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Abstract

The dynamic range limitations of current image output devices such as monitors and printers,

do not allow to visualize High Dynamic Range images correctly. Tone mapping helps to

solve this problem, but real-time performances are not yet achieved. In this thesis we analyse

the acceleration question about tone mapping in the context of monitors and printers. Two

different solutions are presented. For monitors, we describe a framework that accelerates any

complex pre-existing global tone mapping operator and its implementation on the hardware.

For printers, an integration of tone mapping with a fast colorimetric characterization model is

proposed. Furthermore the time-dependency characteristic of the Human Visual System is

analysed, and a model improving the performances of an existing one is presented.
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Zusammenfassung

Der  eingeschränkte  Dynamikbereich  derzeitiger  Bildausgabegeräte,  z.B.  Bildschirme  und

Drucker, gestattet  nicht die korrekte Darstellung von Bildern mit hohem Dynamikumfang

(High Dynamic Range Images). Tone Mapping hilft bei der Lösung des Problems, jedoch

gestattete der hohe Rechenaufwand keine Echtzeitanwendung. In dieser Arbeit wird die Frage

nach  Beschleunigungsmöglichkeiten  von  Tone  Mapping  im  Zusammenhang  mit

Bildschirmen und Druckern analysiert. Zwei verschiedene Lösungen werden präsentiert.Für

Bildschirme wird ein Framework-System beschrieben, das beliebige komplexe vorhandene

globale Tone Mapping-Operatoren beschleunigen kann, sowie dessenhardwarebeschleunigte

Implementierung. Für Drucker wird die Integration von Tone Mapping und einem schnellen

colorimetrischen  Charakterisierungsmodell  vorgeschlagen.  Darüberhinaus  wird  die

Zeitabhängigkeit  des  menschlichen  Sehsinns  analysiert  und  ein  verbessertes  Modell

desselben vorgestellt.
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Introduction
The accurate simulation of the distribution of light energy in scenes does not guarantee that

the displayed (or printed) images will have a realistic visual appearance. This is due to the

following reasons: first, the  range of the light energy in the scene may be vastly different

from the range that can be produced by the monitor (Low dynamic Range LDR). Second, the

visual state of the two observers (i.e. scene and monitor) are completely different. Third,  to

capture the  correct  appearance of  the  original  scene,  one needs  to  simulate  the  complex

behaviour of the Human Visual System (HVS).

Those reasons have to be considered to produce realistic images from High Dynamic Range

(HDR) data. The process of mapping HDR data to LDR is called tone mapping (TM).  

In many applications such as  real-time rendering, games, simulation etc., time constraints

reduce the possibility to use high quality TM facilities. To have usable TM operators we need

to speed up their computation also using available graphic hardware.

Numerous TM operators have been presented in the literature e.g. [Ar+03][As02][Ch+94]

[Co+01][Dr+03][DuDo00][DuDo02][Fa+02][Fe+96][Go+0][Na+90][Pa+98][Pa+00[Re+02]

[Sc+00][Sc94][TuRu93][Tu+99][TuTu99][Wa94][Wa+97].  However  these  operators  solve

just parts of the TM problem, and are usable only in some applications.  

Furthermore, the current graphic hardware is more flexible and suitable for programming;

however  several  limitations  still  reduce  the  possibility  to  implement  on  it  complex

algorithms. In fact, as discussed in Goodnight et al. [Go+03], troublesome aspect of GPU

programming  is  that  it  requires  exceedingly careful  optimization  in  order  to  extract  the

performance we would expect. Several factors, such as: limited memory bandwidth, driver

overhead (especially context-switching overhead), etc. contribute to this problem. Some of

these problems can be reduced but not avoided [Go+03]. 

The innovation introduced by NVIDIA [In03], with a high level programming language (CG

toolkit),  helps the programmers to speed up the programming phase However, the limited

number of assembly instructions (1024) reduces the possibility to implement a sophisticated

algorithm  without  any  modification.  Nevertheless,  if  we  are  able  to  overcome  these

limitations of the graphic hardware, the implementation on GPU of a TM operator will be a

stand-alone application that considers only some aspects of the TM problem. A general and

flexible system that allows us to play with any pre-existing TM operator and use it in real-

time applications is yet not available.
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The thesis is organized as follows: in Chapter 1 we introduce the background to understand

the mechanisms of the Human Visual  System. In Chapter 2 we present  the definition of

colour, colour spaces, and colour error metrics. An introduction on the output devices and on

their colorimetric characterization is given in Chapter 3. A survey on TM is introduced in

Chapter  4.  A novel  Time-Dependent  tone  mapping model  is  presented  in  Chapter  5.  In

Chapter 6 a general TM framework for printers is presented. Chapter 7 is devoted to the

introduction of a novel real-time framework to accelerate any complex pre-existing global

TM  operator.  Experimental  results  are  discussed  in  Chapter  8.  Chapter  9  is  devoted  to

conclusions and future work.
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Chapter 1 

Human Visual System

Introduction

The range of light energy in the real world is vast. The Human Visual System (HVS) copes

with it by adapting to the prevailing condition of illumination.

The adaptation process is complex and yet not completely known. However if we want to

simulate and reproduce what a human sees, we have to take into account this process. In this

chapter  we present  a  description  of  the HVS and its  adaptation  process.  In particular  in

Section 1,  the eye structure is  presented.  In Section 2,  we describe its  processes.  Visual

adaptation  has  an  important  role,  and  it  is  discussed  in  Section  3. Finally,  in  Section  4

important visual effects of the HVS are discussed.

1.1 Eye
The fundamental part  of the HVS is the eye. It is  an organ with approximately spherical

shape [WySt82], see Figure 1.1. The sphere has a radius of about 12 mm. In the protective

envelope there are three pairs of extrinsic muscles that move the eye in its bony orbit. The

eye consists of: cornea, pupil, lens, aqueous humour, vitreous body and retina.
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Figure 1.1: Human eye structure.

The  cornea  is  the  outermost  layer  through  which  the  external  stimulus  enters  the  eye.

Although of a complex lamellar structure, the cornea is transparent and void of blood vessels

[WySt82]. The pupil is the hole in the iris diaphram through which the light passes. 

The  lens  is  a  biconvex  multilayered  structure.  The  shape  of  the  lens  change  during  the

accommodation and these changes occur mostly at its anterior surface, which touches the iris

[WySt82]. The aqueous humour is located between cornea and lens. This liquid, continuously

generated  and  absorbed,  controls  the  intraocular  pressure,  which  is  greater  than  the

atmospheric pressure, to maintain the structural integrity of the eye [WySt82].  Between the

lens and the retina, there is the vitreous body, which consists of a transparent jelly interlaced

with  fibers  [WySt82].  The  retina  is  a  complex  and  multilayered  structure  lining  most

choroids, the vascular and pigmented layer attached to the sclera, the protecting envelope of

the eye [WySt82]. There are two elements of particular importance in the retina: fovea and

photoreceptor. The fovea is a particular area of the retina where vision is most acute. There

are two types of photo receptors in the retina: cones and rods.  Also in the fovea the cones

photo receptors are presents, but they have a different structure than the cones in the retinal

region. In the fovea there is the high density of cones, this gives to the fovea the exceptional

capacity to resolve the fine details in an optical image focused there. The Most central cones

and each group of rods have a direct line to the brain through the inner surface of the retina

and the optic nerve. In addition to these direct connections there are myriads of local cross

connections in the retina [JuWy75]. Some questions about the retina are still open. Indeed,

the various processes of signal generation, transmission and coding that occur in the retina

when a visual stimulus enters are not yet well understood [WySt82]. The eye pigments are

also important in the vision process. The eye contain different pigments: macula, lens, blood,

choroids coat, rods  and cone pigments. The nerve layer of the retina inside and near the
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fovea, between the vitreous humour and the cone layer, is coloured with a yellow or brownish

pigment. This brownish spot is known as macula lutea, and the pigment is called  macula

pigment  [JuWy75].  The  lens  pigment  is  developing  by the  lenses  and  it  is  yellowish  or

brownish. This pigment prevents some of incident energy, particularly the short-wave energy,

from reaching the retina [JuWy75]. The capillaries of the retina are almost opaque because of

the blood pigment. In the choroids coat there is a pigment that serves to absorb the radiant

energy after this passed through the rod-cone layer of the retina. Persons that are free from

choroids  pigment  have  low visual  acuity  and  fear  of  light  [JuWy75].  Pigments  are  also

presents in the rods and cones photo receptors. These pigments absorb part of the radiant flux

coming into the retina and the image in the retina is formed such pattern of radiant flux of

varying density [JuWy75].

1.2 Formation Image Process
The formation image process in the HVS pipeline, is shown in Figure 1.2. The process can be

divided in four stages:  image formation,  exposure control,  detection  and processing.  The

image formation is located in the cornea and the lens. Indeed the rays from an object strike

the cornea and are thereby nearly focused on the retina. The lens completes the focusing. If

there is a plenty of light, the iris  diaphragm contracts so that the pupil become smaller and

only the centre of the lens is used. This gives the sharpest  image [JuWy75]. The radiant

energy penetrating the cornea is not only brought to a sharp focus by the cornea and lens but

is also modified in spectral composition by pigment, macula and lens, and transformed to

nerve activity by pigments, rods and cones. Most of radiant energy is finally absorbed by

pigment in the choroids coat [JuWy75]. These patterns of nerve activity are propagated from

the receptors to the brain. There this information is elaborated and gives to the humans the

capacity to see the image.
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Figure 1.2: How the HVS reproduce the real image.

1.2.1 Rods and Cones Vision

The world range luminance is divided in three levels: scotopic, mesopic and photopic, Figure

1.3.

Figure 1.3: The range world luminance, after [Fe+96].

The rods are extremely sensitive to light and provide achromatic vision at scotopic levels of

illumination raging from 610  to 10 2/ mcd . The cones are less sensitive than the rods, but

provides colour vision at photopic levels of illumination in the range of  0.01 to  810  2/ mcd .

At light levels from 0.01 to 10  2/ mcd  both the rod and cone systems are active. This is

known as the mesopic range [Fe+96].

1.3 Visual Adaptation
The process by which the HVS adjusts itself to the conditions,  under which the eyes are

exposed to radiant energy, is called adaptation [JuWy75]. Adaptation is achieved through the

coordinated action of mechanical, photochemical, and neural processes in the visual system.

Adaptation can also be described through the physiological phenomenon’s happening inside

the  HVS.  In  fact  several  parts  of  the  HVS  such  as  pupil,  the  rods  and  cones  systems,
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bleaching and regeneration of receptor photo pigments, and changes in neural processing play

a role in visual adaptation [Fe+96].  Through these four adaptation mechanisms, the HVS is

able to work over a luminance range of nearly 14 log units; despite the fact that the individual

neural units, which make up the system, have a response range of only about 1.5 log units

[SpWe90].  With  these  mechanisms,  the  visual  system moderates  the  effects  of  changing

levels of illumination on visual response, providing sensitivity over a wide range of ambient

light  levels  [Fe+96].  The  pupil  modifications  in  diameter  according  to  the  changes  in

luminance,  as  described  in  Section  1.1,  produces  about  a  log  unit  change  in  retinal

luminance. This small change does not allow the pupil action to be sufficient to completely

account for visual adaptation [SpWE90]. 
At high light intensities, the action of light depletes the photosensitive pigments in the rods

and cones at a faster rate than chemical processes can restore them. This make the receptors

less sensitive to light. This process is  known as  pigment bleaching [Fe+96].  The neural

response produced by a photo receptor cell depends on chemical reactions produced by the

action of light on the cell's photo pigments [Fe+96]. The cell's response to light is limited by

the maximum rate and intensity of these chemical reactions. If the reactions are occurring

near their maximum levels, and the amount of light striking the photo pigments is increased,

the cell may not be able to fully signal the increase. This situation is know as  saturation

process [Fe+96]. 
The  result  of  saturation  is  a  response  compression:  above  a  certain  level  incremental

increases in light intensity will produce smaller and smaller changes in the cell´s response

rate [Fe+96]. As described in Section 1.2, the rods and cone photo receptors are connected

thought a network of neurons in the retina. Here an adaptive process that adjusts the base

activity and gains the visual system to mitigate the effects of response compression in the

photo receptors,  take place.
These adaptive processes are subdivided in two classes:  multiplicative and subtractive. The

multiplicative process adjusts the gain of the system by effectively scaling the input by a

constant related to  the background luminance. This process acts very rapidly and accounts

for changes in sensitivity over the first few seconds of adaptation [Fe+96].
A slower acting subtractive process reduces the base level of activity in the system caused by

a  constant  background.  This  process  accounts  for  the  slow  improvements  in  sensitivity

measured over minutes of adaptation [Ad82]. The action of these mechanisms is reflected in

the changes in visibility, colour appearance, visual acuity, and sensitivity over the time, and
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can  be  observed  in  everyday  experience  and  measured  in  psychophysical  experiments

[Fe+96].  A  visual  threshold  is  defined  by  the  probability  p of  seeing  a  difference  in

brightness, hue, saturation, or a difference in some other attributes exhibited by given set of

stimuli [WySt82]. The effects of adaptation have been measured in threshold experiments.

Figure 1.4 shows the results of a threshold experiment that measured the changes in visibility

that occur with changes in the level of illumination [Pa+98]. 
These  curves  are  known  as  threshold-vs.-intensity  (TVI)  functions,  and  describe  the

dependence  of  the  threshold  from  the  background  luminance.  Over  a  wide  range  of

background luminance,  the size of the threshold increment increases in proportion to the

background luminance making the functions linear on a log-log scale. This linear relationship

kLL   is known as Weber’s law and indicates that the visual system has constant contrast

sensitivity since the Weber contrast LL /  is constant over this range  [Pa+98]. 

Figure 1.4: A psychophysical model of detection thresholds over the full range of vision (TVI), after [Fe+96].

In  Figure  1.5,  the  spectral  sensitivities  of  the  rods  and  cones  systems  at  the  different

luminance  levels  are  shown.  They are  described  by the  scotopic,  mesopic  and  photopic

luminous efficiency functions. Figure 1.5 (a) shows the visual system spectral sensitivity at

scotopic levels. At these levels detection is dominated by the rod system. Absolute sensitivity

is quite high, but since the rod system is achromatic, colour will not be apparent [Fe+96]. At

the mesopic levels the rods and cones systems are nearly equal in absolute sensitivity, Figure

1.5 (b). In Figure1.5 (c), the behaviour of the visual system at photopic level  is shown. At

this level the cones system is dominant and the absolute sensitivity has dropped. In this case
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the colour vision is active. Figure 1.6 shows the luminous efficiency functions as surface

positioned  with  respect  to  the  rod  and  cone  system  threshold  sensitivities  at  different

luminance levels  [Fe+96].  These changes in spectral  sensitivity with changing luminance

level can account for a number of different colour appearance phenomenon’s observed over

the scotopic and photopic range. As the luminance level is raised into the mesopic range, the

cone system will become active and the colours will begin to be see beginning with the long

wavelength reds and progressing toward the middle wavelength greens. Only at relatively

high luminances will short wavelength blue targets begin to appear coloured [Fe+96]. The

changes in visual acuity are presented in Subsection 1.4.2.

Figure 1.5: Changes in the spectral sensitivity of the visual system at (a) scotopic, (b) mesopic, and (c) photopic
illumination, after [Fe+96].

Figure 1.6: A model of threshold sensitivity as a function of wavelength and background luminance for the rods

and cone systems, after [Fe+96].

The  most  important  kinds  of  adaptation  are:  dark,  light  and chromatic. Dark  and  Light

adaptations refer to the adjustment of the visual mechanism to changes in the rate at which

radiant  energy enters  the eye. In contrast  the chromatic adaptation refers  primarily to the
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adjustment of the visual mechanism to changes in its spectral distribution [JuWy75]. The

adaptation does not happen instantaneously, in fact it take time. The time is not the same for

all kinds of adaptation. Indeed, the time for dark adaptation is different than that for light

adaptation. These kinds of adaptation will be discussed in the next subsections.

1.3.1 Dark Adaptation
The  dark  adaptation  increases  the  visual  sensitivity  experienced  when  luminance  level

decreases. The time occurring to realize the dark adaptation has been measured by Hecht

[He34], see Figure 1.7. Also for the dark adaptation the comportment for cones and rods

systems is different as showed in the graph. The visual system is completely adapted after 35

minutes.

Figure 1.7: The time course of dark adaptation, after [Fe+96].

Visually, dark adaptation is experienced as the temporary blindness that occurs when we go

rapidly from photopic to scotopic levels of illumination. The slow time adaptation occurs for

the dark adaptation means that vision can be impaired for several minutes when we move

quickly from high illumination levels to low ones [Fe+96].

1.3.2 Light Adaptation

Light adaptation is the decrease in visual sensitivity upon increases in the overall level of

illumination [Fa98].

The comportment for light adaptation for the rods and cones systems is different as showed

in Figure 1.8. The graph show that the light adaptation of the rods system in the scotopic

range is extremely rapid, it needs only 2 seconds. In contrast for the cone system the light

adaptation is slower than the rods system.
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Figure 1.8: The time course of light adaptation in the cone and rods system, after [Fe+96].

 Visually,  light  adaptation  provides  a  distinctive  experience  [Fe+96].  When  we  go  out

quickly from low to high levels of illumination, at first everything is painfully glaring and we

squint or close one eye to reduce the discomfort. However over time the overall brightness of

the visual field diminishes to more comfortable levels and normal vision is restored [Fe+96].

1.3.3 Chromatic Adaptation
The last important kind of visual adaptation is called chromatic adaptation. It is defined as

the  HVS  capability  to  adjust  to  widely  varying  colours  of  illumination  in  order  to

approximately preserve the appearance of object colours [Fa98].

1.3.4 Retinal Process
The  mechanisms  which  control  the  time-dependent  adaptation  to  varying  luminance

conditions occur inside the retina. The majority of the retinal cells can perceive only a small

range of luminance values, compared to the entire luminance interval present in a scene. This

range  is  adjusted  continuously,  to  adapt  to  the  light.  Equation  1.1  below describes  this

process [Ar+01](refer also to [Pa+00]).

nn

n

I
IRIR


 max)( ; 1.1

where I is the light intensity, R is the neural response  max0 RR  , the constant  is the

value I  that causes the half-maximum response, and n is a sensitivity control.

1.4 Human Visual Effects
The HVS present, besides at the visual adaptation capacity, some other effects: glare, colour

sensitivity,  and visual  acuity.  These  effects  are  responsible  of  the  loss  capacity in  some
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circumstances, such as losing the ability to define fine details or distinguish colours in dark

background, or to loss the ability to distinguish objects in particular luminance conditions. 

1.4.1 Glare

The glare effect consists in the sensation that we proof when observe an incandescent bulb

such as a lamp. In this case we have an impression of great brightness and interferences in the

visibility of the object near the bulb. The glare effect can be subdivided in two components

[Sp+95]: flare and bloom. The flare is composed of a lenticular halo and ciliary corona, and

is primarily caused by the lens, Figure 1.10. Scattering causes the bloom from three parts of

the visual system: the cornea, lens, and retina Figure 1.9.

Figure 1.9: Scattering in the eye, after [Sp+95].
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Figure 1.10: The Flare, after [Sp+95].

