node traversal.

The principle of our algorithm is to maximize the mutual information that
can be exploited for encoding each node. To this end, we prioritize each node
by the entropy of its current context. Therefore, nodes that already profit
from encoded neighbors will be conquered first, which in turn provides more
information to its unprocessed neighbors. Clearly all nodes that are skipped
by the coder due to optimizations from Section 7.2.3 feature a zero entropy
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and will hence be traversed before all other nodes. A promising candidate
for prioritization of the remaining nodes is to use the actual entropies of the
individual contexts. The greedy strategy traverses nodes in the context with
lowest entropy first in order to minimize the overall compression rate. Ex-
periments showed that this strategy already achieves significant improvements
in compression. Learning the entropies of the contexts, however, is expensive
in terms of compression performance as well as computational cost. Once the
learning phase is settled, the algorithm sticks with a fixed prioritization of con-
texts. To remove all effects of the learning process of the contexts’ entropies
from the traversal, we additionally investigated fixed priorities for the nodes,
i.e., a fixed order of contexts during the search for the next node to conquer.

We looked at different orderings:

• increasing by the learned (settled) entropies of contexts,

• increasing by the number of unknown neighbors, and

• decreasing by the difference of known coarse and known refined neigh-
bors.

In the case of ties we also tried all possible permutations.

The tests revealed that we can substantially improve the performance of the
traversal by skipping the learning process. Although we could not identify a
single strategy that performed best on the entire set, ordering the contexts
as in Table 7.2 (increasing by number of unknown neighbors and breaking
ties increasing by the number of known refined neighbors) constantly provided
good results. Therefore we chose this ordering as the default for our coder and
for all the presented tests.

As a result of our choice, the context group (0,0, n) contains almost no entries—
in fact, it will always be comprised of one symbol if the mesh represents a
connected surface. The nodes are thus conquered in a region-growing manner,
so nodes whose neighbors are all known become extremely rare (cf. group(3,0,0), (2,1,0), and (1,2,0) in Table 7.2). Furthermore, the traversal di-
rectly affects the nodes’ order which causes the change in the number of culled
out symbols. Reviewing the final compression rates on our test models shows
an average improvement of 7%.

101



Chapter 7 Compression of adaptive multiresolution meshes

Model #Frames Average Total Diff.

bunny 21 585 (1002) 12280 (21046) -42%
heat transfer 11 420 (1125) 4621 (12376) -63%
cloth 15 459 (472) 6888 (7085) -3%

Table 7.3: Compression results for time-varying sequences. Left to right:
Model, number of frames in the sequence, average code size per frame in
bytes for dynamic (static) coder, total code size in bytes for dynamic (static)
coder, and the difference in code size between dynamic and static coder.

7.2.6 Time-varying sequences

As we observed, we can profit from the correlations between adjacent elements.
We can profit in the same way when we have a time-varying series of refine-
ments of a common base mesh. Here, we assume that the degree of refinement
varies only a little from one frame to another, just as one assumes smooth
transitions for animated geometries or videos.

When processing a hierarchy node in a series, we query the state of the cor-
responding node in the previous time frame, which can give us one of three
states:

• it was a node with children,

• it is a leaf node, or

• it didn’t exist

in the previous frame. Thus, the number of contexts triples if we also include
the status of the previous frame in the contexts.

If the refinement trees don’t vary much between the time steps, then contexts
corresponding to the first case will be mainly filled with ones, while the latter
two will primarily contain zeros. Thus, grids which equal their preceding frame
can be stored at no cost, aside from a small overhead due to the use of more
contexts. On the contrary, if the grids are not correlated, the entropy of the
individual contexts can never be worse than in the static setting, since symbols
from one context are simply spread to three, maintaining or improving symbol
possibilities. Table 7.3 shows the results of the time series adaption applied to
three time-varying hierarchies.
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Figure 7.6: The three test sequences used. (Top) Planar domain refined driven
by heat transfer computations (showing temperature as z-component).
(Middle) View-dependent refinement taking curvature, visibility and silhou-
ette into account (as proposed in [Settgast et al., 2004]). (Bottom) Cloth
simulation with curvature-dependent refinement.

7.3 Geometry compression

Thus far, we presented strategies to encode the base domain of a mesh as well as
the hierarchical structure inherent to the adaptive refinement. In this section
we extend our coder to the compression of the geometry of adaptive hierarchies
based on progressive coding schemes. First we will introduce the concept
of multiresolution analysis for surfaces with arbitrary topology followed by a
description of zerotrees as a method for the coding of wavelet decompositions.
Then we present a context model for entropy coding to exploit interband and
intraband dependencies between wavelet coefficients.
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7.3.1 Multiresolution analysis

Multiresolution analysis and wavelets have proven to be powerful tools for use
in numerical analysis and signal processing. Their power stems from their abil-
ity to decompose complicated functions into coarse approximations together
with high-frequency details called wavelet coefficients. A multiresolution anal-
ysis of a measurable function f with finite energy defined over the domain M ,
i.e., f ∈ L2(M), consists of an infinite chain of nested linear function spaces{∅} = V −1 ⊂ V 0 ⊂ V 1 ⊂ ⋅ ⋅ ⋅ ⊂ V j ⊂ L2(M), so that ⋃j≥0 V

j is dense in L2(M).
Here, the subspace V j contains the approximation of f at resolution j, with the
approximation quality increasing as j increases. Given an inner product ⟨⋅, ⋅⟩,
we can define orthogonal complement spaces

W j ∶= {f ∈ V j+1 ∣ ⟨f, g⟩ = 0, g ∈ V j},

that encode the differences between two successive levels of resolution. A cru-
cial building block of the multiresolution analysis is the construction of the
wavelets, i.e., determining basis functions ψj

i for the spaces W j. Intuitively,
we would like the wavelets ψj

i to be orthogonal to the basis functions ϕj
i′ of V j.