Lenticular Halo

The lenticular  halo appears  such a  series  of  concentric  coloured rings around the source

[Sp+95],  when we observe a point  source of light in a dark surround. This phenomenon

creates the illusion  that  the haloes around distant  light  sources appear larger than haloes

around nearby sources  Figure  1.11.  The  lenticular  halo  is  caused  by the  circular  optical

grating formed by the radial fibers at the periphery of the crystalline lens [Si+53]. 

Figure 1.11: Example of lenticular halo, and his effects, after [Sp+95].
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The Ciliary Corona

The ciliary corona consists of rays emanating from a point light source [Sp+95], Figure 1.10.

These  radial  rays  may  extend  beyond  the  lenticular  halo,  and  are  brighter  and  more

pronounced as the angle subtended by the source decreases. The ciliary corona is caused by

semi-random density fluctuation in the nucleus of the lens, which causes forward scattering

that is independent of wavelength [He+92].

Bloom

The scattering of light in the ocular media causes the bloom, where the scatter contributions

from the cornea,  crystalline,  lens,  and retina occur in roughly equal portions [Sp+95].  In

Figure 1.12 the bloom effect, also called veiling luminance, is illustrated. The light from the

source  A scatters inside the eye and is added to light coming from object B. This scattered

light adds an effective luminance s that does not originate at B. Because the light is added to

both the light and dark parts of object B, the contrast ratio 
1

2

L
L

is reduced. The magnitude of

glare is greater in the scotopic level [Sp+95]; this because the rods sensitivity does not has as

high a directional sensitivity as the cone.

Figure 1.12: Reduction in contrast caused by bloom, after [Sp+95].

1.4.2 Visual acuity

The acuity is a measure of the HVS ability to resolve spatial details [Fe+96]. The human eye

loses  its  ability to  resolve  fine  detail  in  dark  environments  [Wa+97].  Shaler  [Sh37]  has

studied  the  relationship  between the  adaptation  level  and  the  foveal  acuity.  The  original

Shaler’s data is shown in Figure 1.13. This curve shows that for low adaptation luminance

level, dark background, the visual acuity is low and the human eye is not able to define the
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fine details. In contrast, with the increase of the adaptation luminance level increases also the

visual acuity and the ability of the human eye to define the fine details. The equation 1.2 is

the mathematical description of this relationship:

72.25)35.0)log(4.1tanh(25.17)(  rwarwac LLR , 1.2

where rwaL  is the local adaptation luminance in 2/ mcd , for the real world, and )( rwac LR is

the visual acuity in  cycles/degree. In this way it is possible to predict the visibility details,

visual acuity, at different levels of illumination (local adaptation luminance).

Figure 1.13: Visual acuity in function the background luminance from Shaler’s data, after [Fe+96].

1.4.3 Colour Sensitivity

Besides losing the ability to resolve fine details in dark environments, the human eye loses

its capacity to see colour in dark environments. Indeed, in the scotopic range luminance, only

the rods receptors are active. These receptors, as described in Section 1.2, are not responsible

of colour vision but only of achromatic vision.
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Chapter 2

Colour

Introduction

The colour is the physiological sensation that the HVS produces when the eye is stroked by a

light reflected, emitted, or transmitted by an object. In this Chapter, we analyse the nature of

colour, its attributes, and the factors that influence its appearance. Furthermore we describe

the concepts of colour model (colour space) and error metric. 

2.1 What is colour? 

The colour is  often  identified as a characteristic  of a given object.  This is  however not

correct. The colour can be defined as a result of our physiological perception. This depends

on several factors as material properties, conditions of the observer, characteristics of the

visual  system,  and  neural  processes.  In  other  words,  the  colour  is  the  result  of  the

interpretation  of  the  data,  in  our  brain,  collected  by the  visual  system.  In  this  way the

stimulus is defined as the visible radiation that strikes the eye of HVS. The answer of HVS to

this  stimulus  is  called  colour  answer.  The  source  that  generates  the  stimulus  is  called

stimulus object. 
In the colorimetry context the colour is associated with the stimulus instead with the answer.

The perception of colour is defined as the  colour sensation,  and the term colour is used to

identify a characteristic of the stimulus.
The attributes of colour,  that  are perceived when it  is  observed,  are:  hue,  saturation  and

lightness.  The hue is the attribute of colour by means of which a colour is perceived to be
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red, yellow, green, blue, purple, etc. Pure white, black, and greys possess no hue. Colours

that have hue are called chromatic, achromatic otherwise. Saturation is the colourfulness of

an area judged in proportion to its brightness [Fa98]. Lightness is the brightness of an area

judged relative to the brightness of a similarly illuminated area that appears to be white or

highly transmitting [Fa98].  

2.1.1 Additive and Subtractive 

The colour can be produced combining or mixing three basic colours called  primary. Two

basic techniques are used to reproduce colour: additive and subtractive.

The additive technique is based on the concept that the colours can be added to get a new one

see Figure 2.1 (a). This is the way in which the visual system mixes colours. Additive colour

mixture is also the technique used to reproduce colours on a monitor.

The subtractive technique is based on the selective removal of wavelengths from light to

produce a different colour. This is characteristic of a printer system, see Figure 2.1 (b). 

The  primaries  colours  are  referred  as  additive  primaries,  for  the  additive  mixture,  and

subtractive primaries, for the subtractive mixture techniques, respectively.

(a ) (b )

Figure 2.1: Additive mixture (a), subtractive mixture (b).

2.1.2 The colorimetry

In real applications in order to use the colour, one has to represent it in numerical terms.  This

is the main goal of a science called colorimetry. The guide authority in colorimetry, is the

Commission International de l’Eclairage (CIE) that is an international institute which is in

charge to define the standards and the procedure for using colour in colorimetry applications.

In colorimetry the sensation of colour, from a stimulus of arbitrary spectral composition, is

described by three values called  tristimulus values  [Hu84]. They identify identical colours
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perceived and derive the quantities correlated with the perceived attributes that describe the

colour appearance.
In 1931 the CIE introduced a set of standard stimulus and the quantities of these stimuli to

reproduce all  colours  of  the  visible  spectrum by additive  mixture.  These  data  define  the

Standard Colourimetric Observer 1931. In other words they describe the characteristics of an

average observer with a visual field between one and four degrees.
The primaries which are used are three achromatic lights: Red (700 nm), Green (546.1 nm),

and Blue (435.8 nm). The colour matching functions r( ) ,  g( )  and b( )  (see Figure 2.2),

are  used  to  obtain  the  tristimulus  values  of  any colour  stimulus  starting  from its  power

spectral distribution. 

Figure 2.2: Colour matching functions of the primaries R, G, and B.

The chromaticity coordinates are derived from the tristimulus values. They are the quantities

related to the three primary stimuli needed to reproduce any colour [Ag79].
For several reasons the CIE decided to adopt a model where any colour can be described by

positive values [Hu84].  To this purpose, the CIE introduced the imaginaries primaries X, Y,

and Z.
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In the same way, the colour matching functions have been introduced for the new primaries

x( ) , y( )  andz( )  (see Figure 2.3).

Figure 2.3: Colour matching functions of the new primaries X, Y, and Z.

An important diagram can be derived from the chromaticity coordinates, see Figure 2.4, and

it is called chromaticity diagram xy CIE 1931.

Figure 2.4: Chromaticity diagram xy CIE 1931.
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A remarkable limitation of this diagram is its perceptual non-uniformity, which means that

for colour pairs represented by the same Euclidean distance, the perceived differences can be

rather different.

2.2 Colour Spaces
As mentioned in Section 2.1, three coordinates or parameters are used to describe the colour

information. These parameters describe the position of a colour in a three dimensional space

called  colour  space.  The  colour  spaces  can  be  divided  in  two  main  categories:  device

dependent  and  device independent.  In device dependent  colour  spaces,  the description  of

colour information is related to the characteristics of a particular device (input or output). For

example, in a monitor it depends on the set of primaries phosphors, while in an ink-jet printer

on the set of primary inks. This means that a colour (e.g. R=250, G=20, B=150) will appear

different when represented on different monitors. 

On the contrary a device independent colour space is not dependent from the characteristics

of  a  particular  device.  This  means that  a  colour  represented in  this  colour  space always

corresponds to the same colour information. 

2.2.1 Device Dependent Colour Spaces 

RGB

The RGB colour  space  is  a  Cartesian  cube  represented  by three  additive  primaries  Red,

Green, and Blue. The grey scale is the diagonal from black (0,0,0) to white (1,1,1), while the

three colour channels RGB are located on the three Cartesian axes, see Figure 2.5. The colour

space RGB is used for describing the colour space in the monitor, scanner and digital camera.
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Figure 2.5: RGB colour space.

The RGB colour space is not a uniform colour space, and is not correlated with the human

visual perception (is not linear with the visual perception [FoRo98]). Indeed, variation of the

same degree in the range [0, 1] does not produce always the same variation on the perceived

colour. The RGB colour space is very common in television, video etc. [FoRo98].

CMY

The structure and the metric of the colour space CMY is similar to the structure and metric of

the  RGB colour  space  (see  Figure  2.5).  The  colour  is  represented  by a  vector  of  three

components, and these components are the subtractive primaries: Cyan, Magenta and Yellow.

For this reason it is also called subtractive colour space.

In the interval [0, 1], the colour specification in the colour space CMY can be obtained by its

specification in RGB colour space following the linear transformations below:

BYGMRC  1        1        1 . 2.1

The CMY colour space has the same limitations of the RGB colour space.

HSL (Hue Saturation and Lightness)

This represents a wealth of similar colour spaces, alternative names include HIS (intensity),

HSV  (value),  HCI  (croma/colourfulness),  HVC,  TSD  (hue  saturation  and  darkness)

[FoRo98].

Most  of  these  colour  spaces  are  linear  transform  from  RGB  and  are  therefore  device

dependent and perceptually non-uniform [FoRo98].
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YIQ, YUV, YCbCr, YCC (Luminance-Chrominance)

These  are  the  television  transmission  colour  spaces,  sometime  known  as  transmission

primaries. YIQ and YUV are analogue spaces for NTSC and PAL system respectively while

YcbYcr is a digital standard [FoRo98]. These colours spaces separate RGB into luminance

and chrominance information and are useful in compression applications. These spaces are

device dependent but are intended for use under strictly defined conditions within closed

systems  [FoRo98].  Kodak  uses  a  derivative  of  YCC  in  its  PhotoCD  system,  called

PhotoYCC [FoRo98].

SRGB

Hewlett-Packard and Microsoft propose the addition of support for a standard colour space,

sRGB,  within  the  Microsoft  operating  systems,  HP  products,  the  Internet,  and  all  other

interested  vendors.  The  aim  of  this  colour  space  is  to  complement  the  current  colour

management  strategies  by  enabling  a  third  method  of  handling  colour  in  the  operating

systems, device drivers, and the Internet that utilizes a simple and robust device independent

colour definition. This will provide good quality and backward compatibility with minimum

transmission and system overhead. Based on a calibrated colorimetric RGB colour space well

suited  to  Cathode  Ray Tube  (CRT)  monitors,  television,  scanners,  digital  cameras,  and

printing systems, such a space can be supported with minimum cost to software and hardware

vendors [St+96]. 
The  standard  is  divided  in  two  parts:  the  viewing  environment  parameters  with  its

dependencies  on  the  HVS  and  the  standard  device  space  colorimetric  definitions  and

transformations. The viewing environment descriptions contain all the necessary information,

when combined with most  colour appearance models,  providing conversions between the

standard and target viewing environments (see for more details [St+96]). 

The colorimetric definitions provide the transforms necessary to convert between the sRGB

colour space and the CIEXYZ two-degree observer colour space. 

sRGB in combination with the reference viewing environments can be defined from standard

CIE  colorimetric  values  through  simple  mathematical  transformations.  CIE  colorimetry

provides the basis  for sRGB encoding of colour.  For the calculation of CIE colorimetric

values, it is necessary to specify a viewing environment and a set of spectral sensitivities for a

specific capture device [St+96]. An example of colour gamut of the sRGB colour space is

showed in Figure 2.6.
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Figure 2.6: sRGB colour gamut, after [St98].

2.2.2 Device Independent Colour Spaces

CIE XYZ

The CIE XYZ colour space has been introduced by the CIE in 1931 and the all visible colours

can be defined using only positive values. The Y value represents the luminance.
The  chromaticity  diagram  is  highly  non-linear;  for  instance  a  vector  of  unit  magnitude

representing the difference between two chromaticities is not uniformly visible. A colour that

is  defined in  this  system is  refereed as  Yxy  [FoRo98]. A third coordinate,  z  can also be

defined but is redundant since 1 zyx  for all colours.

ZYX
Yy

ZYX
Xx







. 2.2

CIELab, CIELuv

The CIELab and CIELuv have been introduced by CIE in order to have linear colour spaces

with visual  perception.  They are device independent  colour spaces but  suffer from being

29



quite unintuitive despite the L parameter having a good correlation with perceived lightness

[FoRo98].

CIELab colour  space  is  based  on  the  CIE XYZ and  is  another  attempt  to  linearise  the

perceptibility  of  unit  vector  colour  differences.  Colouring  information  is  referred  to  the

colour of white point of the system [FoRo98].
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The value L is scales from 0 to 100, and nnn ZYX  is the white point of the system. There are

polar parameters (Chroma C, and Hue  h) that more closely match the visual experience of

colours [FoRo98]. 
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Hue is angle in four quadrants, and there is no saturation term in this system [FoRo98]. Also

the colouring information, for the colour space CIELuv, is centred on the colour of the white

point of the system.
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Also in this  case L is  scales from  0 to  100  for relative luminance 







nY
Y scaling  0 to  1

[FoRo98]. The values of 'u  and 'v  are computed with the follow equations:

156
2'





xy
xu , 2.13

156
5.4'





xy

xv . 2.14

There are three polar parameters, which match more closely to the human visual experience

than the Cartesian parameters [FoRo98].

  5.022 vuC  , 2.15









u
vhuv arctan , 2.16

L
Csuv  . 2.17

The parameter uvs  represents the saturation. 

2.3 Error Colour Metrics
The aim of the error colour metric is to define a strategy, in order to give some information

about the colour differences between an original and a reproduction of it. 

We can subdivide the error colour metrics in two categories: single pair for colour patches

and for digital imaging. The first one is referred to a comparison between two single colour

patches, without considering the appearance phenomena related to the spatial position and the

context where two or more colours are positioned inside a digital image.  The second one,

takes into account  these appearance phenomenons and is  used to  have an instrument  for

understanding the goodness colour reproduction of a digital colour image. 

In this section we follow the guidelines of the CIE technical report [CIE00], and a set of

average colour differences is described.

The CIE 1997 Colour appearance model (CIECAM97s) is capable to predict a number of

visual phenomena including [CIE00]:

- The  chromatic  adaptation  effect  which  refers  to  the  prediction  of  the  corresponding

colours under a reference illuminant.

- The Hunt effect, which refers to an increase in colourfulness (or chroma) due to increase

of luminance.
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- The Stevens effect, which refers to an increase in brightness (or lightness) contrast with

increasing luminance.

- The Contrast-media effect,  which refers  to  an increase of the perceived contrast  with

increasing luminance level from dark (typical projection viewing) to dim (CRT viewing)

and to light (reflection viewing).

The CIE propose that should be possible to use the CIECAM97s as the basis of a colour

difference matrix for imaging applications [CIE00].  Also the LLAB model, derived by Luo

and Guann [LuGu99],  is  able  to  predict  various  phenomena similar  to  the CIECAM97s.

Several  researchers  tried to  achieve an universally agreed colour  difference formula,  and

these studies are mostly based on colour patches [CIE00]: CIELAB and CIELUV, CMC(l:c),

BFD(l:c), CIE94, Leeds Colour Difference Formula (LCD), CIEDE2000.

CIELab and CIELuv Colour Difference Formula

The characteristics of these two colour spaces are already described in Section 2.2.2, and the

colour difference formula is defined as (for the CIELab colour space):

  5.0222* baLEab  . 2.18

Insteadfor the colour space CIELuv is:

  5.0222* vuLEuv  . 2.19

CMC(l:c)

The colour is denoted in CIElab colour space, and the formula is given below [CIE00]:
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unless 1,abh  is between 164° and 345° when  168cos2.056.0 1,  abhT . The 1,abL , 1,abC

and 1,abh  refer to the standard of a pair of samples. The weight l and c, lightness and chroma

weight  respectively,  should  equal  two and one  for  predicting  the  acceptability  of  colour

differences. For predicting the perceptibility of colour differences, l and c should be equal to

one.

BFD(l:c)

The formula has been derived by Luo and Rigg [LuRi87] and has a similar structure to that of

CMC(l:c) [CIE00]. It is given below:
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See the CIE specifications [CIE00] for the details of parameters involved in formula 2.24.

CIE94

MacDonald and Smith [McSm95] propose this new formula as a modification of the CIELab

formula. It has similar structure to the CMC(l:c), but with much simpler weighting functions:
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where 1LS ,  1,045.01 abC CS  ,  and  1,015.01 abh CS   .  The  LK ,  CK ,  and  hK  are

parametric factors that for all the applications, except for the textile industry, a value of one is

recommended [CIE00]. The 1,abC  refers to the abC of the standard of a pair of samples

Simplicity is not always a good thing, and sometimes complexity is necessary to obtain high

accuracy. For this  reason two important  but  very complex formulas have been proposed,

which are called LCD and CIEDE2000. These formulas introduced several modifications in

order to improve the limitations of the CIE94 formula [CIE00]. 
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Chapter 3 

Output Devices

Introduction

A  multimedia  system  consist  of  several  input  and  output  devices  with  different

characteristics. These can be e.g. colour space, colour reproduction technique, hardware etc.

In this chapter we describe the technology used in output devices as monitor and printer. In

Section 3.1 the monitor system and the so called gamma correction problem are presented.

The printer  system is  presented  in  Section  3.2.  Finally,  in  Section  3.3,  the  colorimetric

characterization problem is introduced. 

3.1 Display system
To produce a monitor system different kinds of technology are used. These are:  Cathode-

Ray Tube (CRT), Liquid Crystal Display (LCD) and Plasma.  The characteristics of these

technologies are described  below.

3.1.1 Cathode-Ray Tube (CRT) 

A CRT monitor is a quite simple device (see Figure 3.1). It consists of seven basic elements:

electron guns, control grids, accelerating plates, focusing structures, deflection structures,

phosphor coating, and shadow mask.
Electrons produced by a heated cathode are fired at a controlled rate through the control grid.

The  accelerating  plates  increase  the  velocity  of  the  electron  beams,  and  the  focusing

structures act to sharpen the fuzzy beam of electrons [Tr91]. The deflection structures guide

the electron beam on a precise location on the phosphor coating, and exciting a phosphor the
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light is emitted. The electron beam scans the monitor faceplate rapidly in a raster pattern (left

to right, top to bottom), and the intensity of the beam is modulated during the scan so that the

amount of light varies with the spatial position of the faceplate [Br+02]. The video voltage

controlling the beam intensity is usually generated by a graphics card; which emits a new

voltage on every tick of its pixel clock. The duration of each voltage sample determines the

pixel's width [Br+02]. Colour monitors contain three interleaved phosphor types: red, green,

and blue. There are three electron beams and a shadow mask arranged so that each beam

illuminates only one of the three-phosphor types.
The process through the phosphor emits light is called cathodo-luminescence; this means that

the kinetic energy in the fast stream of electrons is converted into light energy. If the image

has to be maintained, then the phosphor needs to be continually fed with electrons; because

the rate at which the phosphor fades, its persistence, is short [Tr91].