This condition, referred to as semi-orthogonality, ensures that when decompos-
ing a function f j+1 ∈ V j+1 into a low-resolution part f j ∈ V j and a detail part
hj ∈W j, f j is the unique function in V j minimizing the least-squares residual
⟨f j+1 − f j, f j+1 − f j⟩. An even stricter condition, called full orthogonality, ad-
ditionally requires the wavelets to form orthogonal bases for the complement
space W j, that is ⟨ψj

i , ψ
j
i′⟩ = 0 unless i = i′. (Note, that orthogonality between

wavelets of different resolutions already follows from the semi-orthogonality.)
However, it is not always possible to construct (semi-)orthogonal wavelets
that are also locally supported, thus causing obvious practical disadvantages.
Hence, dropping orthogonality requirements entirely can often be more conve-
nient. This less restrictive form of wavelets merely requires the spaces W j to
be some complement of V j in V j+1 and is called biorthogonal.

Classical wavelet constructions are based on translates and dilates of one func-
tion and are thus limited to simple domains such as intervals and rectangles.
However, such constructions, called first generation wavelets, can no longer be
used in more general settings such as wavelets on bounded domains or, as in
our case, wavelets on surfaces. To analyze data that live on surfaces of arbi-
trary topological type, we need wavelets that are intrinsically defined on the
surface and are adapted to a measure on it. On the other hand we would like
to keep all the desirable properties like local support in space and frequency.
These goals can be met by omitting translation and dilation in the wavelet
construction yielding the second generation wavelets.
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Constructions of second generation wavelets exist for both irregular and semi-
regular meshes. For the latter case, the pioneering work of Lounsbery et al.
[1997] provides a theoretical foundation for developing multiresolution analysis
based on surface subdivision schemes. For the adaptive hierarchies this con-
struction is the canonical choice; subdivision schemes also start with a coarse
control polyhedron M0 and recursively generate finer meshes M1,M2, . . . that
converge to some limit surface M∞. In each subdivision step, the geometry of
M j+1 is computed by linearly blending the vertices of M j, where the weights
for the blending depend entirely on the connectivity of the mesh. Thus, we
can write the subdivision step as

X
j+1 = Pj

X
j, (7.1)

where Xj is a matrix containing the x, y, and z coordinates of the vertex i in
the ith row, and Pj is a non-square matrix containing the blending weights.
Numerous subdivision schemes have been proposed and we refer the reader to
the course notes of Zorin et al. [2000] for an overview of the most prominent
schemes and their properties. Naturally, we require the subdivison scheme to
be based on the same refinement operator used to generate the hierarchies
(cf. 7.2.1). Furthermore, we need the scheme to be local, stationary, continu-
ous, and uniformly convergent. For this setting, Lounsberry et al. show the
existence of nested linear spaces V j(M0) that are adapted to the root grid M0

in that they consists of functions having M0 as the domain. In particular, we
can define the scalar basis functions for V j(M0) to be

ϕ
j
i ∶= ⎛⎝ lims→∞

s∏
k=j

P
k
⎞⎠eji , (7.2)

where Pk is as in Equation (7.1), and e
j
i is a vector containing 1 as the i-th

entry and zero for all others. Since the subdivision scheme is required to
be local and uniformly convergent for any choice of control points, the basis
functions must exist and will exhibit the same properties, e.g. continuity or
smoothness, as the limit surface. From Equation (7.2) we see that each of the
basis functions ϕj

i can be written as a linear combination of the functions ϕj+1
i .

Hence they are refinable. It is convenient to write this statement in matrix
form as

Φj = Φj+1
P

j, (7.3)

where Φj denotes the row matrix of basis functions ϕj
i . Thus, the linear spaces

V j(M0) associated with the mesh M0 are indeed nested.

The next step in the construction is to determine the basis functions for the
complement spaces, i.e., a set of wavelets Ψj = {ψj

1
, ψ

j
2
, . . .} spanning W j(M0).
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A straightforward choice for the wavelets ψj
i is to use the subset N j+1 of basis

functions in V j+1(M0) which are associated to new vertices (introduced when
subdividing M j). More concretely, we define N j+1 to be:

N j+1 ∶= {ϕj+1
i ∣i ∈ Ij+1 ∖ Ij},

where Ik is the set of vertex indices of mesh Mk and Ik ⊂ Ik+1. Similarly, we
can denote the basis functions ϕj+1

i associated to old vertices (already present
in M j) as Oj+1. This way we can write Φj+1 in Equation (7.3) in block matrix
form as (Oj+1N j+1) and get