Figure 3.1: A cathode-ray tube display system, after [Tr91].

In Figure 3.2 is showed how the pixel is processed [Br+02]. The graphics card generates the

video voltage based on the digital values stored in the on-board memory. These digital values

can be written into two components of graphics card memory: frame buffer and lookup table

[Br+02].  
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Figure 3.2: How the pixel is processed, after [Br+02].

3.1.2 Liquid Crystal Display (LCD)

The LCD monitors are becoming increasingly popular. Indeed are the dominant technology

used for laptop computers. The most common LCDs for computer are backlit AMLCDs of

the  twisted nematic  type. These are manufactured by deposition and patterning of (active)

pixel electronics on a glass substrate. Each pixel element consists of a pair of linear polarizes

with liquid-crystal (LC) material sandwiched in between [Sa02]. In Figure 3.3 is showed a

pixel  element.   Colour displays are produced by laying a mosaic of red,  green, and blue

coloured filters on the substrate glass aligned with the pixel array [Sa02].  Frequently, the

individual  RGB  pixels  are  rectangular  and  arranged  so  that  three  horizontally  adjacent

rectangular RGB pixels constitute a single square colour pixel. Thus the display appears to be

composed of stripes of rectangular RGB pixels going vertically across the screen. The back-

light is typically a fluorescent lamp with three prominent peaks in the red, green, and blue

regions of the spectrum [Sa02].
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Figure 3.3: Structure of a LCD pixel, after [Sa02].

In most AMLCD colour monitors, the RGB pixels are driven and controlled independently.

The emitted light is combined and averaged in the eye, just as in the CRT monitor [Sa02]. In

Figure  3.4  is  shown a  comparison  of  the  colour  gamut  reproducible  by CRT and  LCD

monitors. Obviously, since the technology and the primaries adopted to reproduce the colours

are different, so are the gamuts. 

3.1.3 Plasma

The working principle of a plasma display is based on the emission of gas radiation. A gas

emits  radiations  when  is  ionised.  This  is  obtained  applying on  the  gas  high  voltage.  In

practice this is achieved by bathing a pair of electrodes within the gas [Tr91]. A matrix of

intersecting rows and columns of electrodes is used as display [Tr91].
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Figure 3.4: Colour Gamut of LCD and CRT monitor, after [Sa02].

3.1.4 Gamma correction

The symbol   (gamma) represents a numerical parameter that describes the non-linearity of

intensity reproduction.    is used in several areas such as photography, video and computer

graphics [Po93]. In this section we introduce the concept of gamma in the context of CRT

and LCD monitors. The gamma value, for a CRT monitor, indicates a relationship between

voltage input and light output that physicists call a  five-halves power law. It says that the

intensity of light produced at the face of the screen is proportional to the voltage input raised

to the power 5/2 [Po93]. In other words, the CRT monitor has voltage inputs that reflect this

power function, as shown in Figure 3.5.

38



Figure 3.5: Power function applies to the single electron of a CRT monitor, after [Po93].

The functions associated with the three guns of a colour CRT monitor are not necessary

identical [Po93]. The process used to correct this non-linearity, in order to achieve correct

reproduction of the intensity, is called  gamma-correction  [Po93].  In the context  of colour

science, the gamma-correction process defines the right gamma value for the three guns of

the CRT monitor and the parameters of the function that describes this non-linearity. This

function  is  also  called  electro-optical  transfer  function  (TF) Several  models  have  been

proposed [Be96]. The TF describes the relationship between the signal used to drive a given

monitor channel and the luminance produced by that channel [FaWy98]. In the case of a LCD

monitor the TF has a different shape than the TF of a CRT monitor. Figure 3.6 shows the TF

of a LCD monitor derived by Glasser [Gl97].

Figure 3.6: Comparison between the TF´s of a LCD monitor and a CRT monitor, after [FaWy98].
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Fairchild and Wyble [FaWy98] showed that while the raw physical performance of a LCD

differs from that of a CRT, the digital drive circuitry for a general-purpose LCD monitor

would be designed to mimic a CRT behaviour. Thus, the images presented to an user appear

similar to those expected from a CRT monitor driven by a computer video output.  In this

way the TF of a LCD mimics the typical TF of a CRT display.

In the  context  of  computer  graphics  the  TF has  the  inverse  form of  the  power  function

showed in Figure 3.5. In fact, we have as input the intensity values stored in the frame-buffer

that are gamma-corrected by hardware lookup tables on the fly and a video signal is sent to

the display (see Figure 3.7).

Figure 3.7: TF in the context of Computer Graphics, after [Po93].

3.2 Printer system
Creating colour accurately on paper has been one of the major areas of research in colour

printing. Like monitors, printers closely position different amounts of key primary colours,

which, from a distance, merge to form any colour; this process is known as dithering [Pc03]. 

Monitors  and printers  do this  slightly differently however  because the monitors  are light

sources,  whereas  the output  from printers  reflects  light.  So,  monitors  mix  the light  from

phosphors made of the primary additive colours: red, green, and blue (RGB), while printers

use inks made of the primary subtractive colours: cyan, magenta, and yellow (CMY). The

coloured  inks,  reflecting  the  desired  colour,  absorb  white  light.  In  each  case,  the  basic
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primary colours are dithered to form the entire spectrum. Dithering breaks a colour pixel into

an array of dots so that each dot is made up of one of the basic colours or left blank [Pc03].

Modern  ink-jets  introduced  supplementary  black  ink  in  order  to  improve  the  black

reproduction. In fact in the originally CMY printers, the black on a colour page, was made up

from the three colours, which tends to result in an unsatisfactory dark green or grey colour

usually referred to as composite black. 

The most popular printer technology is the non-impact method. This technology is used by

laser, ink-jet, and dye-sublimation printers to reproduce the colour.

Laser printers

The heart of the laser printer is a small rotating drum - the organic photo-conducting cartridge

(OPC) - with a coating that allows it to hold an electrostatic charge. Initially the drum is

given a total  positive charge.  Subsequently, a laser beam scans across the surface of the

drum,  selectively  imparting  points  of  negative  charge  onto  the  drum's  surface  that  will

ultimately represent the output image. The area of the drum is the same as that of the paper

onto which the image will eventually appear, and every point on the drum corresponding to a

point  on the sheet of paper.  In the meantime, the paper is  passed through an electrically

charged wire, which deposits a negative charge onto it [Pc03]. 

Figure3.8: Laser printer technology, after [Pc03].
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In the  laser  printers,  turning  the  laser  on  and off  as  it  scans  the  rotating drum,  using  a

complex  arrangement  of  spinning  mirrors  and  lenses,  does  the  selective  charging.  The

principle is the same as that of a disco mirror ball. The lights bounce off the ball onto the

floor, track across the floor and disappear as the ball revolves. In a laser printer, the mirror

drum spins incredibly quickly and is synchronised with the laser switching on and off. A

typical laser printer will perform millions of switches, on and off, every second [Pc03].

Inside the printer, the drum rotates to build one horizontal line at a time. Clearly, this has to

be done very accurately. As the drum rotates to present the next area for laser treatment, the

written-on  area  moves  into  the  laser  toner.  Toner  is  very fine  black  powder,  positively

charged so that it is attracted to the points of negative charge on the drum surface. Thus, after

a full rotation the drum's surface contains the whole of the required black image. 

A sheet of paper now comes into contact with the drum, fed in by a set of rubber rollers. This

charge on the paper is stronger than the negative charge of the electrostatic image, so the

paper magnetically attracts the toner powder. As it completes its rotation it lifts the toner

from the drum, thereby transferring the image to the paper. Positively charged areas of the

drum do not attract toner and result in white areas on the paper [Pc03].

Toner is specially designed to melt very quickly and a fusing system now applies heat and

pressure to the imaged paper in order to add here the toner permanently. The final stage is to

clean the drum of any remnants of toner, ready for the cycle to start again.

Laser printers are usually monochrome devices, but can be adapted to colour. It does this by

using cyan, magenta, and yellow in combination to produce the different printable colours.

Four passes through the electro-photographic process are performed, generally placing toners

on the page one at a time or building up the four-colour image on an intermediate transfer

surface [Pc03].

Figure 3.9: Colour laser printer scheme, after [Pc03]. 
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Ink-jet printers

Ink-jet printing, like laser printing, is a non-impact method. Ink is emitted from nozzles as

they pass over a variety of possible media, and the operation of an ink-jet printer is easy to

visualise: liquid ink in various colours being squirted at the paper to build up an image. A

print head scans the page in horizontal strips, using a motor assembly to move it from left to

right and back, instead another motor assembly rolls the paper in vertical steps. A strip of the

image is printed, and then the paper moves on ready for the next strip. To speed things up,

the print head does not print just a single row of pixels in each pass, but a vertical row of

pixels at a time [Pc03].

Fundamentally two technologies are used in the ink-jet printers:  continuous  and drop-on-

demand (see Figure 3.10). 

Figure 3.10: Map of the ink-jet technology, after[Le98]

The continuous ink-jet technology basis is to deflect and control a continuous ink-jet droplet

stream direction onto the printed media or into a gutter for recirculation by applying an

electric field to previously charged ink-jet droplets. 

The drop-on-demand (DOD) printer ejects ink droplets only when they are needed to print on the

media. This approach eliminates the complexity of drop charging and deflection hardware as
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well as the inherent unreliability of the ink recirculation systems required for the continuous

ink-jet technology [Le98].

Depending on the drop deflection methodology, the continuous ink-jet can be designed as a

binary or  multiple  deflection  system.  In  a  binary deflection  system,  the  drops  are  either

charged or uncharged. The charged drops are allowed to fly directly onto the media, while the

uncharged drops are deflected into a gutter for recirculation (see Figure 3.11). In a multiple

deflection system, drops are charged and deflected to the media at different levels (see Figure

3.12). The uncharged drops fly straight to a gutter to be recirculated. This approach allows a

single nozzle to print a small image swath [Le98].

Figure 3.11: Continuous ink-jet binary deflection system, after [Le98].

Figure 3.13: Continuous ink-jet multiple deflection system, after [Le98].

The  majority  of  activity  in  ink-jet  printing  today  is  in  the  drop-on-demand  methods.

Depending on the mechanism used in the drop formation process,  the technology can be

categorized into four major methods:  thermal, piezoelectric, electrostatic and acoustic ink-

jet.

Most, if not all, of the drop-on-demand ink-jet printers on the market today are using either

the  thermal  or  piezoelectric  principle.  Both  the  electrostatic  ink-jet  and  acoustic  ink-jet
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methods are still in the development stage with many patents pending and few commercial

products available.

The thermal ink-jet method was not the first ink-jet method implemented in a product, but it

is the most successful method on the market today. Depending on its configuration, a thermal

ink-jet can be a roof-shooter (see Figure 3.13) with an orifice located on top of the heater, or

a side-shooter (see Figure 3.14) with an orifice on a side located nearby the heater [Le98].

Figure 3.13: Roof-shooter thermal ink-jet, after [Le98].

Figure 3.14:  Side-shooter thermal ink-jet, after [Le98].

Thermal technology imposes certain limitations on the printing process in that whatever type

of ink is used, it must be resistant to heat because the firing process is heat-based. The use of

heat in thermal printers creates a need for a cooling process as well, which levies a small time

overhead on the printing process [Pc03].
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In a basic configuration, a thermal ink-jet consists of an ink chamber having a heater with a

nozzle nearby. With a current pulse of less than a few microseconds through the heater, heat

is transferred from the surface of the heater to the ink. The ink becomes superheated to the

critical temperature for bubble nucleation, for water-based ink, this temperature is around

300°C. When the nucleation occurs, a water vapour bubble instantaneously expands to force

the ink out of the nozzle. Once all the heat stored in the ink is used, the bubble begins to

collapse on the surface of the heater. Concurrently with the bubble collapse, the ink droplet

breaks off and excels toward the paper. The whole process of bubble formation and collapse

takes place in less than 10 µs. The ink then refills back into the chamber and the process is

ready to begin again. Depending on the channel geometry and ink's physical properties, the

ink refill time can be from 80 to 200 µs. This process is illustrated in Figure 3.15 [Le98].

Figure 3.15: Drop formation process in thermal ink-jet printer, after [Le98].

In  the  piezoelectric  ink-jet,  depending  on  the  piezo-ceramic  deformation  mode,  the

technology can be classified into four main types: squeeze, bend, push, and shear [Le98].

A squeeze-mode ink-jet  can be designed with a thin tube of piezo-ceramic surrounding a

glass nozzle as in a Gould's impulse ink-jet or with a piezo-ceramic tube cast in plastic that

encloses the ink channel as was implemented in a Seimens PT-80 ink-jet printer.
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In a typical bend-mode design (see Figure 3.16), the piezo-ceramic plates are bonded to the

diaphragm forming an array of bilaminar electromechanical transducers used to eject the ink

droplets [Le98].

Figure 3.16: A bend-mod piezoelectric ink-jet, after [Le98].

In a push-mode design (see Figure 3.17), as the piezo-ceramic rods expand, they push against

ink to eject the droplets. In theory, piezo-drivers can directly contact and push against the ink.

However, in practical  implementation,  a thin diaphragm between piezo-drivers and ink is

incorporated to prevent the undesirable interactions between ink and piezo-driver materials

[Le98].

Figure 3.17: A push-mod piezoelectric ink-jet, after [Le98].

In both the bend- and push-mode designs, the electric field generated between the electrodes

is  in parallel  with the polarization of the piezo-material.  In a shear-mode print-head,  the

electric  field  is  designed to  be  perpendicular  to  the  polarization  of  the  piezo-driver  (see

Figure 3.18).  The shear  action deforms  the  piezo-plates  against  ink  to  eject  the  droplets

[Le98].
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Figure 3.18: A shear-mod piezoelectric ink-jet, after [Le98].

In the piezoelectric drop-on-demand ink-jet  method (see Figure 3.19), deformation of the

piezo-ceramic material causes the ink volume change in the pressure chamber to generate a

pressure wave that propagates toward the nozzle. This acoustic pressure wave overcomes the

viscous pressure loss in a small nozzle and the surface tension force from ink meniscus so

that an ink drop can begin to form at the nozzle. When the drop is formed, the pressure must

be sufficient to expel the droplet toward a recording media. The basic pressure requirement is

showed in Figure 3.20.

Figure 3.19: Piezoelectric print head, after [Le98].
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Figure 3.20: Pressure process required for ejecting an ink droplet, after [Le98].

There are several advantages to the piezo method. The process allows more control over the

shape and size of ink droplet release. The tiny fluctuations in the crystal allow for smaller

droplet sizes and hence higher nozzle density. Also, unlike with thermal technology, the ink

does not have to be heated and cooled between each cycle. This saves time, and the ink itself

is tailored more for its absorption properties than its ability to withstand high temperatures.

This allows more freedom for developing new chemical properties in inks.

Dye-sublimation printers

Dye-sublimation printers are specialized devices widely used in demanding graphic arts and

photographic applications. Dye sublimation work (see Figure 3.21) by heating the ink so that

it turns from a solid into a gas. The heating element can be set to different temperatures, thus

controlling the amount of ink laid down in one spot. In practice, this means that colour is

applied as a continuous tone, rather than in dots, as with an ink-jet. One colour is laid over

the whole of one sheet at a time, starting with yellow and ending with black. The ink is on

large rolls of film which contain sheets of each colour, so for an A4 print it will have an A4-

size  sheet  of  yellow,  followed  by a  sheet  of  cyan,  and  so  on.  Dye sublimation  requires

particularly  expensive  special  paper,  as  the  dyes  are  designed  to  diffuse  into  the  paper

surface, mixing to create precise colour shades. 

There are now some "ink-jet printers" on the market that actually deploy dye-sublimation

techniques. The way in which an ink-jet uses the technology differs from a dye-sublimation

in that its inks are in cartridge, which can only cover the page one strip at a time. It heats the

inks to form a gas, controlled by a heating element, which reaches temperatures of up to 500°

C (higher than the average dye sublimation printer). 
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The benefits, of a dye-sublimation printer, are the superb image quality with very smooth

transitions  like colour photographs.  The obvious drawbacks are  the high costs  of special

paper and transfer rolls. It should only be used if a high proportion of the printed page is

covered with colour. 

Figure 3.21: Dye-sublimation process, after [Pc03].

In Figure 3.22 is showed a comparison of gamut colours reproduced by different printers:

ink-jet,  laser,  and  dye-sublimation.  As  described for  the  monitor,  the  differences  are  the

consequence of different technology used to reproduce the colour, different primaries, and

different substrate. 

Figure 3.22: Colour gamuts of three different kinds of printer: (continuous line) ink-jet, (dash point line) Dye-
sublimation, (dash line) laser.
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Print quality

The two main determinants of colour print quality are resolution, measured in dots per inch

(dpi), and the number of levels or graduations that can be printed per dot. Generally speaking,

the  higher  the  resolution  and the  more  level  per  dot,  the  better  the  overall  print  quality

[Pc03].

In practice,  most  printers  make a trade-off,  some opting for higher resolution  and others

settling for more levels per dot, the best solution depending on the printer's intended use.

Graphic arts professionals, for example, are interested in maximising the number of levels

per dot to deliver "photographic" image quality, while general business users will  require

reasonably high resolution so as to achieve good text quality as well as good image quality

[Pc03].

The simplest type of colour printer is a binary device in which the cyan, magenta, yellow and

black  dots  are  either  "on"  (printed)  or  "off"  (not  printed),  with  no  intermediate  levels

possible. If ink (or toner) dots can be mixed together to make intermediate colours, then a

binary CMYK printer can only print eight "solid" colours (cyan, magenta, yellow, red, green

and blue, plus black and white). Clearly this is not a big enough palette to deliver good colour

print quality, which is where halftoning comes in [Pc03].

Halftoning algorithms divide a printer's native dot resolution into a grid of halftone cells and

then turn on varying numbers of dots within these cells in order to mimic a variable dot size.

By carefully combining cells containing different proportions of CMYK dots, a halftoning

printer can "fool" the human eye into seeing a palette of millions of colours rather than just a

few [Pc03].

Most of the current generation of ink-jet printers require high-quality coated or glossy paper

for  the  production  of  photo-realistic  output,  and  this  can  be  very expensive.  One of  the

ultimate aims of ink-jet printer manufacturers is to make colour printing media-independent,

and the attainment of this goal is generally measured by the output quality achieved on plain

copier paper. This has vastly improved over the past few years, but coated or glossy paper is

still  needed to achieve full-colour photographic quality. Some printer manufacturers,  like

Epson, even have its own proprietary paper, which is optimised for use with its piezo-electric

technology [Pc03]. 

Recently, "six-colour" ink-jet printers have appeared on the market, specifically targeted at

delivering "photographic-quality" output. These devices add two further inks - light cyan and

light magenta - to make up for current ink-jet technology's inability to create very small (and
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therefore light) dots.  Six-colour ink-jets  produce more subtle flesh tones and finer colour

graduations than standard CMYK devices [Pc03].

3.3 Colorimetric Characterization of Device

In  multimedia  systems,  different  color  reproduction  devices  ---  while  serving  the  same

purpose --- exhibit large discrepancies in their raw output. This is due to the fact that they

usually employ different color mixing technologies (additive or subtractive), use different

input color spaces and hence have different gamuts, and that their device characteristics can

change with time and usage. These facts usually do not permit a faithful matching of colors

between devices if no precautions are taken [ArWi01].

Colorimetric characterization is one step in the colorimetric reproduction process that permits

faithful image reproduction across different devices. Its goal is to define a mapping function

between the device dependent colour spaces in question (such as RGB or CMYK) and device

independent colour spaces (such as CIELAB or CIEXYZ), and vice versa.

There are three main approaches to define this mapping function: physical models, empirical

models and exhaustive measurements [Fa98]. Physical modeling of imaging devices involves

building mathematical models that find a relationship between the calorimetric coordinates of

the input (or output) image element and the signals used to drive an output device (or the

signals originating from an input device). The advantage of these approaches is that they are

robust, typically require few calorimetric measurements in order to characterize the device,

and allow for easy re-characterization if some component of the imaging system is modified.

The disadvantage is that the models are often quite complex to derive and can be complicated

to implement. Physical models are often used for the calorimetric characterization of displays

and scanners.

Empirical modeling of imaging devices involves collecting a fairly large set of data and then

statistically fitting a relationship between device coordinates and calorimetric coordinates.

Empirical models are often higher order multidimensional polynomials, or neural network

models. They require fewer measurements than LUT techniques, but they need more than

physical models. Empirical models are often used for scanners and printers.
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Often the calorimetric  characterization  of  devices  requires  an exhaustive measurement  in

order to obtain good performances. The number of measurements depends on the devices

repeatability  [ArWi01].  Devices  with  poor  repeatability  need  more  measurements  those

devices with high repeatability property.

Lookup tables can be used to process image data via multidimensional interpolation. This

technique  has  different  disadvantages:  the  large  number  of  measurements  that  has  to  be

made, difficulties in interpolating the highly nonlinear data and difficult re-characterization if

any aspect of the device changes. The advantage of exhaustive measurement techniques is

that they require no knowledge of the device physics.

In  general  a  good  algorithm  for  calorimetric  characterization  must  have  the  following

characteristics: small training set, fast response, good accuracy and it must allow for a fast re-

characterization. 

53



Chapter 4 

Tone Mapping

Introduction

Output display devices, like projectors or screens, commonly used in computer graphics have

several  technological  limitations  such as limited colour gamut and contrast,  low dynamic

range, limited spatial resolution, (usually) limited field of view and non trivial workarounds

to achieve stereo capacity.

These limitations, prevent to directly display high dynamic range (HDR) images on output

devices. In fact, the luminance range in HDR images exceeds the luminance range of the

output devices by several orders of magnitude.  The conversion from the HDR to display

luminance is known as Tone Mapping (TM).

Section 4.1 introduces the concept of Image Synthesis, while in Sections 4.2, 4.3 and 4.4 a

survey  on  TM  is  presented.  Finally,  in  Section  4.5  the  concept  of  TM  for  printers  is

discussed.

4.1 Image Synthesis
The creation of images by evaluating a model of light propagation is called image synthesis

[CoWa93]. The goal of image synthesis is often stated as photo-realism. However, although

photography produces realistic images,  it is a physical process subject to the constraints of

camera optics and the chemical  nature of  film.  Should  image synthesis  really attempt  to

simulate photography, or should it aim higher? [CoWa93].
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A clear  understanding of  the  goal  of  image synthesis  becomes increasingly important  as

algorithms and computational method grow more sophisticated. In addition to the evaluation

of  competing  approaches,  more  intelligent  algorithms  need  a  basis  for  deciding  how  to

allocate  computational  effort  and when to  end the  computation,  which requires  knowing

when the goal has been achieved [CoWa93].

Figure 4.1: Image synthesis process, after [CoWa93].

Perhaps the most far reaching goal for image synthesis is the creation of a visual experience

identical to that which would be experienced in viewing the real environment. In Figure 4.1

is shown a simple model of image synthesis process [CoWa93].  The model is divided in two

parts:  real  world (top half  diagram) and  digital  world (bottom half  diagram).  In the real

world,  the  light  propagates  through  the  scene  and  eventually  enters  in  the  eye  with  a

particular  directional  and  wavelength  distribution.  The  eye  and  the  brain  process  this

information at increasingly higher levels of abstraction, leading ultimately to what is called

the visual experience [CoWa93]. 

In the digital world, a mathematical model is used to simulate the distribution of light energy,

and the results  are passed to a display device that  physically realizes  the computed light

distribution and sends it to the eye [CoWa93].

There are two problems with this apparently simple approach. First, the computation in step

one is  arbitrarily expensive.  For  all  practical  purpose,  there is  no end to  the  details  and

accuracy with which reality might be simulated [CoWa93]. The second problem is with the

display system. In fact it has many limitations: limited colour gamut, dynamic range, spatial
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resolution  field  of  view,  and stereo-capacity.  These  limitations  reduce the realism of  the

scene reproduced on the display. 
In  order  to  reach  realistic  images,  in  the  final  output  of  the  image  synthesis,  a  global

illumination model  is  needed.  It  takes  into  account  the  interreflection  of  light  between

surfaces. 

The first global illumination model was introduced by Whitted in 1980 [Wh80]. This model

consists  of a recursive application of ray tracing to evaluate a simple global illumination

model  accounting for  mirror  reflection,  refraction,  and shadows [CoWa93].  Later on the

Whitted method has been extended [Co86][Co+84][Am84],  and more accurate physically

based local  reflection models  were developed by Cook and Torrance [CoTo82].  In 1984

radiosity methods have been introduced in computer graphics. In image synthesis, radiosity

methods are  used to  solve the interreflection of  light  between ideal  (Lambertian)  diffuse

surfaces [CoWa93].

Subsequent  works  have included extension of  the radiosity approach to  glossy and ideal

(mirror) reflection [CoWa93].  Kajiya [Ka86] unified the discussion of global illumination

algorithm  with  the  general  rendering  equation.  Kajiya  applied  Monte  Carlo  integration

methods solving the rendering equation and proposed a number of techniques for accelerating

the convergence of the solution [CoWa93]. 

4.2 Tone Mapping
In Section 4.1 the image synthesis goal has been introduced: "produce an image that captures

the visual appearance of modelled scenes". The physically based rendering methods try to

reach this goal. However simulating the distribution of light energy in the scene does not

guarantee that the display images have a realistic visual appearance. There are two reasons

for that: first, the HVS operates over a large 1210  range of luminance and contrast, while a

typical monitor has a maximum contrast of only 210 . Second, the visual states of the scene

observer and the monitor observer may be very different. We also need to take into account

the characteristics of HVS to reproduce the subjective impression [Fe+96]. The TM, is the

conversion from the real world to the display information (see Figure 4.2). The TM ideas

were originally developed for photography [Wa+97]. In photography (or video), chemistry

(or electronics) are used, together with a human actively controlling the scene lighting and

the camera that are used to map real world luminance into an acceptable image on a display.
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In synthetic image generation,  our goal is  to avoid active control  of lighting and camera

settings. We need to have a direct numerical control over display values [Wa+97]. 
The HVS, as explained in Chapter 1, is able to adapt to the different lighting conditions. This

happens when we are going, for example, from a dark room into sunlight and vice-versa.

However, the HVS takes time before recovering full sensitivity. After the adaptation time, we

are able to see the objects and fine details of the scene. This does not happen in the case of

the photography or if we visualize the real scene on the display without having solved the

problems exposed above. We have to consider two important criteria’s for a reliable tone

mapping [Wa+97]: to reproduce the  visibility and the  subject experience of the real world

observer. The visibility is reproduced when we see the same scene details, which we see in

the real scene. In other words, there are not objects obscured in the under-or over-exposed

regions in the digital image, and the features are not lost  in the middle.  Reproducing the

subject experiences of the real world observer means reproducing the overall impression of

the brightness, contrast, and colour.

Figure 4.2: Tone reproduction, after [Fe+96].

The Enhancement technique is used in computer graphics to improve the displayed scene as

well. However, it is not comparable with the TM solution for several reasons [Wa+97]. First,

the enhancement works on data already distorted by photography or video recording and

collapsed into a limited dynamic range. On the contrary, the TM technique works on the real

world  luminance  data  with  a  potentially  high  dynamic  range.  Second,  the  goal  of  the

enhancement technique is to maximize visibility and contrast; and maintaining the subjective
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correspondence with the original view of the scene is irrelevant. On the contrary, the goal of

the TM is to simulate the visibility and the contrast, not to maximize it [Wa+97].

Basically, there are two categories of TM operators:  global and local. The former are also

called tone reproduction curves (TRCs).  The latter  are called tone reproduction operators

(TROs). TRCs operate pixel-wise on the input image which makes the algorithms simple and

efficient. In other words, the TRCs apply a single tone-mapping curve (TRC) uniformly to all

image data. This globally equal pixel-wise mapping adjusts the intensity of each pixel using a

function that is independent of the local spatial context.  In contrast to TRCs, TROs use the

spatial  structure  of  the  image  data  and  attempt  to  preserve  local  image  contrast.  These

algorithms allow transforming the same pixel intensity of the input image to different display

values, or different pixel intensities to the same display value [DiWa00].

4.2.1 Global operators

Basic Tone Reproduction Function

Schlick [Sc94] defined the TM problem as follow: every intensity value Val of the computed

scene has to be quantized (function  Q(Val)), in order to map one of the  N single values in

[0,N-1] accepted by a typical visualization device. The mathematical expression in equation

4.1 below,  is defined as tone reproduction curve TRC [Sc94]:

 )()( ValFNValQ  , 4.1

where F is a function:

   1,0,: HiValLoValF , 4.2

where LoVal  and HiVal  are the lower and the higher pixel values of the scene. Some simple

TRC functions have been used in computer graphics community. These functions consider

the colour reproduction, and usually ignore brightness reproduction. For example, the most

used TRC in computer graphics is the so called gamma-corrected linear mapping i.e.,




/1

)( 







HiVal
ValF Val , 4.3

where   is the gamma value in the range [1,3]. In this function two operators are applied:

linear  scaling  in  the  range  [0,1] (i.e.  division  by  HiVal )  and  a  gamma-correction  to

compress the non-linear response of the visualization device.

However, this model is completely inadequate for high dynamic range scene. For example,

the result images in some experiments presented in the work of Schlick [Sc94] are mapped

into black or very dark grey.
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Another well known TRC in computer graphics is the gamma-corrected clamping i.e.,

  


/1
, /)( pValValFp  , 4.4

if  Val <  p, 1 otherwise. Where  p is in the range   HiValLoVal, , while   is in the range

[1,3]. The limit of this  TRC is that a satisfactory value for  p is rare to be found [Sc94]. A

TRC function that has been rarely implemented is the logarithmic mapping:

   
 





/1

, 1log
1log













HiValp
ValpValFp , 4.5

where  p is in the range   ,0 , while    is in the range  [1,3]. The last  TRC function we

present  is  the  exponential  mapping  that includes  both brightness  perception  and gamma-

correction:

 




/

,

p

p HiVal
ValValF 






 , 4.6

where p is in the range [0,1], while   is in the range [1,3].

Tumblin and Rushmeier 1993

Tumblin  and Rushmeier  [TuRu93]  defined a  TM operator,  built  from models  of  human

vision, to convert scene intensities to display intensities.

This operator is based on the super-threshold brightness measurements made by Stevens and

Stevens  [STST60][STST63]  who  claimed  out  that  a  power-law  relation  exists  between

luminance L, and perceived brightness B [Tu+99].

Figure 4.3: Tumblin and Rushmeier 1993 TM operator, after [TuRu93].

This operator is  a concatenation of different models:  real-world observer,  inverse display

observer and inverse display device (see Figure 4.3). The author’s defined the following real

world and display observer equations:
rwrw

rwrw LB   10 ,  4.7
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dd
dd LB   10 . 4.8

Where    and    are functions that describe the changes due to viewed luminance of the

sensitivity and the contrast, respectively, and are given by:

    92.2log41.0 10  rwrw LL , 4.9

      0208.2log584.2log41.0 10
2

10  rwrwrw LLL . 4.10

These equations explain the power-law relationship between the value of brightness  B and

luminance L. This model is also used for photographic tone reproduction. The two observers

are  connected  back-to-back  by  setting drw BB  .  In  this  way one  can  define  the  display

luminance in terms of real-world luminance:
 








 









 d

drw

d

rw

rwd LL 





10 . 4.11 

The inverse display system model is defined by equation 4.12 below:

     /1
maxmax /1/ CLLn dd  , 4.12

where  n is  the frame buffer value (  10  nBGR )  used as display device input,

maxdL  is the maximum screen luminance, maxC  is the maximum contrast ratio, while   is the

gamma correction.  The final TM operator is obtained by substituting, in the inverse display

model of equation 4.12, the display luminance dL  of equation 4.11.

This operator exhibits several serious shortcomings [Tu+99]: first, scenes that approach total

darkness  are  displayed  as  anomalous  middle  grey images  instead  of  black.  Second,  the

display contrast for very bright images is unrealistically exaggerated. Also this operator did

not address the contrast limitation of displays and was presented in an awkward form that

discouraged its use [Tu+99].

Schlick 1994

Schlick proposed a solution for the TM problem, defining the best  quantization function,

which  by passes  the  limitations  of  output  devices.  For  instance,  this  process  implies  to

quantify every floating-point  intensity value  (expressed  either  as  radiance  or  luminance)

computed during the rendering process, in order to map to one of the N single integer values

accepted by a typical visualization device [Sc94]. He proposed two quantization techniques:

uniform rational quantization and non-uniform rational quantization. In the uniform rational

quantization method, he presented a new quantization scheme called rational mapping (see

equation 4.13). Schlick also proposed an automatic generation of the parameters p and  .
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HiValValValp
ValpValFp 


)( , 4.13

where p is in the range  ,0 . This equation is computationally economic compared to the

exponential and logarithmic equations 4.6 and 4.5 respectively. In particular, it needs only 1

division, 1 multiplication, 1 subtraction and 1 addition.
The automatic process  of parameters generation is based on the assumption, when several

viewing parameters are modified, that what really changes on a visualization device is the

value M of the darkest grey level that can be clearly distinguished from black. This value is

used  in  the  following  way:  the  quantization  process  should  map  the  smallest  non-zero

intensity of the picture to the darknest non-black grey of the device   MValLQ o  .

With the rational mapping function, the parameter p is equal:

LoVal
HiVal

N
Mp  . 4.14 

The value of  M, can be easily provided by the user without any measuring instrument, as

described in Schlick [Sc94].
If the intensity of each pixel is not quantized with the same TM function, the quantization

process is called non-uniform. This will be explained in Section 4.3.2

The model presented by Schlick [Sc94], works well when applied uniformly to each pixel of

a high-contrast scene, and especially in scenes containing strong highlights [TuRu99]. It is

quite elegant and practical. Users can find all parameters of the mapping function without

photometric  measurements  of  the  display device,  and  can  compute  the  mapping  quickly

because it does not require transcendental functions [TuRu99].

Also the mapping function preservers contrast  for dark image regions and asymptotically

compresses  image  highlights  sufficiently  to  avoid  clipping  on  the  display  [TuRu99].

However, if it  is true that the all parameters of the mapping function can be find without

photometric measurements, it  is also true that the definition of the parameter  M  needs an

interactive  process  that  must  be  done  off-line,  and  repeated  any time  when  the  display

characteristics are changed.

Ward 1994

Ward [Wa94] presented a simpler approach to appearance modelling that also provided a

better  way to  make dark  scenes  appear  dark  and brightness  scenes  appear  bright  on  the

display [Tu+99].  He proposed using a light-dependent multiplying factor  m  to restore the

appearance of different  lighting conditions.  The factor  was built  using experimental  data
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(contrast visibility data) obtained by Blackwell [Bl46]. These data showed that the smallest

noticeable  increase  in  luminance  or  “contrast  threshold”  of  a  small  target  on  a  uniform

background grows non linearly as the amount of surrounding light increases [Tu+99]. The

scale factor is used to match the threshold of the display to those of the original scene:

rwd LmL  , 4.15

where dL  is the display luminance in 2/ mcd , rwL  is the original scene or world luminance

in 2/ mcd , and
5.2

4.0

4.0

219.1
219.1













rwa

da

L
Lm , 4.16

where  daL  is the display adaptation luminance, a midrange display value, and  rwaL  is the

adaptation  luminance  for  the  real  world  or  scene,  usually   )log()log( rwrwa LmeanL 

[Tu+99]. Because Ward’s method scaled image intensities by a constant factor m , it did not

change scene contrasts for the display [Tu+99]. 

Ferwerda et al. 1996

Ferwerda et  al.  [Fe+96],  introduced a model that include the effects of the adaptation in

threshold visibility, colour appearance, visual acuity,  and changes in visual sensitivity over

the time that are caused by the visual system's adaptation mechanisms. 
The model is based on the psychophysics of adaptation measured in experimental studies,

and maps image file with photopic luminance  CIE Y, scotopic luminance  Y' and  CIE XZ

channels to displayable images in a  RGB colour space. Their approach is based on Ward’s

concept of matching [Wa94]. As in Ward’s method, they converted original scene or image

intensities  rwL  to  display  intensities  dL ,  with  a  multiplicative  scale  factor  m.  They

determined their m values from a smooth blending of increment threshold data for both rods

and cones in the retina [Tu+99]. They first constructed their operator applying Ward’s model

without changes to their cone  TVI data; and extended the Ward’s model to include the rod

TVI function. Also they took into account the mesopic state applying a weighted function to

the results of the photopic and scotopic operators. The final value for the luminance display is

dL :

dsrwadpd LLKLL  )( , 4.17
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where  )( rwaLK  is a constant that varies from 1 to  0 as the scotopic world adaptation level

goes from the bottom to the top of  the mesopic range.   The values  dpL  and  dsL are the

luminance values, compressed in the display luminance range, in the photopic and scotopic

range, respectively.

Ferwerda et al. [Fe+96] took into account the visual acuity, removing all spatial frequencies,

above the spatial frequencies visible to the world observer, in the image that is presented to

the display observer. This was obtained using a Gaussian convolution filter whose power

spectrum amplitude at the cut-off frequency is matched to the observer’s threshold. Thus,

they removed the frequencies in the image which would not  be discernable to the world

observe, equation 4.18:

rwa

rwa
rwac L

Lt
Lf

)(
))((*  , 4.18

where  *f  is the Fourier transform of the convolution filter, and  )( rwac L is the threshold

frequency for the world adaptation of the viewer. In this way, a high contrast scene grating at

frequency )( rwac L  will be displayed at the threshold of visibility for the display viewer. The

light and the dark adaptation are implemented adding to the display luminance a constant

value.

Finally, the adaptation state  rwaL , for the real world, and the adaptation state  daL , for the

display system, are taken as half the highest visible luminance and half the maximum value

of the display luminance, respectively.

This TM operator can reproduce the visual consequences of visual adaptation. Nevertheless,

it does not have a good model for a viewer's state of adaptation. This operator is also not able

to  capture  completely  the  appearance  of  the  early  phases  of  light  and  dark  adaptation

[Fe+96].  