Φj = (Oj+1N j+1)(Oj

Nj) ,
where Oj and Nj are the corresponding submatrices of Pj. It is easy to show
that N j+1 and Φj together span V j+1(M0) if and only if Oj is invertible which
is true for most primal subdivision methods. In fact, for interpolating sub-
division schemes Oj is the identity matrix. Because N j+1 is in general not
orthogonal to Φj, this basis will not produce best least-squares approxima-
tions. Lounsberry et al. therefore present two constructions to improve the
approximation quality. The first is to orthogonalize the functions N j+1 by sub-
tracting out their projection into V j(M0). However, this leads in general to
globally supported wavelets, causing the multiresolution analysis and synthesis
to require quadratic time. The second construction enforces the wavelets to
be locally supported and thus addresses the issue of linear time analysis and
synthesis. To restrict the support of the wavelet ψj

i a priori, we require it to
be a linear combination of ϕj+1

i ∈ N j+1 and some basis functions of V j(M0):
ψ

j
i = ϕj+1

i + ∑
i′∈Ij

i

α
j
i′,iϕ

j
i′ , (7.4)

where Iji ⊂ Ij and the coefficients αj
i′,i are such that the least-squares norm of

the projection of ψj
i into V j(M0) is minimal. Typically Iji consists of indices

of functions in Φj that have overlapping support with ϕ
j+1
i . Although this

biorthogonal wavelet construction satisfies the linear time requirements (at
least for interpolating subdivision schemes), the construction still requires the
evaluation of inner products between all basis functions of V j(M0) which can
cause high preprocessing demands.

Schröder and Sweldens [1995] present an alternative construction extending
the idea of Lounsberry et al. In Equation (7.4) we started with function
ϕ
j+1
i ∈ N j+1 as a wavelet and improved its approximation properties by blending
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it with the basis functions of V j(M0). This idea can be generalized by posing
other constraints on the coefficients αj

i′,i. Then we can construct biorthogonal
wavelets with custom properties. For example, we can require the wavelet to
have vanishing moments, i.e., the integral of that wavelet multiplied with a
certain polynomial Pk is zero, by solving the equation

0 = ⟨ϕj+1
i , Pi⟩ + ∑

i′∈Ij
i

α
j
i′,i⟨ϕ

j
i′ , Pk⟩. (7.5)

This process can be seen as “lifting” the simple wavelet ϕj+1
i to a more efficient

one which is why it is referred to as the lifting scheme. In general, the lifting
scheme can be applied to any basic multiresolution analysis to construct a
more performant one. In the compression community it is common practice
to use lifting to ensure that the wavelets have at least one vanishing moment,
i.e., that the wavelets have a vanishing integral. Consequently, setting Pk in
Equation (7.5) to the constant function, the inner products reduce to the inte-
grals of the basis functions over M0 and we can find suitable lifting coefficients
as

α
j
i′,i = ∫M0 ϕ

j+1
i∣Iji ∣ ∫M0 ϕ

j
i′

, (7.6)

where ∣Iji ∣ is the number of basis function used to lift ϕj+1
i . This way the

resulting wavelets will have a vanishing integral. In general, lifting does not
improve the ability of the basis to compress, but it causes smaller errors in
the decomposition of the signal and thus improves the rate-distortion curves.
The presented construction already possesses the advantage that we no longer
have to evaluate the inner products between all basis functions Φj. However,
we still have to compute the integrals of all functions. Different schemes have
been proposed in the literature, most of them resorting to numerical quadra-
ture of the functions. Since most of the wavelet transforms are designed to
analyze the geometry of surfaces of the same topological type as M0 but not
necessarily with the same metric, the transform is usually constructed based
on a combinatorial inner product that equally weights all elements in M0.

In our implementation, we compute the wavelet transform based on interpola-
tory subdivision schemes. For the triangle hierarchies we use the butterfly sub-
division [Dyn et al., 1990] and for quadrilateral hierarchies we use the scheme
in [Kobbelt, 1996]. For the construction of the wavelet ψj

i associated to the
midpoint of the parent edge (vk, vl), we lift the function ϕj+1

i using the two basis
functions associated to the endpoints of that edge, i.e., Iji ∶= {k, l}. Quadrilat-
eral hierarchies additionally contain wavelets corresponding to vertices inserted
in the midpoint of elements. In these cases, we define Iji ∶= {o, p, q, . . .}, where
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Chapter 7 Compression of adaptive multiresolution meshes

(a) Linear wavelet. (b) Butterfly wavelet.

(c) Kobbelt wavelet for edge midpoint. (d) Kobbelt wavelet for face midpoint.

Figure 7.7: Graphs of unlifted (left) and lifted (right) wavelets based on linear
triangular (a), Butterfly (b), and Kobbelt’s (c) and (d) subdivision scheme.
The coarse control polyhedron M0 is shown as wireframe. Elements in
the support of the wavelet are colored according to function values (values
increase as the color goes from red to gray to green).

(vo, vp, vq, . . . ) is the parent element for vertex vi. Due to our choice to use
a combinatorial inner product there exists a recurrence relation between inte-
grals of scaling functions at different resolutions. In particular, since triangle
areas shrink by a factor of 4 under our subdivision schemes, we can compute
the lifting weights in Equation (7.6) as αj

i′,i = 1/(4∣Iji ∣). Although this does not
account for extraordinary points in the support of the scaling functions, we
use these weights as an approximation to keep the computational cost for the
transform at a minimum. Figure 7.7 shows graphs of wavelets for the different
types.

Once the coefficients in level j are computed, we adjust their scaling by a factor
of 2−j. This scaling results from L2-normalizing the subdivision basis functions.
It is commonly applied in compression to compensate for their shrinking sup-
port on finer levels. Note that the scaling provides higher accuracy on coarser
levels and causes stronger quantization for coefficients on finer levels.