Ward et al. 1997

Ward et al. [Wa+97] introduced a TM operator based on iterative histogram adjustment and

spatial  filtering  processes.  This  operator  reduces  high  scene  contrasts  to  match  display

abilities, and also ensures that contrasts that exceed human visibility thresholds in the scene

remain visible on the display [Tu+99]. They model some foveally dominated local adaptation

effects, yet completely avoid halo artefacts or other forms of local gradient reversals [Tu+99].
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They also take into account three important limitations of the HVS: glare, colour sensitivity

and visual acuity. The way to obtain the glare effect is based on the computation of a low-

resolution veil image from foveal sample values. They then interpolated this veil image by

adding glare effect to the original image. The equation 4.19 is used to compute the veiling

luminance corresponding to a given foveal sample:
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






; 4.19

where viL  is the veiling luminance for the pixel i, jL  is the foveal luminance for the pixel  j

and  ji ,  is the angle between the pixels  i and  j. The equation 4.19 is a conversion of the

integral, representing the glare formula found by Moon and Spencer [MoSp45], to an average

over peripheral sample values [Wa+97]. An approximation of the equation 4.19 is presented

in order to reduce the computation time. The authors perform the following calculation, in

order to derive the final veiled pixel at image position k:

)(913.0 kLLL vpkpvk  , 4.20

where  pkL  is the original pixel at image position  k and  )(kLv  is the interpolated veiling

luminance at k. In particular, the )(kLv  function is a bilinear interpolation on the four closest

samples  in  the  veil  image  computed  in  equation  4.16.  The  colour  sensitivity  has  been

implemented using the equation 4.21:


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

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
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




 
 68.1133.1'

X
ZYYY , 4.21

where XYZ are the tristimulus values, and 'Y  is the scotopic luminance. Finally, for the visual

acuity a Shaler’s data image has been calculated with the equation 1.2 and a variable filter

resolution  has  been  implemented  with  the  mip-map technique  introduced  by  Williams

[Wi83]. At each point in the image, the authors interpolate the local acuity based on the four

closest veiled foveal samples and Shaler’s data. 

Their model can reproduce the visibility, the overall impression of brightness, contrast and

colour.  In comparison with the other  models,  it  reproduces  high level  of  realism,  but  as

reported  in  Tumblin  et  al.  [Tu+99]  the histogram adjustment  is  troublesome.  In fact  the

limitations due to the global nature of the technique become obvious when the input scene
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exhibits  a  uniform  histogram  (see  the  example  of  DiCarlo  and  Wandell  [DiWa00])

[DuDo02].

Tumblin and Rushmeier 1998

Tumblin and Rushmeier [TuRu99] presented a TM operator that is an improved  verision of

their model presented in 1993 [TuRu93]. Their new operator is given by:
drw

rwa

rw
darwad L

L
LLmL

 /

)( 







 , 4.22

where daL  is the display adaptation luminance, typically between 10-30 2/ mcd ; rwaL  is the

scene  adaptation  luminance,  found  from  scene  luminances  rwL  using

  25 /310.2log)log( mcdLmeanL rwrwa
 ; d  is )( daL ; and rw  is )( waL , i.e. Steven’s

contrast sensitivity for human adapted to the display and the real world scene, respectively.

The   values are computed using equation 4.23:

655.2)( aL for 2/100 mcdLa  ; )310.2(log4.0855.1 5
10

 aL otherwise 4.23

)( rwaLm  is the adaptation-dependent scaling term to prevent anomalous grey night images:

  )1(2/1
max)( 

 wdCLm rwa
 , 4.24

where maxC is the maximum available display contrast, and 
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The term m steadily increases display brightness as the real world scene adaptation luminance

rwaL  increases towards the upper limits of vision [Tu+99].

Tumblin et al. 1999

In their works Tumblin et al. [Tu+99] presented two methods for displaying high contrast

scenes.  The  first  one  builds  a  display scene  from several  layers  of  lighting  and  surface

properties.  Only  the  lighting  layers  are  compressed,  drastically  reducing  contrast  while

preserving most of the scene details. This method is practical only for synthetic scenes where

the  layers  can  be  retained  from the  rendering  process.  The  second  method  interactively

adjusts the display scene to preserve local contrasts in a small foveal neighbourhood. Unlike

the first method, this technique is usable on any scene. Both methods use a sigmoid function

for  contrast  compression.  This  function  has  no  effect  when applied  to  small  signals  but

compresses large signals to fit within an asymptotic limit [Tu+99]. 
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Drago et al. 2003

Drago et al. [Dr+03] proposed a high quality TM operator to visualize high contrast scenes

on the  display.  Their  method  is  based  on  logarithmic  compression  of  luminance  values,

imitating the human response to light. A bias power function is also introduced to adaptively

vary logarithmic bases, resulting in good preservation of details and contrast [Dr+03]. The

final luminance display pixel is obtained by equation 4.26:
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where rwL  is the luminance pixel of the scene, maxrwL is the maximum luminance of the scene

and  both  values  are  normalized  by  rwaL (luminance  world  adaptation)  and  scaled  by an

exposure factor. 

maxdL is the maximum luminance capability of the display medium. To improve contrast in

dark areas, the authors proposed some changes to the gamma correction procedure.

To compress the scene luminance values using logarithm functions,  which are computed

using  different  bases  depending  on  the  scene  content,  ensure  to  keep  good contrast  and

visibility in the darkest area and to reinforce the contrast compression in the lightest area. The

resulting TM operator is simple and elegant. However, the computation of the logarithmic

function and the need of finding the maximum luminance value of the input scene increase

the requested computation time.   

4.2.2  Local operators
Schlick 1994

The  non-uniform quantization  process  presented  by Schlick  [Sc94]  is  applied  when  the

intensity of each pixel is not quantized with the same TM function.

This process takes into account the fact that the subjective perception is not uniform. Indeed

the observer does not view a scene as a whole, since his eyes are continuously moving from

one point to another, and for each point, on which the eye is focuses, there is an existing

surrounding  zone  that  creates  some  local  visual  adaptation  and  this  modifies  brightness

perception [Sc94].
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Schlick proposed this empirical scheme to account the non-uniform subjective perception.

For each pixel intensity, the value ZoVal  is computed according to the average intensity of a

given zone surrounding the pixel. 
The ratio  MiValZoVal / characterizes the brightness of a zone, and is used to modify the

parameter p in equation 4.14, as follow:







 

MiVal
ZoValkkpp 1' , 4.27

with  k in the range  [0,1]. This value represents the weight of non-uniformity of the TM

operator. The value MiVal represents the geometrical mean:

HiValLoValMiVal  , 4.28

which divides the dynamic range in two equal sub-ranges [Sc94].  There is again an open

question about the proposed model.  For instance, it is difficult to give a meaningful value to

k and the author used in his experiments a value k=0.5. Moreover, the author proposed three

techniques to define a scheme to compute ZoVal  for each pixel [Sc94], and he defined an

extension to colour scenes.  One technique caused halo artefacts, while the results of the tests

indicates  that  the  other  two  techniques  were  inferior  to  the  uniformly  applied  mapping

function [TuRu99]. 

Pattanaik et al. 1998

Pattanaik et al. [Pa+98] developed a computational model of adaptation and spatial vision for

realistic tone reproduction. This model is based on a multiscale representation of pattern,

luminance, and colour processing in the HVS. The model is incorporated into a TM operator

that maps the vast range of radiances found in the real and synthetic scenes into the small

fixed  ranges  available  on  conventional  output  devices  such  as  CRT's  and  printers.  A

complete scheme of the model is shown in Figure 4.4.

This model allows accounting for the changes in threshold visibility, visual acuity, colour

discrimination,  super  threshold  brightness,  colourfulness  and apparent  contrast  that  occur

with changes in the level of the illumination in scenes. However, the high computational cost

of this method has so far precluded use for the purposes of real-time rendering.

This model seems to be the most faithful to human vision, however, it  may still  presents

halos artefacts [DuDo02].
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Figure 4.4: Multiscale model, after [Pa+98].

LCIS model 

Tumblin  and  Turk  [TuTu99]  proposed  a  TM  operator  called  “Low  Curvature  Image

Simplifier” (LCIS)  . This  technique  is  inspired  by anisotropic  diffusion  and  mimics  the

artist’s drawing process in reverse; it selectively removes details from a scene leaving only

smoothly shaded regions separated by sharp boundaries. The removed details are recovered
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by subtracting the LCIS-smoothed images from the original scene, and then follow the artists

scheme  for  detail-preserving  contrast  reduction:  the  contrasts  of  the  simplified  image  is

strongly compressed, then the details with little or no compression are added.

Their  method can extract  exquisite  details  from high contrast  images.  Unfortunately,  the

solution of their partial differential equation is a slow iterative process [DuDo02]. Moreover,

the coefficients of their diffusion equation must be adapted to each image, which makes this

model more difficult to use, and the extension to animated sequences unclear [DuDo02].

Ashikhmin 2002

Ashikhmin [As02] defined a TM strategy that consist of three steps. First, an estimation of

local adaptation luminance at each pixel in the input scene is performed. Second, a simple

function is applied to these values to compress them into required display luminance range.

Finally,  the  details  are  re-introduced over  the  image.  The author  introduced a  simplified

version of the  TVI function, as showed in Figure 4.5. The simplified  TVI form is given by

four linear segments,  in log-log space, AB, BC, CD and DE.  The TM function used by

Ashikhmin is reported in equation 4.29 below:
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where C( )is the output of the TVI function. A new procedure to estimate the local adaptation

is proposed by Ashikhmin. This procedure is based on balancing two opposing requirements,

which are faced by HVS: keeping the local contrast signal within reasonable bound while

maintaining enough information about image details [As02]. Once the adaptation image and

its tone mapped version are produced, the final details can be add over the image using the

follow equation:
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Figure 4.5: TVI Ashikhmin, after [As02].

The main advantage of this model is its modularity. However, some of its drawbacks are: the

estimation  technique  of  the  local  adaptation  luminance  sometimes  creates  jumps  in

adaptation level away from high contrast image features producing artefacts (see [As02]).

Moreover,  this  procedure  is  not  well  suited  for  images  where  local  contrast  is  uniform

everywhere (see [As02]). 

Adaptive Gain Control

Pattanaik et al. [PaYe02] introduced a technique to reproduce, on a display, high dynamic

range images without introducing any artefacts. The artefacts are usually introduced in the

form of halos, around the high contrast edges (i.e. the boundaries that separate the bright

areas from dark areas). The authors proposed a detail preserving local gain control approach

to reduce the artefacts in the final image. Their technique has the advantage to be simple and

not computationally expensive in comparison with LCIS technique [PaYe02]. 

Photographic Tone Reproduction

Reinhard et al. [Re+02] proposed a TM operator that uses the basic concepts of a technique,

called Zone System, used by photographers and defined by Ansel Adams (see [Ad80][Ad81]

[Ad83]), to manage choices in their TM operator. They first apply a scaling that is analogous

to setting the exposure in a camera. Then, if needed, they apply automatically dodging-and-

burning to preserve the image details for very high dynamic range images.

Their operator is able to reduce the halos artefacts  and, compared with many existing TM

operators, it preserves better fine details.
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The main two disadvantages of this tone mapping technique are the large number of needed

parameters and the high computational costs. Also the way to set these parameters is unclear.

Fast Bilateral Filtering

Durand and Dorsey [DuDo02] presented a new technique, that reduces the contrast while

preserver details. Their technique, is based on a two-scale decomposition of the image into a

base layer, encoding large-scale variations,  and a detail  layer. Only the base layer has its

contrast  reduced,  thereby  preserving  details.  The  base  layer  is  obtained  using  an  edge-

preserving filter, called bilateral filter. 

This is a non-linear filter, where the weight of each pixel is computed using a Gaussian in the

spatial domain multiplied by a function in the intensity domain that decreases the weight of

pixels with large intensity differences.

The resulting TM operator shows interesting results concerning edge preserving filtering and

contrast reduction. The authors presented an acceleration technique, that shows promising

results but  is not supported by enough experimental data.  

Gradient Domain model

Fattal et al. [Fa+02] presented a new method which is conceptually simple, computationally

efficient, robust and easy to use. They manipulate the gradient field of the luminance image

by attenuating the magnitudes of large gradients. A new, low dynamic range image is then

obtained by solving a Poisson equation on the modified gradient field. Their approach relies

on the assumption introduced by DiCarlo and Wandell [DiWa00] that the HVS is not very

sensitive to absolute luminance reaching the retina, but rather responds to the changes of

local  intensity  ratio  and  reduces  the  effect  of  large  global  differences,  which  may  be

associated with illumination differences. Their algorithm is based on a simple observation

that any drastic change in the luminance across a high dynamic range image, must give a rise

to large magnitude luminance gradients at some scale. Fine details, however, correspond to

gradient  of  much smaller  magnitude.  Their  idea  is  to  identify large  gradients  at  various

scales,  and  attenuate  their  magnitudes  keeping  their  direction  unaltered.  A reduced  high

dynamic range scene is then reconstructed from the attenuated gradient field [Fa+02].

The authors presented an efficient TM technique that shows promising results. Nevertheless,

resolving the Poisson equation require a high computation costs.

Other works

A  few other  computer  graphics  researchers  have  modelled  the  appearance  of  extremely

bright, high-contrast scene features by adding halos, streaks and blooming effects to create
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the appearance of intensities well beyond the abilities of the monitor [Tu+99]. Nakamae et al.

[Na+90]  proposed  a  model  on  streaks  of  light  taking  into  account  both  refraction  and

diffraction of light.

Spencer et al. [Sp+95] have presented later on an extensive summary of the optical causes

and visual effects of glare and modelled their appearance by using several adjustable low-

pass filters on the intensities of the original scene [Tu+99].

4.3 Time-Dependent Tone Mapping

Through the visual adaptation process the HVS adjusts itself to the conditions under which

the eyes are exposed to radiant energy. This process takes time, and it is different for the

different  kinds  of  adaptation:  light,  dark,  and  chromatic  adaptation.  Indeed,  the  light

adaptation is faster than dark adaptation. Large abrupt changes in scene intensities can cause

dramatic compression of visual responses, followed by a gradual recovery of normal vision.

Asymmetric  mechanisms  govern  these  time-dependent  adjustments.  Adaptation  and  its

changes over the time have profound effects on the visual appearance of any viewed scene.

Continual adjustment helps to keep the visual system acutely sensitive to scene content over a

wide range of illumination, but adaptation also tends to hide or obscure any very slow change

in scene intensity or spectral content [Pa+00]. 

4.3.1 Pattanaik et al. 2000
Pattanaik  et  al.  introduced  the  first  time-dependent  TM  algorithm.  It  follows  the  block

diagram in Figure 4.6. This algorithm is derived from published quantitative measurements

from physiology, psychophysics, colour science, and photography.

It receives as input the viewed scene intensities to retinal-response-like vectors  R, and the

appearance  model converts  R to  appearance  vectors  Q that  express  correlates  of

whiteness/blackness and colourfulness. The upper model pair computes display intensities

that  match  the  scene  appearance,  and  the  lower  pair  of  inverse  model  computes  display

intensities that match the scene appearance (see Figure 4.6). The forward adaptation model is

a simplified version of a Hunt's model [Hu95], augmented with exponential filters for time-

dependent adaptation mechanisms [Pa+00].
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Figure 4.6: Pattanaik et al. operator, after [Pa+00].

The model presented by Pattanaik et al. [Pa+00] can reproduce the time dependency of the

HVS,  but  it  presents  several  drawbacks  as  will  be  shown  in  Chapter  8  (Experimental

Results). In particular, for a huge dynamic range scene their model can not reproduce the

right scene contrast.  

Moreover, the appearance model, used by Pattanaik et al., does not suffices to capture the real

appearance of the scene. Indeed, no chromatic adaptation model, that takes into account the

different viewing conditions of the two observers (i.e real world, display system), is used.

4.3.2 Durand and Dorsey 2000
The authors [DuDo00] presented an interactive TM process (see Figure 4.7 below).

Figure 4.7: Durand Dorsey 2000, after [DuDo00].

This process takes as input a 3D scene and a set of point-light sources. The authors employed

a multipass scheme to compute the adaptation level. This is mapped to the displayed colour

for each frame. Finally, the authors add glare to improve the appearance of the light sources.

Moreover,  they used a filtering step to simulate the loss of acuity. They make the assumption

that the three RGB components correspond to the three cone types. This assumption is not

valid in the application where the colour accuracy is crucial [Hu95], [Fa98]. To solve this
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problem, the authors proposed a matrix colour transform at the end of the TM operator. They

define  a  mapping  operator  modifying the  operator  of  Ferwerda  et  al.  [Fe+96]  operators.

Hence their operator is based on  Ward’s model, but introducing a new equation to define the

mesopic factor K, used in equation 4.17:

 
rod
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rwa

rwa

L
L

K



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

 25.0
, 4.31 

where  2/100 mcd , and  
rodrwaL is the world adaptation luminance for the rod receptors.

They also extend the Ferwerda´s et al. model [Fe+96] to time-dependent tone mapping by

incorporating a simple model of visual adaptation. They also defined a simple model of light

and chromatic adaptation where the time variable is considered. A model of dark adaptation

is missing. 

Finally, they implemented an interactive version of the glare model proposed by Spencer et

al. [Sp+95], as well as a model simulating the loss of visual acuity [DuDo00].

4.4 Real -Time Tone Mapping

In the previous sections several kinds of TM operators have been discussed. These operators

can reproduce different aspects as contrast, colour, overall impression of the brightness, time

dependency of the HVS, local adaptation, visibility of the objects etc.

The simulation of these complex processes is time consuming, and hence are not feasible in

the case of  interactive and real time applications. 

One possibility of delivering interactivity is implementing a TM operator directly in graphics

hardware  with  support  for  floating-point  colour  representation  and  programmable  pixel

shaders. Due to the hardware constraints, this approach however imposes severe limitations

on  the  operator:  (1)  it  cannot  perform arbitrary data  manipulation;  (2)  its  complexity  is

limited by the maximum number of instructions of a pixel shader [Ar+03].

The  direct  implementation  of  the  TM  operator  on  graphics  hardware  was  proposed  in

[Co+01][Dr+03][Go+03]. However, these works do not define a general solution to deliver

interactivity of existing TM operators.

Cohen et al. [Co+01] proposed a TM operator suitable for hardware implementation. Due to

hardware constraints,  this  operator is  rather simple and does not consider effects  as time

dependency, chromatic adaptation, and other effects of the HVS. 
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Drago et al. [Dr+03] presented a hardware implementation of their own global TM operator

proposing some ides to reduce its computation time.

Goodnight  et  al.  [Go+03]  proposed  an  implementation  of  a  suitable  modification  of  the

model presented by Reinhard et al. [Re+02] in order to reproduce the time-dependency of the

HVS. 

Several works tried to reduce the computation time of their own TM operators using some

strategies (see [Wa+97][Sc+00][DuDo00][DuDo02]). 

In particular, Ward et al. [Wa97] down-sample the image to extract histogram information,

which is used to set up the parameters for their TM algorithm.

Scheel et al. [Sc+00] perform ray casting to obtain high dynamic range image samples and

use the texture mapping hardware to apply TM on vertices of a model with precomputed

radiosity.

Durand and Dorsey [DuDo00] down-sample the image to compute the adaptation luminance

and use a lookup table to speed up their interactive time dependent TM algorithm. In their

recent work, Durand and Dorsey [DuDo02] also use down-sampling and linear interpolation. 

4.5 Tone Mapping for Printers

Several works in computer graphics have addressed to resolve the TM question on display.

However, to the best of our knowledges, no works providing a solution on the same question

on printer  systems have been presented so far.  On the contrary, several  works  in  colour

science community, connected with the TM question, do exist. In particular, there are three

basic areas of particular interest as: gamut mapping, colorimetric characterization of devices

and colour appearance.

Gamut mapping is used to map a large gamut of colours, reproducible by a device, on a small

gamut of colour reproducible by a different device. As described in Section 3.4, colorimetric

characterization  is  used  to  map  colour  of  device-dependent  colour  spaces  in  a  device-

independent  colour  spaces  and vice versa.  On the contrast,  colour  appearance is  used to

predict as the colour is modified if the viewing conditions of the observer are changed. In

order to solve the open questions in these areas, different solutions are presented (see [Ar97]

[ArWi01][Be96][ArWi03][KaAn92][Ka+95][MaAb94][Xi+99][RoBa93]). In colour science

the use of HDR scene is concerning the direct acquisition of the real world using special
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scanner,  digital  or  traditional  photography [LeLe][UrMa97]  and  try  to  visualize  it  on  a

display or print it on a printer. 

These acquisition  instruments,  are not  able  to  acquire  properly the dynamic range of the

scenes.  In this  way the data are compressed in a small  range and the information of the

original scene can be lost. This is the basic difference between the TM question in computer

graphics and what is available in the area of colour science. In computer graphics, there are

just a few results on the colorimetric conversion between devices involved in a multimedia

system, and only some processes utilized in colour science has been used.
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Chapter 5 

Novel Time-Dependent Tone Mapping Model

Introduction

The interval of luminance values that can be found in scenes of the real world can be very

broad; the HVS has the ability to adapt to these dynamic intervals, but it needs some time to

do so. 

The cells in our visual system are triggered by a relatively small range of luminance values;

large  and  fast  changes  in  the  lighting  conditions  cause  this  triggering  interval  to  shrink

further,  until  gradually adapting to  the  new conditions  [Ar+01].  The  mechanisms,  which

control  these time-dependent  adaptations,  are  asymmetric;  it  takes  more time to  adapt  to

darkness than to bright surroundings [Pa+00]. These processes that take place entirely inside

the retina [Do87]  are referred to as  visual  adaptation;  it  has a substantial  impact  on the

appearance of an image.

Continuous  adaptations  help  to  keep  the  visual  system  sensible  towards  the  different

luminance  conditions  that  can  be  found in  real  world  scenes  [Pa+00].  But  not  only the

perception of the brightness varies with changing viewing conditions, the perception of the

colours  is  affected as  well.  If we want  to  capture the visual  appearance of  a real  image

completely,  it  is  necessary  to  consider  the  colour  appearance.  The  model  of  chromatic

adaptation defined by Von Kries, for example, allows predicting the correct reproduction of

colours with respect to varying viewing conditions [Fa98]. Therefore, if we want to visualize

a  real  scene  on  a  monitor  we  need  these  models,  as  the  monitor  has  different  viewing

conditions than the real world [Ar+01].
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In this chapter we present a novel time-dependent algorithm, which is based on an existing

model [Pa+00], but includes substantial modifications in order to improve its limitations as

unable to capture completely the colour reproduction, and a deficiencies when applied on a

very huge dynamic range. 

In order to capture it, we introduced a different  luminance mapping technique and the  Von

Kries chromatic adaptation model. We also, followed other strategies to convert the retinal

response values to luminance display values. Our TM operator also takes into account other

aspects, like the visibility of objects or the subjective experience when viewing a real scene

such as the overall impression of brightness, contrast and colours. Finally we integrated some

aspects of the HVS as: glare, visual acuity, and colour sensitivity. Our operator is able to

work for low and high dynamic ranges.

5.1 Chromatic Adaptation

The ability of the HVS to change its  sensitivity towards determined stimuli  in answer to

changes  of  the  environmental  conditions  is  referred  to  as  adaptation.  There  are  three

important  types  of  visual  adaptation:  Light,  Dark  and Chromatic  adaptation.  Chromatic-

adaptation, as reported in Section 1.3.3, [Fa98] is the human visual system's capability to

adjust  to  widely varying  colours  of  illumination  in  order  to  approximately  preserve  the

appearance of object colours.

The adaptation to light or darkness has a substantial impact on the colour appearance, but the

chromatic  adaptation has even bigger importance.  Indeed, it  allows perceiving the colour

correctly under different viewing conditions. All types of visual adaptation must be included

in all models that try to capture the correct colour appearance [Ar+01].

In  order  to  understand  better  the  chromatic  adaptation  mechanism,  we  introduce  the

corresponding colours concept.   It  refers  to  different  stimuli,  which are  perceived under

different viewing conditions but appear as the same colour, have the same colour appearance

[Fa98].   For  example,  one  tristimulus  value  1XYZ  perceived  under  determined  viewing

conditions  can appear  equal  to  another  stimulus  defined by  2XYZ  and a  different  set  of

viewing conditions.

The tristimulus values of both colours, along with their corresponding viewing conditions,

are  referred  to  as  'corresponding  colours'.  The  tristimulus  values  of  two  corresponding

colours are rarely numerically identical  [Fa98].  A general model  of chromatic  adaptation
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does not include appearance attributes such as lightness, chroma, and hue. But it provides the

transformation of tristimulus values from one set of viewing conditions into a different set of

viewing conditions [Fa98]. In other words, a model of chromatic adaptation allows predicting

the corresponding colours.

A generic model of chromatic adaptation starts from the initial LMS values, response of the

cones to the initial viewing conditions, and predicts the new signals  newL ,  newM , and  newS

under  the  new  viewing  conditions.  In  general  the  colours  are  expressed  using  the  CIE

tristimulus values  XYZ, but fortunately there exists a  3x3 linear transformation between the

signals of the LMS cones and the CIE tristimulus values XYZ. A general chromatic adaptation

model [Fa98] follows the steps as depicted in Figure 5.1. The first step is the transformation

of the  CIE tristimulus values 111 ZYX , of the first viewing conditions (eg. real world in our

case), to cone excitations 111 SML . It is obtained with a simple linear transformation. With the

information about the first set of viewing conditions is possible to obtain the cone signals

aaa SML  adapted  to  it.  Instead,  with  the  information  about  the  second  set  of  viewing

conditions, we determinate the new cone signals 222 SML  adapted to the new visual state (eg.

display in our case). The final step is the inverse transformation in the CIE tristimulus values

222 ZYX , of the second viewing conditions. It is obtained also with a linear transformation. In

this way the final tristimulus values 222 ZYX  are adapted to the new viewing conditions, and

only in this way we are able to preserve the appearance of the object colours.
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Figure 5.1: General scheme of a chromatic adaptation model, after [Fa98].

5.2 Model Development

The novel time-dependent model presented in this section, is based in principle on the time-

dependent model presented by Pattanaik et al. [Pa+00].

In order to facilitate comparisons between the two methods, we first present Pattanaik et al.

[Pa+00] model, and then we discuss its limitations and present the solution.

5.2.1 Pattanaik et al. Model 2000

This  section  provides  a  complete  description  of  all  parts  of  the  time-dependent  tone

reproduction operator presented by Pattanaik et al. [Pa+00]. The operator follows the scheme

in Figure 5.2. It receives an input sequence of scene values expressed in 2/ mcd  and gives as

output displayable sequence of RGB images.
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Figure 5.2:  Pattanaik et al. time-dependent tone-mapping operator, after [Pa+00].

It  is  constituted  by  four  phases  called:  adaptation  model,  appearance  model,  inverse

appearance model and inverse adaptation model.

We describe now these four phases using the same annotation as used in the original paper

[Pa+00]. 

Adaptation model

The adaptation model is a simplification of Hunt’s static model  of colour vision [Hu95],

which adds new time-dependent adaptation components.

As shown in Figure 5.2, a scene in RGB values or radiance is converted into luminance for

both rods and cones (CIE standard Y’ and Y), labelled rodL  and coneL  respectively [Pa+00].
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The first step is to compute both rod and cone luminance responses using equation 1.1, see

Chapter 1, with the maximum response maxR given by a photo pigment bleaching term B :

n
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The parameter  , as reported in Chapter 1, is the  L   value that causes the half-maximum

response. Both B  and   are determined by adaptation to overall scene luminance [Pa+00].

The authors approximated the amount of colour compression caused by equations 5.1 and 5.2

at coneL , and apply it to the colour ratio components:
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The parameter n is taken as suggested by Hunt’s equal 0.73 [Pa+00]. The authors defined the

parameter   for rods and cones as [Pa+00]:
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The authors, unlike the Hunt’s model, used the time varying adaptation amounts ( conerod AA , ),

and the slower asymmetric effects from photo pigment bleaching, regeneration and saturation

effects  ( conerod BB , )  dynamically.  The  authors  used  two  forms  of  exponential  smoothing

filters  applied  to  the  adaptation  goals  signals  rodG  and  coneG  computed  for  every frame

[Pa+00]. To compute the goal signals different solutions have been proposed [Pa+00], and

the best choice may depend on the application.

The fast,  neurally-driven adaptation values  A are computed from the goal values  G using

simple fixed exponential filters F:
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 0/exp1 tTF  , 5.8

where T is the time necessary for the adaptation for the single frame. Instead the constant  0t

is equal to mst rod 150,0   for the rods photo receptors, and to mst cone 80,0  for the cone photo

receptors [Pa+00]. They do not distinguish between multiplicative and subtractive adaptation

because the former is usually completed within one or two frame times [Pa+00]. Finally the

value of A is computed following equation 5.9:

)(1 AAii KJAA   , 5.9

where the index i describe the frame number, and for the first frame the value of A is equal to

the goal value G. The function AJ and AK are fixed scale factors [Pa+c00]:

iA GFJ  , 5.10

1 iA AFK . 5.11

The time-dependent bleaching factor B is computed following the filter proposed in [Pa+00],

that is an extension of the Hunt’ static expression in order to include pigment kinetics.

)(1 BBii KJBB   , 5.12

where B in the first frame is equal to:

1
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The  const  value is  the  same constant  used  in  the  Hunt’s  static  expression  [Hu95].  The

function BJ and BK are computed following [Pa+c00]:
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where  the  constant  0t  is  equal  to  st rod 400,0  for  the  rods  photo  receptors,  and  to

st cone 110,0   for the cones photo receptors.

Visual Appearance Model

Pattanaik et al. [Pa+00] define a simple visual adaptation model which assumes that a human

can assign equivalent appearance to dim displays and very bright or very dark scenes by a

simple  linear  mapping of  visual  responses.  The model  determines  “reference white”  and
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“reference black” responses from among the current visual response against the reference

standards. 

As shown in Figure 4.6, their appearance model computes luminance appearance values

by  subtracting  reference  black  response  blackREF  from  LumR ,  where

rodconeLum RRR  .

They followed  the  Hunt’s  suggestion  determining  the  reference  white  as  five  times  the

current adaptation level and the reference black as 1/32 the intensity of the reference white. 

The final responses to reference white and black are [Pa+00]: 

coneconerodrod ALconeALrodwhite RRREF 55   5.16

coneconerodrod ALconeALrodblack RRREF 32/532/5   5.17

Instead the  midrange  of  visual  responses  are  defined as   blackwhitespan REFREFQ   and

 blackwhitemid REFREFQ  5.0 .  Finally  ColorQ  values are set  by  ColorR  values of the scene

[Pa+00].

Tone Reproduction Operator

The final Tone Reproduction operator is derived assembling to the adaptation and appearance

model the inverse appearance and adaptation model as shown in Figure 4.6 [Pa+00]. In this

way the scene appearance values are converted backwards into display intensity.

Inverse Appearance Model

This model translates the visual appearance into the display. Pattanaik et al. [Pa+00] did the

following assumption: “the display minimum and the maximum values will evoke blackREF

and  whiteREF  responses in the viewer, and their inverse appearance model attempts to map

scene appearance values Q to a display observer’s response values with a little distortion“.

The inverse appearance model is based on the following four rules:

1. IF the display can directly reproduce the scene visual responses, do so. Exactly cancel the

offset to LumR  that was applied by the forward appearance model. ELSE

2. IF scene spanspan displayQQ  , compress and offset scene  LumQ  to match scene  whiteREF

and blackREF  to display whiteREF  and blackREF . ELSE
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3. IF  scene midmid displayQQ  ,  offset  scene  LumQ  downwards  only  enough  to  ensure

whitewhite displayREFsceneREF  . ELSE

4. Offset scene LumQ  upwards only enough to ensure blackblack sceneREFdisplayREF  .

Inverse Adaptation Model

The aim of this model is to find RGB display values for a given set of visual response values

LumR  and  ColorR  [Pa+00]. Pattanaik et al., for simplicity, made the following assumptions:

first, assumed that the display device gamma is 1.0, forcing proportionality between RGB

and display intensity values. Second, assumed that the display observer have fixed steady-

state adaptation amounts. The display luminance value is derived inverting equation 1.1. The

colour component is not derived by the inversion of equation 5.3, for simplicity, but instead

they compute a constant display dS  value from a forward-difference of the slope of equation

1.1  measured  between the  display  whiteREF  and  blackREF  [Pa+00].  They raise  the  colour

appearance value ColorQ  to the power of 1/ dS  to convert it to display colour ratio dC .

5.2.2 Novel Time-Dependent Tone Mapping Model

In this section we present the modifications introduced in the original time-dependent tone-

mapping operator of Pattanaik et al. [Pa+00]. Their model has been designed to simulate the

time adaptation process of the HVS and achieved good results. However, following aspects

have  not  been  taken  into  consideration:  compression  of  the  HDR  that  does  not  allow

reproducing the visibility and the contrast correctly, chromatic adaptation, limitations of the

HVS (glare, visual acuity, and colour sensitivity). These limitations are also shown in Section

8.1, where the experimental results are presented. 

The technique used to compress the HDR of the input scene is too weak for large HDR. As

shown in Figure 5.3 we have an output scene, used in several tone-mapping works, obtained

by using the original  model  of Pattanaik et  al.  [Pa+00].  In this  case the visibility of the

objects and the contrast are not reproduced properly.
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Figure 5.3: Scene with luminance range [0.37; 18828] cd/ 2m  [S. Crone, L. Fawler and J. Kerrgan 1997]; scene

obtained by using the model of  Pattanaik et al. [Pa+00]. 

A way to overcome these limitations is to modify the original TM operator. We propose a

new luminance mapping technique, and introduce a chromatic adaptation model. We also

integrated in our TM operator the HVS limitations. In particular, we modified the following

steps: Adaptation, Visual Appearance, Inverse Appearance and Inverse Adaptation models.

Adaptation model

Concerning the colour response value ColorR  used by Pattanaik et al. [Pa+00],  to discard the

complex colour calculation performed by Hunt’s model, we used a different strategy also

used in several TM operators. Our strategy consists in multiplying by the ratio
rw

d

L
L

 the colour

components of the corresponding input pixel. As discussed in Ashikhmin´s work [As02], this

is the simplest way to deal with colour that provides acceptable results. See, e.g. Figure 5.4,

where a comparison of some images obtained using both operators is presented. 

Figure 5.4: Colour comparison between images obtained with the two operators: (left) Pattanaik et al. operator

[Pa+00]; (right) our operator. [S. Crone, L. Fawler and J. Kerrgan 1997].
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From the images in Figure 5.4, one can understand that the colour reproduction with our

operator is comparable with the colour reproduction of the Pattanaik et al. operator [Pa+00].

Our method is also faster than the method used by Pattanaik et al., since it requires just one

division (compare it with equations 5.3 and 5.4).

We introduced another  modification in  the dynamic adaptation model  for  the parameters

conerod AA , , and conerod BB , . This influences also the compression of the high dynamic range of

the original scene. For the parameter A we used the exponential filter expressed in equation

5.8 without  updating with equation 5.9 used by Pattanaik et  al.  [Pa+00].  In our case the

parameter T (i.e. time in milliseconds) must be specified for each frame and the parameters A

and  B  will  be updated consequently. To allow the parameter  B  depending to the time  T,

equations 5.14 and 5.15 have to be modified as follows:

0tconst
GT

J i
B 


 , 5.18

0t
TKB  . 5.19

Visual Appearance Model

We used different parameters for the visual appearance model. Indeed, we did not follow the

strategy suggested by Hunt as used in the model of Pattanaik et al.

For the reference white  whiteREF , and for the reference black  blackREF  we simply used the

minimum  and  maximum  luminance  scene  values  as  used  in  several  TM  models.  This

simplification  does  not  introduce  visible  artefacts  as  shown by experimental  results  (see

Section 8.1).

For the display system we used the maximum and minimum luminance, reproducible by the

monitor, as white and black reference values ( dwhiteREF  and dblackREF ) both lie in the range

[0.0, 1.0]. 

Inverse Appearance Model

To compute the luminance mapping of the retinal luminance response of the real scene in the

range of the display, we have to consider two different possibilities:

1 The value of the reference luminance of the scene is contained in the range of the display

luminance. In this case, no operation is needed and the value LumR  is not modified. 
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2 The value of the reference luminance of the scene lies outside the range of the display

luminance. In this case the new reference luminance value  LumR  can be determined by

mapping the retinal response of the scene LumR  into the luminance range of display [0.0,

1.0]. 

blackwhite

blackLum
Lum REFREF

REFR
R




 , 5.20

and we used the rules specified in the Pattanaik et al. model [Pa+00].

If the resulting value is larger than 1.0, it has to be clipped to 1.0. This strategy is in practice

used in many applications in order to normalize a huge range in a smaller one.  Equation 5.20

has also the property to compress HDR scene to the display range while trying to convey the

overall impression of brightness [As02].

In Figure 5.4 one can observe that, in the last phase of adaptation, our compression method

achieves better results than that of Pattanaik et al. model [Pa++00]. Indeed the image on the

right (obtained with our method), no areas over-exposed are present. This is in contrast with

the image obtained with the model of Pattanaik et al. (see the image on the left).

Inverse Adaptation Model

Once we have obtained the new retinal answer LumR , compressed in the low dynamic range of

the display, the next step is to compute the luminance value of the display.

This can be obtained inverting the equation rodconeLum RRR  . This essentially amounts in

solving a second-degree equation. By contrast, at this satge, the model of Pattanaik et al.

[Pa+00]  use  an  approximation.  Before  calculating  the  luminance  value,  one  needs  to

determine the coefficients  dconeB  and  drodB using equations 5.21 and 5.22,  for the display.

The coefficients  dconeA  and  drodA  for  the display are  equal to the work display luminance

values in the range [0.0, 1.0].

d

d
cone

cone A
B





6

6

102
102

, 5.21

d

d
rod

rod A
B




04.0
04.0

. 5.22

The  coefficients  dcone  and  drod , for  the display,  are determined using equations 5.5 and

5.6, with the parameters dconeA  and drodA . The form of the second-degree equation is
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where a, b and c come from the following equations:

Lumrodcone RBBa
dd
 , 5.24
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we also consider the drodL  luminance value

 
ratio
L

L d

d

cone
rod  . 5.27

Where 
rod

cone

L
L

ratio  . 

Since we are also interested in achieving a correct colour reproduction on the display, we

have to consider the differences in viewing conditions between the real world and the display.

Von Kries Model

Different chromatic adaptation models (e.g. Von Kries, Naytani, Guth's, and Fairchild’s) do

exist.

We used the Von Kries model to predict the colours data under the viewing conditions of the

display.  We  applied  it  to  the  tristimulus  values dXYZ  obtained  as  output  of  our  time

dependent operator. Our choice is due to the simplicity of this model and the fact that every

other chromatic adaptation model also follows the same hypothesis. 

Every chromatic adaptation model permits to compute the corresponding colours. Moreover

using these models one can predict the colour matches across changes in viewing conditions. 

Any physiologically plausible model of chromatic adaptation must act on the cone responses

[Fa98]. Thus, in applications that use the CIE colorimetric values, CIEXYZ tristimulus values

are transformed into cone responses LMS with a linear transformation [Fa98].