7.3.2 Embedded coding of wavelet coefficients

The multiresolution analysis presented in Section 7.3.1 can be used to decom-
pose a function f ∈ V n+1(M0) into a lower resolution part in V n(M0) and a
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detail part in W n(M0):
f = ∑

i∈In+1
an+1i ϕn+1

i = ∑
i∈In

ani ϕ
n
i + ∑

i∈In+1∖In
cni ψ

n
i .

Applying this decomposition successively, we can represent f entirely in terms
of the wavelet coefficients {cji}. This representation facilitates compression
since a great amount of correlation is removed during the transformation. In
particular, the wavelet coefficients capture to which extent function values fail
to be similar within a particular region. Therefore, the distribution of wavelet
coefficients is usually centered around zero with their magnitudes decaying at
finer resolutions. This characteristic of the coefficients is the key to progressive
compression and allows for embedded coding.

The general principle of embedded coding is to encode the most important
information—which yields the largest error reduction—first. This way, the
decoder can stop the reception at any point and reconstruct the data with
the least amount of distortion possible with that number of transmitted bits.
Hence, an embedded code contains all lower rate codes “embedded” at the
beginning of the bit stream.

Considering the error in the decoded function f̂ to be the squared L2-norm of
the difference f − f̂ , i.e.,

∫
M0

(f − f̂)2 = n

∑
j=−1

∑
i∈Ij+1∖Ij

(cji − ĉji)2∫
M0

(ψj
i )2,

the coefficients with the largest magnitude cause the most decrease in error
since the wavelets are normalized and the {ĉji} are initialized with zero. Coef-
ficients with larger magnitude should thus be sent first. We can even extend
this approach to the binary representation of ∣cji ∣ by ranking the bits according
to the decrease in error they are causing. This ranking induces a bitplane
transmission in which bits are transmitted in passes with the most significant
ones coded in the first pass. Assume the coefficients to be uniformly quantized
in the interval (−2T0,2T0), i.e., each coefficient is represented in terms of a sign
bit and refinement bits bk(cji), where cji = sign(cji)∑k bk(cji)Tk, and Tk = T0/2k.
In the first pass, the embedded coding only transmits the sign and location for
significant coefficients, i.e., whose magnitude exceeds the threshold T0. Then,
in subsequent passes, the threshold is halved and locations and signs of coef-
ficients that became significant with respect to Tk are transmitted. Each of
these sorting passes is followed by a refinement pass in which the refinement
bits for significant coefficients from previous passes are sent.
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Chapter 7 Compression of adaptive multiresolution meshes

Figure 7.8: Parent-child relationships in triangular and quadrilateral hierar-
chies. Solid circles indicate parents; empty circles indicate children.

A main feature of the described transmission scheme is that the locations of
wavelet coefficients do not have to be transmitted. If encoder and decoder
agree on a common traversal of coefficients, then the information that has to
be transmitted reduces to the results of magnitude comparisons (significance
bits) and the refinements bits. Due to their decay properties, we can further
organize coefficients into sets such that, with high probability, all coefficients
are below threshold. Therefore, performing set-based significance tests, only a
few bits are sufficient to determine the location of significant coefficients.

A sophisticated scheme for the partitioning of sets and the conveyance of sig-
nificance information is the SPIHT encoding [Said et al., 1996] that is based on
zerotrees. To adopt SPIHT to wavelet transforms for adaptive multiresolution
meshes we construct a tree organization of the coefficients by employing the
hierarchical relationship inherent to faces and edges of the considered meshes.
For our triangle hierarchies, coefficients have a one-to-one association with
edges of the coarser level. For quadrilateral hierarchies there are two types
of associations: vertices inserted at face midpoints are associated with these
faces, whereas vertices on edge midpoints are associated to these edges. The
resulting parent-child relationship of coefficient is depicted in Figure 7.8.

Based on the hierarchy of the coefficients, we can define the following sets to
be used in the SPIHT encoding:

• O(cji): set of all children of cji ,

• D(cji): set of all descendants of cji ,

• L(cji) = D(cji) ∖O(cji),
• {c0i }: set of all root coefficients.
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The significance test for a set T of coefficients can be written as the function

Sk(T ) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 max
c
j
i
∈T
∣cji ∣ ≥ Tk,

0 otherwise.

To simplify notation, we write Sk(cji) for the significance test of the set con-
taining the single coefficient cji .

Thus, if Sk(T ) = 0, all coefficients in a set are known to be insignificant. On
the contrary, if Sk(T ) = 1, the encoder and decoder must split T and perform
the test for the subsets. To keep the size of the code as small as possible, sets
are split so that subsets expected to be insignificant contain many coefficients
whereas subsets expected to be significant contain only a few coefficients. The
set partitioning is performed until all significant coefficients are contained in a
single-coefficient set and hence are identified as significant. In particular, the
set partitioning rules are:

• {c0i } and {D(c0l ) ∣ c0l ∈ {c0i },D(c0l ) ≠ ∅} are the initial sets,

• if D(cji) is significant then it is split into L(cji) and one single-coefficient
set for each child ckl ∈ O(cjl ),

• if L(cji) is significant then it is split into D(ckl ) for each child ckl ∈ O(cjl ).
Algorithm 4 presents a pseudo-code for the implementation of the described
embedded coding scheme. Lists are used to keep track of significant coefficients
(LSC), insignificant coefficients (LIC) and insignificant sets (LIS). Each set is
represented by the corresponding coefficient cji that is marked as type A if the
set is D(cji) or as type B if the set is L(cji). Note that the foreach-statement
in line 8 also enumerates sets that are added to LIS during its execution. As
long as the encoder and decoder initialize the lists LIC and LIS with the same
ordering of coefficients, just knowing the outcome of the significance test and
the refinement bits is sufficient to decode the magnitudes of the coefficients.
To derive the corresponding decode algorithm it suffices to replace output by
input. Additionally, with every received bit, the decoder has to update the
reconstructed coefficients {ĉji}. When the decoder receives that Sk(cji) = 1

in the k-th sorting pass, it sets ĉji = ±1.5 × Tk according to the additionally
received sign. Similarly, the decoder adds or subtracts Tk+1 to ĉ

j
i depending

on the refinement bit bk(cji) received in the k-th refinement pass.
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Algorithm: SPIHT

Data: Number of passes n, coefficients {cji}
output n;
LSC ← ∅, LIC ← {c0i }, LIS ← {c0i ∣ D(c0i ) ≠ ∅};
for k ← 0, . . . , n − 1 do

// k-th sorting pass

foreach c
j
i in LIC do

output Sk(cji);
if Sk(cji) = 1 then

output sign(cji) and move cji from LIC to LSC ;

8 foreach c
j
i in LIS do

if cji is of type A then

output Sk(D(cji));
if Sk(D(cji)) = 1 then

foreach c
q
l ∈ O(cji) do

output Sk(cql );
if Sk(cql ) = 1 then

output sign(cql ) and add cql to LSC ;
else add cql to LIC ;

if L(cji) ≠ ∅ then move cji to end of LIS as type B;
else remove cji from LIS;

else// c
j
i is of type B

output Sk(L(cji));
if Sk(L(cji)) = 1 then

add each cql ∈ O(cji) to LIS as type A;
remove cji from LIS;

// k-th refinement pass

foreach c
j
i ∈ LSC do

if cji did not become significant in this pass then

output bk(cji);
Algorithm 4: Embedded coding of wavelet coefficients based on set partition-
ing (cf. [Said et al., 1996]).
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7.3.3 Entropy coding

The zerotree-based coding presented in Section 7.3.2 already provides efficient
compression rates at low computational cost. As with any other coding scheme,
the efficiency of the zerotree coder can be further improved by entropy-coding
its output. In this Section we will employ context-conditioning for the coding of
significance bits to exploit the correlation between nearby wavelet coefficients.
Sign and refinement bits, on the other hand, show much less correlation and
the gain achieved by entropy coding usually does not outweigh the additional
computational cost.

There are two forms of statistical dependencies between wavelet coefficients:
intraband and interband correlation. Intraband correlation describes the cor-
relation between coefficients within the same subband whereas the interband
correlation refers to the dependencies between parent and child coefficients.
Following an information theoretic analysis of the statistical dependencies be-
tween wavelet coefficients, Denis et al. [2010] recently observed that the in-
traband correlation is systematically stronger than the interband correlation
for multiresolution meshes. Moreover, to fully exploit the correlation between
coefficients, composite coding designs incorporating both intraband and inter-
band correlation must be employed.

To exploit intraband correlation, the SPIHT coder conveys significance infor-
mation for children of one parent as a single symbol. Different context models
are used based on the number of insignificant children m ∈ {1,2,3,4}, where
context m encodes an alphabet of 2m symbols. Each context is thus condi-
tioned on the fact that a certain number of children are already significant.
However, as depicted in Figure 7.9, there are coefficients within the same sub-
band (squares) that are closer than the sibling coefficients in the hierarchy

Figure 7.9: The neighbors (squares) that are used for context-based coding of
significance bits. The black circle marks the current coefficient and gray
circles represent sibling coefficients that are grouped in the SPIHT coder.
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(light gray). Expecting a stronger correlation between direct neighbors within
a subband, we construct context groups based on their significance informa-
tion. We follow the ideas of our connectivity coding and use the number of
significant, insignificant and unprocessed neighbor coefficients. In particular,
we define four context groups representing the configurations:

• all processed neighbors are significant,

• all processed neighbors are insignificant,

• all neighbors are unprocessed, and

• there are significant and insignificant neighbors.

This choice of context groups can be used for various mesh types and is robust
if the number of neighbors varies due to boundaries, adaptivity, or irregular
face degrees. In fact, we can even extend the context groups for entropy
coding of the sets {D(cji)} and {L(cji)}. Thus, by coding the different set
types separately, we triple the number of contexts to twelve. Neighbors of a
set are again sets of the same type and are counted significant if their respective
set significant test is positive, i.e., Sk(T ) = 1.
The introduced coding can be further improved by also exploiting their inter-
band correlation. To this end, we incorporate the significance information of
coefficients in the parent level. This can be achieved by additionally doubling
the number of contexts for coefficients and sets {D(cji)}. The choice of the
context then additionally depends on the significance of the coefficient’s par-
ent. For a set D(cji), we switch the context if the coefficient cji is significant,
i.e., Sk(cji) = 1. For a set L(cji), no doubling of contexts is needed; if all parent
coefficients cql ∈ O(cji) are insignificant L(cji) will always be significant.