ZYXS
ZYXM

ZYXL






918.0000.0000.0
046.0165.1226.0

081.0708.0400.0
5.29

The modern interpretation of the Von Kries hypothesis in terms of a chromatic adaptation

model is expressed by the following equation:
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1max

2max
1

2
1 XYZMatrix

LMS
LMSMatrixXYZ   , 5.30

where Matrix is the matrix that describes the linear relation between CIE tristimulus values

XYZ and the cone responses LMS (see equation 5.27). The values maxLMS  represent the cone

responses of white point; it is a diagonal matrix with diagonal values maxLMS . The value 1/

maxLMS  is a diagonal matrix too, with diagonal values 1/ maxLMS .  XYZ represents the pixel

tristimulus values. 

The  indices  1 and  2 represent  the  different  viewers  in  the  real  word  and in  the  display

respectively. In order to have success with this operation one has to normalize the tristimulus

values in the range [0.0, 1.0]. The final outputs of our model, after data denormalization, are

the new tristimulus values dnewXYZ  of the image. 

The last  step consist  in transforming the new tristimulus values  dnewXYZ  to  RGB display

values, which is obtained with a linear transformation.

5.3 Human Visual System Limitations

To  reproduce  contrast,  visibility  of  the  objects,  time  dependency,  and  visual  adaptation

phenomena has profound effects on the visual appearance of any viewed scene, but this is not

enough  to  offer  a  truly  realistic  image  reproduction.  To  this  purpose  we  also  need  to

reproduce the well known limitations of the HVS, such as  visual acuity,  glare and  colour

sensitivity.

Visual  acuity  is  the  capacity  of  the  visual  system  to  resolve  spatial  details  in  light

environments, and loose its ability to resolve fine details in dark environments. Glare effect is

caused by bright sources in the periphery of the visual field through scattering of light in the

lens  of  the  eye,  which  in  turn  obscures  foveal  vision.  A  realistic  treatment  of  colour

sensitivity has to account for the loss of colour vision in dark environments [Wa+97].

5.3.1 Integration of the Human Visual System Limitations in the Time-
Dependent Model

The basic  idea we implemented is  shown in Figure 5.5.  We start  from an image,  which

contains HDR values for each pixel, and for each pixel in the image we apply the glare model

on the cone luminance value. On the new cone luminance value the visual acuity information
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is applied to obtain the updated luminance value. The colour sensitivity model uses this value

to calculate a luminance value for the rod receptors. These new values are given to the time

dependent algorithm. Is this algorithm that generates luminance values compressed in the low

dynamic range of the display. 

In the next subsections we explain how we implemented the glare effect, visual acuity and

colour sensitivity.

Figure 5.5: Integration of the human visual limitations in the Time-Dependent TM operator, [ArWi02].

5.3.2 Glare

There are several models, which take the glare effect into account. The first one is based on

the work of Holladay [Ho26] and Moon and Spencer [MoSp45], and was proposed by Ward

et al.[Wa+97].

Spencer et al. [Sp+95] proposed a second model, that is very precise and predicts the all

aspects of glare, like flare and bloom, but it is computationally expensive. This is achieved

through  a  quantitative  model,  which  directly  models  the  bloom,  ciliary  corona  and  the
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lenticular halo. Finally, generates a filter which is applied to the image in question. Durand

and Dorsey [DuDo00] presented a modification of this model.

Also Nakamae et al.  [Na+90], in their driving simulator, presented two versions of glare:

blooming  and  streaking. Blooming  represents  the  hazy  fog  that  is  visible  around  the

luminaries;  instead streaking represents the case where star-like smears emanate from the

luminairs  [Ch+93].  In  Chiu  et  al.  [Ch+93]  has  been  presented  the  implementation  of

blooming.

The glare  effect  implemented,  in  this  thesis  work,  is  based  on  the  work  of  Ward  et  al.

[Wa+97]  where  we  compute  the  veil  on  the  all  original  scene,  and  not  only  to  a  low

resolution  of it,  using a mask of size  3x3 pixels.  In this  way we do not  need a bilinear

interpolation step, as specified in Ward et al. work [Wa+97].

5.3.3 Visual Acuity

The model of visual acuity implemented, in this thesis work, is based on the model explained

by Ferwerda et al. [Fe+96]. We use the same Gaussian convolution filter with its Fourier

transform given by

    
rwa

rwa
rwac L

Lt
LRf * , 5.31

where  rwaL  is the local adaptation luminance of the real scene,   rwac LR  is the threshold

frequency,  and   rwaLt  is  the  threshold  luminance  for  the  world  viewer.   rwac LR  is

calculated  with  Shaler's  formula,  equation  1.2.  However,   rwaLt  is  calculated  by  using

Ward's model [Wa94]. For every pixel we calculate the visual acuity  rwLR  with the Shaler

formula, with the pixel luminance of the real scene as input, and we apply the equation 5.31

to  the  pixel  that  has  visual  acuity over  the  threshold  frequency. With  this  operation  we

remove all spatial frequencies above those visible to the world observer in the image, which

is presented to the display observer.

There is a second model which implements the visual acuity, and which appears in [Wa+97].

This model implements a variable resolution filter using an image pyramid and interpolation,

similar to the mip-map technique introduced by Williams [Wi83]. But the computational cost

of this model is very high. 
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5.3.4 Colour Sensitivity

To simulate the loss of colour information in dark environments, we use the model presented

by Ferwerda et al. [Fe+96]. 

In the scotopic level there is no colour vision and poor acuity, in this range only the rod

receptors are active. The mesopic level is characterized by the fact that both the rod and cone

receptors are active, and finally in the photopic level one has both good colour vision and

acuity. The latter is due to the cone receptors, which are responsible for colour vision, being

finally fully active.

With this model we modify only the luminance value for the rod receptors simulating this

defect,  and  we  are  able  to  simulate  the  passage  between  the  scotopic  and  the  photopic

through the mesopic level. The new value for the luminance in the scotopic level is obtained

by
















 
 68.1133.1'

X
ZYYLY rod .    5.32

Where  X,  Y and  Z are  the  CIE tristimulus  values.  The  value  of  the  luminance  Y  is  the

luminance value for the cone photo receptors.
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Chapter 6 

Real Time Tone Mapping Model

Introduction

Many TM operators have been proposed in the last decade. An important subclass of these

are global TM operators. They consider each pixel in an image separately, and are therefore

well  suited  for  acceleration.  Although  these  operators  do  not  take  into  account  the

neighbourhood of a pixel (like local TM operators), they can still simulate many important

effects related to the HVS.

Some global operators evaluate just a simple function, but many of them perform complex

computations  for  each  image  pixel  [TuRu93][Wa+97][Pa+00][Dr+03][Fe+96][Ma+97].

While convincing results can be obtained, the high execution times of the complex operators

prevent their usage in interactive applications.

One possibility of delivering interactivity is implementing a TM operator directly in graphics

hardware  with  support  for  floating  point  colour  representation  and  programmable  pixel

shaders. Due to the hardware constraints, this approach however imposes severe limitations

on  the  operator:  (1)  it  cannot  perform arbitrary data  manipulation;  (2)  its  complexity  is

limited by the maximum number of instructions of a pixel shader.

We propose a novel acceleration framework that delivers interactivity to complex global TM

operators. Interactivity brings the user a qualitatively different understanding of the behaviour

of different operators as (he) she can study their response by interactive manipulation of the

image or the parameters of the operator. The framework can be implemented either as a pure

software  acceleration  technique,  or  it  can  perform  some  algorithmically  simple  but
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computationally costly operations in the graphics hardware. In the latter case, the proposed

framework also provides the benefit of an efficient integration of the method into the flow of

the graphics hardware-rendering pipeline and permits to use complex global TM operators in

real-time rendering applications.

This  Chapter  is  organized as follows:  Section 6.1 provides  an overview of  the proposed

method. Section 6.2 discusses the different steps of the proposed framework. Section 6.3

discusses an implementation of the method on the graphics hardware. 

6.1 Overview

The  proposed  framework  consists  of  four  steps:  sampling,  tone-mapping,  fitting  and

reconstruction. As an input we take a HDR image. The sampling algorithm produces a set of

samples that form a compact representation of the luminance distribution in the image. The

samples are passed to the TM operator that assigns each sample a luminance in the colour

space of the display device (tone-mapping step). The fitting algorithm that finds interpolation

coefficients  for  the  point-sampled  tone-mapping  curve  (tone  reproduction  curve  TRC)

processes the result. Finally the reconstruction algorithm applies the interpolated TRC on all

pixels of the input image [Ar+03]. The framework is depicted in Figure 6.1:

Figure 6.1:  Overview of the proposed  framework. The sampling and the reconstruction are suitable for an
implementation on the GPU, the TM and the fitting are performed on the CPU [Ar+03].
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Figure 6.1 shows a possible subdivision of the computation between the graphics hardware

and  the  general-purpose  processor.  Sampling  and  reconstruction  are  relatively  simple

algorithms, but they are applied on all pixels of the input image. Tone mapping and fitting are

more complicated algorithms, but they are applied on a relatively small number of samples.

Thus using the suggested subdivision of the computation we exploit the raw computational

power of graphics hardware while keeping the framework open for arbitrarily complex global

TM operator. 

Transferring only the sampled image and the coefficients established by the fitting algorithm

minimizes the overhead of transferring data between the CPU and GPU. The main data flow

takes place on the GPU [Ar+03].

6.2 Framework

In this section we discuss the four main steps of our framework with more details.

6.2.1 Sampling

The goal of the sampling algorithm is to compute a compact representation of the luminance

distribution in the input image. The set of samples should provide an accurate representation

of the histogram of the input image, while keeping the number of samples small. To avoid

maintaining a HDR histogram, we sample directly in the image domain. We have used two

techniques that can be seen as representatives of two extremes random sampling and down

sampling, and one technique that combines the advantages of both filtered random sampling.

Figure 6.2:  The input image and the luminance samples. (left) The input image (1000x700 pixels). (centre)
Random sampling (1024 samples). (right) Down sampling (1024 samples), [Ar+03].

Random Sampling

Random sampling takes a specified number of samples from the input image. The samples

are taken at image coordinates given by the Halton sequence. 
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The Halton sequence can be used like a random number generator to produce points in the

interval [0,1]. The coordinates pixel (x,y) are obtained just multiply the Halton values, in 2D

space,  for the dimensions of the input image, as showed in equation 6.1:

sizeension

sizeension

YHy
XHx



dim2

dim1 ,
  , 6.1

where H represent the Halton sequence for two-dimensional space, and sizeX  is the height of

the input image, instead sizeY  is the width of the input image.

The Halton sequence is even less random than a random number generator. In contrast, the

Halton sequence does a better job of filling in the region, avoiding the large gaps that can

occur with a random number generator [Ha03]. 

Down Sampling

Down sampling subdivides the image into n regions and computes an average luminance for

each region, which corresponds to the application of a box filter on the samples. The number

n describes the resolution of the final image. For example, if the dimension of the final image

must be 1000 pixels we subdivide the input image in 1000 equal regions and in each region is

computed an average luminance value that represents a pixel of the final image.

A  similar  technique  was  used  by Scheel  et  al.  [Sc+00]  to  compute  a  global  adaptation

luminance. See Figure 6.2 for an illustration of the resulting images using these two sampling

techniques.

Filtered Random Sampling

Filtered  random  sampling combines  random  sampling  with  down  sampling  in  order  to

improve the ability of the algorithm to capture both high frequency as well as low-frequency

information. It consists to apply, on every pixel obtained by random sampling technique (see

section Random sampling), a box filter, of defined size, that computes an average luminance

value of the luminance pixel contained inside in the box filter. An example of the final image

obtained with this sampling technique is shown in Figure 6.3.
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Figure 6.3:  The input image and the luminance samples.  (left)  The input image (1000x700 pixels).  (right)
Filtered Random sampling (1024samples). 

We performed several experiments in order to define the most suitable size of the box filter

usable by our framework. These experiments are discussed in Chapter 8.

6.2.2 Tone Mapping

Once a small set of samples is obtained with the sampling phase, applied on the input image,

it is sent to the TM operator in order to be mapped on the low dynamic range of the display

device. The TM operator is only applied on this restricted set of samples, of the input image,

in order to pass this  information to the fitting algorithm (section 6.2.3) that  captures the

behaviour of the tone reproduction curve of the TM operator. We assume that the operator

works  only with  the  luminance  component  Y (or  real  world  luminance rwL )  of  CIE XYZ

colour space. The TM operator maps each sample in the low dynamic range luminance in the

restricted device range. In other words, the mapping represents a 1D point-sampled  TRC as

defined in equation 6.2. 

 
ii drw LLTRC  . 6.2

Where  irwL  represent the real world luminance value of the  i-th pixel of the input image

contained  in  the  small  set  of  samples  obtained  with  the  sampling  phase.  Instead,  idL

represents the corresponding luminance value mapped in the restricted luminance range of

the display device.

In the case a colour transformation is required; it can be applied on the whole image during

the reconstruction phase, Section 6.2.4.

6.2.3 Fitting

The fitting algorithm aims is to capture the behaviour of the TM curve, or TRC using the

information received by the TM phase. The fitting phase has the following features:

- Accurately capture the point-sampled TRC.
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- Keep computational costs low.

To reproduce accurately the behaviour of the TM operator, minimize the error introduced by

the  reduce  information  obtained  from  the  sampling  phase,  we  need  to  respect  the  first

features. 

However, we need to be as fast as possible in reducing the final computation time of the

framework. To preserve these two characteristics we tried two different kinds of interpolation

models: piecewise linear interpolation and high order interpolation using natural cubic spline.

Note that before applying the interpolation algorithm, we first sort the samples according to

the real world luminance rwL .

In  the  case  of  piecewise  linear  interpolation,  we  need  just  to  compute  the  interpolation

coefficients  k and  d between the boundaries real world luminance samples pixel  irwL  and

1irwL  in the generic  i-th  interval.  Linear interpolation in that interval gives the following

interpolation equation:

dLkL rwd  , 6.3

and the coefficients k and d  are:
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1 ; ii rwd LkLd  , 6.4

where idL  and 
1idL are the boundaries luminance values mapped in the low dynamic range of

the display for the i-th interval.

In the case of natural cubic spline more coefficients, have to be determined. Indeed, if the

natural cubic spline is as equation 6.5, we have to compute four coefficients [Pr+92]:
'''

11 


iiii ddddd LlLhLbLaL , 6.5

where '
idL  and ''

1idL are the first and the second derivatives of the boundaries luminance values

idL  and  1idL  for the  i-th  interval, respectively. These coefficients are computed as follows

(see [Pr+92]):
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Natural cubic spline slightly increases the accuracy but it does not compensate the higher

computational costs, that are approximately 2 times the computational costs to perform the

piece-wise linear interpolation. 

6.2.4 Reconstruction

The reconstruction of the TM curve proceeds as follows: given the HDR luminance  rwL ,

using a binary search, we locate an interval i of the interpolated curve that covers rwL .  For

the linear interpolation the device luminance dL  is extrapolated as:

irwid dLkL  ;      
1


ii rwrwrw LLL . 6.8

For the natural cubic spline, dL  is expressed as:
'''

11 


iiii didididid LlLhLbLaL .      . 6.9

Finally, the colour of each pixel of the output image is computed by multiplying the colour

components of the corresponding input pixel by the ratio
w

d

L
L

. As discussed in Ashikhmin’s

(see work [As02]), this is the simplest way to deal with colour which provides acceptable

results.

Look-up-table

To accelerate the reconstruction algorithm, we can re-sample the interpolation coefficients

and store them in a lookup table. Given a world luminance, the lookup table can be directly

accessed to obtain the corresponding device luminance value. To improve the accuracy of the

reconstruction we can use a logarithmic scale to capture the low dynamic part of the TM

curve  more  accurately.  Indeed,  the  logarithmic  scale  has  the  property  to  change  the

distribution of the samples of the TM curve. This means that for the low dynamic range of

the TM curve the interval between two samples is decreased. This gives more information.

By contrast for the high dynamic range of the TM curve, the interval between two samples, is

increased.

A similar technique was used by Durand and Dorsey [DuDo00] and Scheel et al.[Sc+00].

Indeed, they computed the down-samples pixel using directly the TM operator whereas our

method re-samples the interpolated TM curve. The advantage of our method is that we can

treat the TM operator as a black box without altering its TM curve. 

This is more general, since we do not have to know which parameters the TM operator uses.
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6.3 Hardware

We integrated the proposed framework to the rendering pipeline of graphics hardware with

the  support  for  floating  point  per-pixel  operations.  In  particular  we  used  the  NVIDIA

GeForceFX card, which supports 32 bits per colour component and pixel shaders (also called

fragment programs) of up to 1024 instructions [Nv03].

Following Figure 6.1, we ported two steps of the framework to the graphics hardware: the

sampling and the reconstruction. The corresponding algorithms are implemented as fragment

programs written in NVIDIA's Cg language [Nv03]. In this section we discuss specific issues

associated with the hardware implementation.

6.3.1 Sampling

The sampling algorithms described in this section, are the hardware implementation of the

algorithms described in Section 6.2.1. In this section we will give just a description of their

hardware implementation on the GPU.

Random Sampling

Random sampling is implemented by dependent texture lookups. We generate a small texture

containing values of the Halton sequence. The number of the desired samples gives the size

of the texture. This texture is rendered into the frame buffer as follows: for each pixel we use

the corresponding texel as indices to the input image (treated as a secondary texture) and the

pixel is set to the colour of the addressed pixel. 

Down Sampling

Down  sampling  is  implemented  by  subsequent  rendering  of  textured  quads  of  smaller

resolution. Initially we use the input image as a texture and render it on a quad with 1/k of the

resolution of the input image. The fragment program computes an average of  2k texels for

each pixel covered by the quad. If the input image consists of p pixels after n steps we obtain

nk
p
2  samples assuming the dimensions of the image are a power of k. 

Filtered Random Sampling

Filtered random sampling is  a  simple  extension of  random sampling where a  predefined

image region around the input image pixel is averaged in the fragment program to obtain the

sample value. 
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6.3.2 Tone mapping and Fitting

To  maintain  the  flexibility  of  the  original  TM  operator  and  to  overcome  the  hardware

constraints of the graphics cards, the Tone mapping and the Fitting steps are implemented on

the CPU, as shown in the Framework structure of Figure 6.1.

After the sampling step, about 1000 samples are transferred from the GPU to the CPU using

a  frame  buffer  read-back.  Apparently,  this  operation  seems  to  be  the  bottleneck  of  the

Framework. However we transfer only a reduced number of samples (1000) in respect to the

original dimension of the input image. Moreover this operation is not time consuming, as

shown in Section 8.2.

As  described  in  Section  6.2.2,  the  Tone mapping step  consists  to  apply one  of  the  pre-

existing global TM operators. The TM operator is applied on the samples and the fitting is

used to find the coefficients of the interpolated TRC as described in Section 6.2.3. For the

motivations already explained in Section 6.2.3, we used  the piecewise linear interpolation

instead of cubic spline. 

As described in Section 6.2.3 the fitting algorithm is used to interpolate the point-sampled

TRC in order to tone map all pixels of the input image. The coefficients obtained from the

fitting algorithm are sent to the graphics card as a texture. Each texel of the texture represents

coefficients of the interpolation for one interval between the samples. The coefficients are

encoded as colour components of the texel.