7.3.4 Geometry of AMR meshes

So far, we described a wavelet-based coding scheme for scalar functions defined
on multiresolution meshes. Nonetheless, the presented scheme is not limited to
this setting and in this section we will see that minor extensions are sufficient
to efficiently compress the geometry of adaptive hierarchies.

To encode the geometry of a polygonal surface, we first have to extend our
scheme to vector-valued functions. Various strategies for generalizing the con-
cept of significance and signs to the vector case have been examined [Kho-
dakovsky et al., 2000] but did not outperform the simple, yet effective strategy
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to treat each component individually. However, vector-valued coefficients typi-
cally exhibit a fair amount of correlation between their components and we can
improve the compression by choosing a proper transform to make the compo-
nents more statistically independent. Furthermore, the choice of a transform
should employ knowledge of the distortion metric. The simple measure used
as motivation for the scalar coding scheme in Section 7.3.2 is typically less ap-
propriate for vector-valued functions. The human visual system, for example,
is less sensitive to the chrominance than the luminance of a color. Represent-
ing colors by their chrominance and luminance therefore not only improves
decorrelation but also allows for coarser quantization of chrominance compo-
nents without a significant loss of the overall perceptual quality. Similarly,
it has been observed that wavelet coefficients of the geometry tend to point
into normal directions. We can reduce this correlation of the components by
representing them in a local frame induced by the tangent plane of the surface.
Moreover, common distortion measures for the geometry of surfaces are less
sensitive to tangential errors than normal errors, which justifies an increased
precision for the coding of the normal components. In our implementation,
we use a quantization that is four times finer for the normal components since
this factor has been reported as being reasonable in the literature.

Another aspect that has to be considered is the adaptivity of the multiresolu-
tion meshes. We not only know the maximal level at which detail coefficients
occur, we also know where in the hierarchy there are no coefficients due to
adaptivity. The zerotree coder can thus simply skip these coefficients, hence
no bit will be transmitted. Additionally, we have to handle non-existent co-
efficients when determining the context of significance bits for neighbors – we
consider these coefficients as unprocessed.

Because zero coefficients are particularly well handled by the zerotree coder,
an alternative approach is to fill up the hierarchy of wavelet coefficient with
zeros producing a uniformly refined tree structure, as done in the normal mesh
compression presented in [Khodakovsky and Guskov, 2003]. Although the im-
pact on the code size for the geometry is relatively small, the data necessary to
reconstruct the adaptivity is more costly than our proposed method, especially
if the mesh refinement is not geometry related.

In our experiments we use a common threshold T0 for all the individual compo-
nents. In particular, we choose T0 as the greatest magnitude of a coefficients’
components. Remember that the normal components have been scaled up to
achieve increased precision. The number of bit planes is the same for all com-
ponents and has been chosen to achieve L2 errors that are comparable to those
caused by uniform 12-bit quantization.
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For the progressive transmission of multiresolution meshes it is important to
interleave the connectivity and geometry data. This enables the decoder to
reconstruct an intermediate mesh from any prefix of the stream. Therefore
a common mesh traversal strategy has to be chosen for the geometry and
hierarchy compression. Nevertheless, the traversal used by our coder can be
changed to any progressive conquering of the mesh in order to facilitate a
special geometry coder.

7.4 Results and discussion

We measured the performance of our hierarchy and geometry compression for
a test set comprised of the 14 models shown in Figure 7.5. Furthermore, we
evaluated the extension of the hierarchy coding to time-varying refinements
for the three sequences depicted in Figure 7.6. The test set contains triangu-
lar and quadrangular hierarchies that come from various sources in different
application areas. The uniform remeshes of the feline, horse, rabbit and venus
models are taken from the PGC data set of Khodakovsky et al. The respec-
tive adaptive versions have been constructed using local coarsening based on
various curvature measures. Bones and heat transer result from the numerical
solution of optimal control problems computed at the Zuse Institute Berlin.
The femur model, courtesy of Oliver Sander, was refined according to criteria of
a two-body contact problem in a human knee joint. All quadrilateral multires-
olution meshes have been generated using QuadCover [Kälberer et al., 2007]
parameterizations. Again, the adaptive versions are constructed by coarsen-
ing according to curvature criteria except for the fandisk4 and the rockerarm
model that are based on heat diffusion and thin shell simulation. Since bones,
heat transfer, and femur are not generated with our own hierarchy manager
we additionally have to remember how non-conforming situations are resolved
to be able to losslessly reconstruct the connectivity for these models. These
orientation bits have been entropy coded and the impact on the code size is
reflected in the presented results.

Table 7.1 details the impact of the individual strategies for hierarchy coding
presented in Section 7.2. In particular, it shows the efficiency of stream trun-
cation and 1-regularity as well as the context-based coding. On the other
hand, there are only a few symbols that can be omitted due to uniform refine-
ment since our test models feature strongly varying refinements. Though the
stream truncation exploits the rather simple observation that trailing 0 sym-
bols are not needed for the reconstruction, it still has a significant impact on
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Triangle Mesh PMC Wavemesh PGC Our
v geo con L2 geo con L2 geo con L2 geo con L2

ad
ap

ti
ve

bones 2809 20.63 2.34 47 21.60 4.44 47 – – – 17.81 1.84 44
fandisk3 43048 11.15 1.53 38 11.94 2.87 37 – – – 5.15 0.58 27
feline 127020 10.18 1.23 37 10.33 2.40 37 – – – 2.28 0.48 36
femur 4474 17.12 1.32 38 18.53 2.75 38 – – – 13.89 0.71 24
heat trans 48652 2.22 1.21 0 3.57 2.52 0 – – – 0.07 0.64 4
horse 48186 11.30 1.32 40 11.39 2.37 40 – – – 3.16 0.53 40
rabbit 34255 12.94 1.47 43 13.28 2.81 43 – – – 5.78 0.64 32
venus 69338 12.60 1.50 33 12.39 2.60 33 – – – 5.12 0.52 26

u
n
if
or

m

fandisk3 154498 4.47 0.03 40 4.40 0.04 28 1.99 0.01 26 1.72 0.01 24
feline 258046 5.34 0.01 37 2.64 0.01 31 1.14 0.00 34 1.09 0.00 34
horse 112642 5.51 0.01 40 3.45 0.01 32 1.35 0.00 40 1.30 0.00 40
rabbit 107522 5.65 0.01 43 3.90 0.01 43 1.93 0.00 32 1.88 0.00 32
venus 198658 5.67 0.01 35 3.63 0.01 40 2.04 0.00 30 1.96 0.00 30

Avg. (adaptive) 12.27 1.49 35 12.88 2.85 34 – – – 6.67 0.74 29
Avg. (uniform) 5.33 0.01 39 3.54 0.02 35 1.69 0.00 32 1.59 0.00 32

Table 7.4: Connectivity and geometry rates (columns con and geo) for triangle
hierarchies in bits per vertex. Column v lists the number of vertices, and L2

the root mean square errors reported by metro in units of 10−6 with respect
to the bounding box diameter.

the entropy of the mesh, i.e., keeping the zeros while entropy coding expanded
the codes by 17%. Together the strategies of Section 7.2.3 nearly halve the
number of symbols and generate a compact representation of the hierarchy.
Due to a uniform distribution of the symbols, the compact binary representa-
tion is almost incompressible which is elucidated by the values in parentheses in
Table 7.1. However, employing knowledge about the mesh structure to derive
context models and thus exploit mutual information inherent in the refinement
improves the entropy coding by approximately 50%.

Table 7.2 lists the performance of the individual context groups in terms of
compression rates. It reveals huge gaps between the performance of the differ-
ent groups that can be attributed to the mutual information inherent to each
group. Table 7.2 also provides a comparison to the distribution of symbols
resulting from our improved traversal (cf. Section 7.2.5) illustrating the shift
of symbols among the groups. As a consequence, the mutual information avail-
able for the coding of each symbols is balanced and an average compression
gain of 7% is achieved for our test set.

The compression rates for both the connectivity as well as the geometry are
combined in Table 7.4 for the triangular respectively Table 7.5 for the quadran-
gular test models. Although the connectivity is trivial in the uniform case, we
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Quad Mesh PMC Our
v geo con L2 geo con L2

ad
ap

ti
ve

blade 36358 9.31 2.14 55 3.67 0.28 36
fandisk4 23657 5.50 0.33 58 2.73 0.07 39
fertility 134351 8.11 2.22 55 1.59 0.32 47
rockerarm 24460 8.52 1.46 61 3.50 0.23 44
shoulder 77573 8.80 2.08 56 1.75 0.31 59
torso 39086 9.23 2.10 58 2.64 0.31 54

u
n
if
or

m

blade 127234 4.48 0.00 55 1.02 0.00 52
fandisk4 263682 3.61 0.00 52 0.51 0.00 57
fertility 274426 4.15 0.00 55 0.67 0.00 52
rockerarm 300546 5.06 0.00 61 1.20 0.00 62
shoulder 94208 4.10 0.00 56 0.41 0.00 57
torso 269826 4.03 0.00 58 0.34 0.00 45

Avg. (adaptive) 8.11 1.72 57 2.65 0.25 49
Avg. (uniform) 4.24 0.00 56 0.69 0.00 54

Table 7.5: Connectivity and geometry rates for quadrilateral hierarchies in bits
per vertex.

provide geometry coding results for all models for which the finest level geom-
etry information was also available. We provide comparisons to the single-rate
Polygonal Mesh Compression (PMC) [Isenburg, 2002] which achieves state-of-
the-art compression rates for both triangular and quadrilateral meshes. Addi-
tionally, for the progressive, wavelet-based compression of triangle meshes, we
present compression results of Wavemesh and PGC. For Wavemesh we use the
current version 2.1 which augments the irregular multiresolution scheme with
the ability to recognize and exploit uniform subdivision connectivity. PGC is a
well-proven, state-of-the-art geometry compression scheme which we extended
to adaptive and quadrilateral hierarchies. Although PGC is limited to uni-
form multiresolution meshes we include it in the comparison to evaluate the
efficiency of our context modeling.

The comparisons are guided by the reconstruction error introduced by uniform
12-bit quantization which was used for the PMC codec. The parameters for
Wavemesh, PGC and our coder have then been chosen to achieve a comparable
quality in terms of distortion. In particular, we set Wavemesh to uniform 12-
bit quantization for the adaptive models and zerotree encoding with lifting
radius 1 for the uniform ones. The root grids needed by PGC and our coder
have been compressed using uniform 12-bit quantization, too. To compute the
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error we use the root mean square error as reported by metro [Cignoni et al.,
1998] in units of 10−6 with respect to the bounding box diameter.

The experiments clearly demonstrate the efficiency of our compression scheme
for the coding of the hierarchy as well as the geometry. Regarding the hierarchy
compression, our scheme outperforms Wavemesh by an average factor of 3.8
respectively PMC by average factors of 2.0 for the triangular and 6.9 for the
quadrangular meshes. Furthermore, the introduced improved context models
enhance the PGC geometry compression by 7% on average for the uniform
triangle hierarchies. Moreover, the extension to adaptive hierarchies surpasses
PMC and Wavemesh significantly by average factors between 2.0 and 3.0.

In Table 7.3 we list results of our hierarchy coding for the time-varying se-
quences with and without the enhancements for utilization of temporal coher-
ence. Overall, the extensions to the static compression scheme, can signifi-
cantly improve the compression rates. This especially applies to cases with
highly structured refinements as found in data sets constructed during numer-
ical simulation. On the other hand, if the refinement is very irregular and
varies a lot (cf. cloth), the dynamic coding is on par with the static version.

Despite having a non-optimized prototype implementation, the times for load-
ing and parsing the uncompressed models from hard drive dominate the execu-
tion times in our tests. In particular, encoding and decoding of the connectivity
requires only a single traversal of the hierarchy in which each node is touched
once. All operations needed for processing a node like finding neighbors and
children, arithmetic coding of a symbol, and updating a priority queue can be
done in constant time. Note that the priority queue can be split into separate
doubly linked lists (one for each priority). Although, the geometry compression
involves multiple passes, coding time is still linear in the number of wavelet
coefficients and bit planes.

Further extensions and future work We took an in-depth look at the
connectivity compression of multiresolution meshes. Additionally, for the cod-
ing of the geometry we extended the proven PGC scheme to adaptive trian-
gular and quadrilateral hierarchies. In the literature, many tweaks have been
reported to further increase the geometry compression performance, for ex-
ample, the exploitation of correlations between sign bits, design of different
wavelet filters, and rate-distortion optimization. Many of these can be applied
directly to our geometry coding scheme.

Extending the context modeling for the significance bits of coefficients to incor-
porate the state in prior time frames enables us to take advantage of temporal
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coherency in time-varying sequences. We expect similar gains for the geometry
compression as for the connectivity part. Furthermore, the ideas presented for
both the hierarchy and geometry compression can be transferred to the coding
of adaptive tetrahedral and hexahedral multiresolution meshes and pose an
interesting direction for future work.
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Zusammenfassung

Physikalisch basierte Methoden zur Modellierung statischer und dynamischer
Eigenschaften flexibler Objekte sind weit verbreitet in den Bereichen der Com-
puteranimation, geometrischen Modellierung und numerischen Simulation. Ein
wesentlicher Vorteil dieser Methoden gegenüber rein geometrischen Verfahren
liegt in ihrer Fähigkeit, mit nur wenigen Vorgaben realistische Deformationen
zu produzieren. Da die zugehörigen Systeme jedoch hochdimensional und zu-
dem nichtlinear sind, lassen sich interaktive Raten für allgemeine, unreduzierte
Deformationen nicht erreichen. In dieser Arbeit beschäftigen wir uns mit der
Entwicklung effizienter Algorithmen für die Konstruktion von simplifizierten,
niedrigdimensionalen Modellen, die das Originalsystems approximieren und
sich für die Verwendung in interaktiven Anwendungen eignen. Insbesondere
präsentieren wir Techniken zur Konstruktion reduzierter Konfigurationsräu-
me deformierbarer Objekte sowie der Approximation der reduzierten inneren
Kräfte. Die vorgestellten Techniken sind automatisch und eignen sich zur Dar-
stellung großer Verformungen in denen nichtlineare Terme des dynamischen
Systems relevant sind. Um die Effektivität unserer Reduktionsstrategien zu
demonstrieren, entwickeln wir Systeme für die Echtzeitsimulation sowie für
die interaktive geometrische Modellierung elastischer Körper und Schalen und
vergleichen diese mit alternativen Lösungen.

Die in der Geometrieverarbeitung verwendeten spektralen Methoden zur Ana-
lyse gekrümmter Flächen basieren fast ausnahmslos auf dem Laplace–Beltrami
Operator. Sie profitieren von Eigenschaften wie der Invarianz unter Isometrien
oder der Robustheit gegenüber verrauschten Daten. Wir betrachten in die-
ser Arbeit alternative Differentialoperatoren deren Spektren und Eigenvekto-
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ren das Schwingungsverhalten digitaler Formen charakterisieren. Die diskreten
Operatoren sind sensitiv gegenüber extrinsischen Features (wie scharfe Kan-
ten) und ermöglichen somit zusätzliche Einblicke in die Geometrie. Basierend
auf diesem Konzept entwickeln wir die Vibration Signature – eine Multiska-
lensignatur, die erlaubt die Ähnlichkeit von Punkten einer Fläche zu bestim-
men.

Diese Arbeit beschäftigt sich zudem mit der Kompression von digitalen For-
men. Zu diesem Zweck entwickeln wir Strategien zur verlustfreien Komprimie-
rung adaptiv verfeinerter polygonaler Flächen. Unter Ausnutzung struktureller
Regularitäten der hierarchischen Netze erreichen wir hierbei Kompressionsra-
ten, die die führender Verfahren um ein Vielfaches übertreffen. Zusätzlich er-
weitern wir die Zerotree–Kodierung um die Verwendung statistischer Abhän-
gigkeiten innerhalb und zwischen Frequenzbändern der Waveletkoeffizienten.
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