6.3.3 Reconstruction

Given the real world luminance of the input image  rwL ,  the reconstruction phase can be

divided in two tasks:

1) Find  the  i-th  interval  that  covers  the  luminance  value  rwL .  In  this  interval  the

correspondent coefficients, determinate with the fitting algorithm, are stored.

2) Applying the interpolation algorithm to the input pixel using these coefficients.

To  perform  the  first  task  we  tried  to  use  the  binary  search  as  used  in  the  pure  CPU

implementation.  For  the  second  task,  as  described  in  the  previous  section,  we  used  the

piecewise linear interpolation instead of cubic spline.

Preliminary  tests  showed  the  high  computation  costs  of  the  binary search,  even  if  it  is

implemented on the GPU. In order to avoid it a look-up table can be created. This works as

explained in Section 6.2.4. In general, from these preliminary tests, we can see that the binary
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search implemented on the GPU is three times slower than the lookup table implemented also

on the GPU. More information about the performances, both in terms of time and quality, are

presented in Section 8.2.

A description of the implementation on the GPU of these two techniques: binary search and

look-up table is given in the next two subsections.

Binary Search

To perform a binary search we extend the texture of coefficients with a row containing the

world luminance values of the samples. The binary search algorithm locates the appropriate

coefficients of the interpolated TRC using this row. 

Lookup Table

The lookup table for reconstruction is constructed by rendering the coefficients established

by the fitting algorithm into the frame buffer. The coefficients of an interval are rendered as a

narrow horizontal textured quad. The vertical limits of the quad are determined by the world

luminance of the sample points that bound the associated interval. The texture of the quad

consists of the interval coefficients. Each column of the frame buffer represents then a fixed

size interval of world luminance. Given a luminance value, the reconstruction algorithm can

then directly access the lookup table without the necessity of performing a binary search. 

6.3.4 Discussion

As  described  before  the  framework  consists  of  four  basic  steps,  and  a  smart  working

subdivision  between CPU and GPU is  presented.  This  subdivision  has  been designed to

provide a general solution; for instance it allows  to any pre-existing global TM operator to

be used as a black box without modifying its original implementation. The generality, of our

approach, also concerns the fact that the rendering pipline does not need any changes and the

framework can be easily integrated.   

The two steps that are computationally critical are the sampling and the reconstruction steps,

since they have to be applied on the whole input image. For instance, the idea to implement

these two steps on the GPU was directed to reduce the computation time and to maintain the

generality of  the  framework at  the  same time.  The  latter  is  due  to  the  fact  that  the  TM

operator  is  implemented  on  the  CPU  and  it  can  be  substituted  by any another  existing

operator,  without  changing the framework and the rendering pipeline.  The sampling step

should  be  critical  if  an  unstable  sampling  technique  is  adopted.  Thus,  the  information

needed to capture the behaviour of the TM operator is not properly extracted. 
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The framework can be affected by a flicker noise present in the image sequence (flickering

problem).  This  happens  for  two reasons:  first,  the  sampling  on  the  input  image can  not

capture the exact image parameters like maximum and minimum luminance used by the TM

operator. Second, also a direct implementation of a TM operator on the GPU, is affected by

the flickering. This is also due to the fact that an interactive application can often suffer from

large temporal discontinuities in dynamic range.

Smoothing those discontinuities  can be done in two ways: reusing the pixel  information,

captured by sampling, in the last  ten frames, or incorporating a model of time-dependent

adaptation. 

The bottleneck of this framework could appear the transfer of the data between CPU and

GPU and vice versa. In practice this does not constitute any limitation since the transferred

data  are  limited  to  a  small  number  of  samples  obtained  by sampling.  In  the  performed

experiments (see Chapter 8) usually the number of samples does not exceed 1000. The tone-

mapping step is also not time critical, since it is performed on the samples obtained with the

sampling step. For instance this step is left on the CPU. 
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Chapter 7 

Tone Mapping for Printers

Introduction

The printer device is often used for printing HDR scenes, and like the display, presents some

problems when a HDR scene is printed out. In fact the printer, as the display, reproduces the

scene  in  a  low  dynamic  range,  also  lower  than  the  dynamic  range  of  the  display.  The

consequence of it is that the characteristics of the original scene such as contrast, brightness,

details etc. are lost, and the final output scene is not comparable with the original HDR scene.

The problem in the case of the printer is more complex than for the display device. Indeed a

complex characterization model must be included that performs the colour reproduction on

the device. In this chapter a simple framework, that defines the steps that are necessary to

print  a  HDR  scene,  are  presented  (Section  7.1).  In  Section  7.2,  a  novel  colorimetric

characterization method is presented. Finally in Section 7.3 a discussion on the presented

method is presented. 

7.1 Framework

Uroz and Marimon [UrMa97] presented a flowchart (see Figure 7.1) for the reproduction of

paintings on a large format ink-jet printer. The objective is to obtain an equivalent match

between the  original  and  the  copy. Several  steps  constitute  it:  image  capture,  scanning,

image correction and printing. This framework can be extended to be used in the context of

HDR images.
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Figure 7.1: Framework for the reproduction of paintings using large format inkjet printer. The objective is to
obtain an equivalent match between the original and the copy, after [UrMa97].

Indeed one of the several methods proposed in Computer Graphics, that capture HDR images

[DeMa97] can be used, instead the scanning step. Once the image has been captured, it can

be  direct  visualized  on  a  display system or  printed  on  a  printer.  For  this  purpose,  new

methods have to be proposed in order to work with this high dynamic range and reproduce on

a small dynamic range the characteristics of the original scene. In order to capture this goal, it

is not only necessary to compress the HDR scene in a small dynamic range (printer), but also

to have a colorimetric characterization model able to achieve the colour reproduction on the

printer device. 

Several  solutions,  proposing  different  techniques,  have  been  presented  [Ar97][ArWi01]

[Be96][ArWi03][KaAn92][Ka+95][MaAb94][Xi+99][RoBa93]. 

Two basic steps which are part of the framework in Figure 7.1 are presented in this section:

tone  reproduction  and colorimetric  characterization  of  a  colour  printer. The  tone

reproduction problem, or tone mapping has already been introduced in Chapter 4. 

Many TM operators  have been presented in  the last  ten years  [TuRu93][Wa+97][Pa+00]

[Dr+03][Fe+96][Ma+97][Pa+00][Pa+98][Sc94][As02][Re+02][Fa+02][DuDo00][DuDo02]

[TuTu99][Tu+99][Wa94]. They address the problem basically on a display device; but on the

other hand the mapping problem has been formulated in a general way, in the sense that the

low dynamic range used in order to map the original HDR scene has been defined without
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restrictions. It means that they are also suitable to be used on a printer device, but in this case

the colorimetric characterization problem is more complex than for the display device. The

basic reason of it is that there is no a priori knowledge about the shape of the colorimetric

characterization function of the printer. In the next section a novel model, that addresses how

to resolve this problem, is presented. 

7.2 Colorimetric Characterization of a Colour Printer

In multimedia systems, different color reproduction devices while serving the same purpose

exhibit large discrepancies in their raw output. This is due to the fact that they usually employ

different color mixing technologies (additive or subtractive), use different input color spaces

and hence have different gamuts, and that their device characteristics can change with time

and usage. These facts usually do not permit a faithful matching of colors between devices if

no precautions are taken.

Colorimetric characterization is one step in the colorimetric reproduction process that permits

faithful image reproduction across different display devices. Its goal is to define a mapping

function between the device dependent color spaces in question (such as RGB or CMYK)

and device independent color spaces (such as CIELAB or CIEXYZ), and vice versa. There

are three main approaches to defining this  mapping function:  physical  models,  empirical

models and exhaustive measurements [Fa98]. Physical modeling of imaging devices involves

building mathematical models that find a relationship between the colorimetric coordinates of

the input (or output) image element and the signals used to drive an output device (or the

signals originating from an input device). The advantage of these approaches is that they are

robust, typically require few colorimetric measurements in order to characterize the device,

and allow for easy recharacterization if some component of the imaging system is modified.

The disadvantage is that the models are often quite complex to derive and can be complicated

to implement. Physical models are often used for the colorimetric characterization of displays

and scanners.

Empirical modeling of imaging devices involves collecting a fairly large set of data and then

statistically fitting a relationship between device coordinates and colorimetric coordinates.

Empirical models are often higher order multidimensional polynomials, or neural network

models. They require fewer measurements than exhaustive techniques, but they need more

than physical models. Empirical models are often used for scanners and printers.
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Often the colorimetric characterization of printers  requires an exhaustive measurement  in

order to obtain good performances. Typically 9x9x9 samples of the device drive signals are

sampled  and  colorimetrically  measured.  Many more  measurements  have  to  be  used  for

devices with poor repeatability.

Lookup tables can be used to process image data via multidimensional interpolation. This

technique  has  different  disadvantages:  the  large  number  of  measurements  that  has  to  be

made, difficulties in interpolating the highly nonlinear data and difficult recharacterization if

any aspect of the device changes. The advantage of exhaustive measurement techniques is

that they require no knowledge of the device physics.

There is a large number of publications on the colorimetric characterization of printers that

propose different models for solving this problem: Kang and Anderson [KaAn92] propose

the application of neural networks and polynomial regression. Albanese et al. [Al+95] and

Tominaga [To96] have used feed forward neural networks trained by back propagation and

obtained promising results. However, their approach also has some disadvantages: the need

for a big training set (several hundred to several thousand samples), high computational cost,

and a comparatively large maximum color error for high quality color reproductions. One of

these problems has been solved by Artusi et al. [Ar+98]: in their work they reduced the size

of  the  training  set  to  216  measured  samples,   while  retaining  a  maximum  error  that  is

comparable  to  ---  in  some cases  even better  than  ---  previous  approaches.  There  are  no

references to be found in the literature about the use of radial basis function networks for the

colorimetric characterization of printers,  but there is  a wealth of other publications about

them and  their  applications  (such  as  Orr  [Or96],  Bishop  [Bi96],  Carozza  and  Rampone

[CaRa99] and Lee [Le99]).

In  general  a  good  algorithm  for  colorimetric  characterization  must  have  the  following

characteristics: small training set, fast response, good accuracy, and it must allow for a fast

recharacterization. This thesis work present a modification of an existing learning algorithm

[CaRa99]  to  train  radial  basis  function  networks  to  solve  the  problem discussed  so  far,

namely  the  colororimetric  characterization  of  printers.  This  learning  algorithm  has  fast

training and test phases, go novel colorimetrod accuracy, and it also requires a comparatively

small training set.

The work we present is novel in seven ways: to begin with, this is the first work that uses

radial basis function networks to resolve the colorimetric characterization of printers. Second,

we  used  a  new  learning  model  to  train  such  networks;  our  approach  is  based  on  a

108



modification of the proposal by Carozza and Rampone [CaRa99]. Third, we use only 125

measured samples for the training of the network. Fourth, the computational costs for this

training are very low when compared to previous techniques and allow to use this model in

consumer  products.  Fifth,  it  is  a  general  model  which  one  can  also  use  to  define  other

transformations between color spaces. Sixth, it is possible to have a fast recharacterization of

the device because the computational cost of the training phase is low. Finally, it improves on

the performance of multiple polynomial regression and tetrahedral interpolation [Ar Wi03].

In Subsection 7.2.1 a background for radial basis function networks (RBFN) is presented. In

Subsection  7.2.2  our  novel  colorimetric  characterization  model  for  colour  printers  is

presented. 

7.2.1 Background
The colorimetric characterization problem can be seen as a regression problem, where it is

necessary to resolve a linear problem of the form Ax=b. In other words we have available a

set of input values A, a set of output values b and we need to find the correlation between the

input and output x that defines the colorimetric characterization function.

There are two main types of regression problems in statistics [Or96]: parametric and non-

parametric.  In  parametric  regression  the  form of  the  functional  relationship  between  the

dependent and independent variables is known, but may contain parameters whose values are

unknown, and it is possible to successfully estimate the desired result from the training set.

In the case of non-parametric regression there is no, or very little, a priori knowledge about

the form of the true function which is  being estimated. The colorimetric characterization

problem, presented in this thesis work, is a non parametric regression problem, because one

does not know the mapping function properties the algorithm will arrive at in advance. There

are  different  approaches  to  resolve  non  parametric  regression  problems;  when  one  uses

equation systems in this context they may contain many free parameters that have no physical

meaning in the problem domain (interpolation models, multiple polynomials regression), or

one can instead use neural networks.

Neural Networks

The base of a neural network is a formal neuron. It is defined as a series of inputs, a series of

outputs  and  by a  function  that  maps  specific  inputs  to  series  of  outputs  [Bi91].  Neural

networks consist of collections of connected formal neurons. Each formal neuron computes a

simple non-linear function F on the weighted sum of its input. The function F is referred to as
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activation function and its output is defined as the activation of the formal neuron. Long-term

knowledge is stored in the network in the form of interconnection weights that link such

formal neurons.

There  are  different  neural  network  structures  [Ar97]:  total  connected  networks,  partial

connected  networks,  multilayer  networks  (feed  forward,  feedback),  and  auto-associative

networks. 

In a neural network, the learning phase is a process where a set of weights is defined that

produces a desired response as a reaction to certain input patterns [Bi91]. There are two main

techniques  for  the  learning  phase:  supervised  learning  and  non  supervised  learning.  In

supervised learning the function is learned from samples, which a teacher supplies. This set

of samples, referred to as the training set, contains elements which consist of paired values of

the independent (input) variable and the dependent (output) variable [Or96]. In the case of

non-supervised learning, it reaches an internal model that captures the regularity in the inputs

without taking other information into account [Ar97]. 
Basis Functions

A linear model for a function f(x) can be expressed in the following form [Or96]:





m

j
jj xhwxf

1

)()( . 7.1

The model  f is expressed as a linear combination of a set of  m fixed functions  jh , often

referred to as basis functions. The flexibility of f, its ability to fit many different functions,

derives  only from the freedom to  choose different  values  for  the weights  jw .  The basis

functions  and any parameters,  which they might  contain,  are  fixed.  If the  basis  function

parameters can also change during the learning process, the model is considered non--linear.

Any set  of  functions  can  be  used  as  a  basis  set,  although  it  is  desirable  that  they  are

differentiable.  There  are  many  different  classes  of  functions  that  one  can  use  as  basis

functions, for example:

- Fourier series
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- Polynomial functions

Radial functions are a special class of basis function. Their characteristic feature is that their

response decreases (or increases) monotonically with the distance from a central point. The

center c, the distance scale, and the precise shape of the radial function r are parameters of

the model, and are fixed if it is a linear model. Two possible examples of radial functions are:

- Gaussian
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Radial Basis Function Networks

Radial Basis Function Networks (RBFN) are derived from the exact interpolation problem

[Bi96] by the introduction of several changes. The exact interpolation problem attempts to

map every input point exactly onto a corresponding target point. The Radial Basis Function

(RBF) approach introduces a set of basis functions equal to the number of input points. In

contrast, the following modifications are necessary for the introduction of RBFN:

- The number of basis  functions does not have to be the same as the number of input

points, and is typically smaller.

- The bias parameters are included in the sum term of the linear model from equation 7.1.

In the case of a non-linear model there are two more modifications if the basis function can

move, change size, or if there is more than one hidden layer:

- There is no constraint that the centers of basis functions have to be input points; instead,

determining these centers is part of the training process.

- Instead of a unique parameter  r, every basis function has a parameter  jr , the value of

which is obtained during the training process.

An example of a traditional RBFN with one hidden layer is shown in Figure 7.2. Each of n

components  of  the  input  vector  x feeds  forward  to  m basis  functions  whose  outputs  are

linearly combined with weights jw  into the network output. This example could be a linear

model of RBFN if the parameters of the basis function jH , in the hidden layer, do not change

during the learning process. Instead if they change during the learning process the RFBN is
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non-linear. Also, if there is more than one hidden layer of basis functions jH  in the structure

of the RBFN, the network is a non-linear model.

There are two stages for the training phase: determining the basis function parameters, and

the finding of appropriate weights.

Figure 7.2:  Radial Basis Function Network RBFN, after [ArWi01].

Linear Network models 

In the case of a linear model, the parameters of the basis functions are fixed, and the goal is

to minimize  the sum of the squared errors in  order to  obtain the optimal  weights  vector

[Or96]:
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where p is the number of pattern, and  ii yx ,  are the input and output vector targets of the

respective training set. The optimal weights, in matrix notation, are:

YHAW t1 , 7.7

where H is referred to as design matrix and is the output of the RBF, 1A  is the covariance

matrix of the weights W, and the matrix Y is the output target.

In many cases this amounts to an over fitting problem and the main effect of this is that the

neural network loses its generalization capacity. In order to counter the effects of over--fitting

it  is  possible  to  utilize  results  from  regularization theory.  Regularization theory suggests
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attaching a term called regularization parameter k in equation 7.6, in order to obtain a weight

vector, which is more robust against noise in the training set.

In regularization theory, there are two main techniques: global ridge regression, where one

uses unique regularization parameters  k for all basis functions, and local ridge regression,

where there is a regularization parameter jk  for every basis function j. For the case of global

ridge regression one has to modify equation 7.6 as follows:
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where m is the number of the basis function. In the case of local ridge regression equation 7.6

has to be modified to:
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Forward Selection

One way to give linear models the flexibility of non--linear models is to go through a process

of  selecting a subset  of  basis  functions  from a larger set  of  candidates [Or96].  In linear

regression theory [Ra88] subset selection is well known and one popular version is forward

selection in which the model starts empty (m=0) and the basis functions are selected one at a

time and added to the network. The basis function to add is the one which most reduces the

sum squared errors in equation 7.6; this is repeated until no further improvements are made.

There  are  different  criterions  to  decide  when  to  stop  the  forward  selection  process:

generalised cross-validation (GCV) [Go+79], unbiased estimate of variance (UEV) [EfTi93],

final predictor error (FPE) [Ma73] and the Bayesian information criterion (BIC) [Sc78]. An

efficient method of performing forward selection is the orthogonal least squares method as

discussed in Orr [Or95]; it is based on the orthogonalisation of the columns of the design

matrix.  This  involves  a  particular  form  of  the  covariance  matrix,  which  consists  of  a

triangular and a diagonal matrix; this fact can be used to greatly accelerate the computation.

Non-Linear Network models 

In the non linear model the basis  function parameters are not fixed,  and it  is possible to

estimate them during the learning process. This gives more flexibility to the network model.

In literature there is a large number of publications that propose different models to estimate

these  basis  function  parameters.  In  this  section  we  present  two  existing  models,  also
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implemented in this thesis work [CaRa99] [Le+99].  In particular we present in detail  the

model of Carozza [CaRa99], in order to understand the differences with the model presented

in this paper. 

In  Carozza  [CaRa99]  a  new algorithm  for  function  approximation  from noisy data  was

presented. The authors proposed an incremental supervised learning algorithm for RBFN. It

added a new node at every step of the learning process, and the basis function center c and

the output connection weights are settled in accordance with an extended chained version of

the Nadaraja--Watson estimator. The output network for the neuron  m, in accordance with

the Nadaraja--Watson estimator, is
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where the index i indicates the number of patterns in the Training set (i=1…p). The goal is to

minimize the empirical risk
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The chained version of the estimator 7.10 obtained for an incremental approach is
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In order to reduce the empirical risk given by 7.11, the output weights for the neuron j are

chosen as

)(1 jj ijij xnetyw  , 7.14
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where the output jy  is such that
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Moreover, since this quantity is affected by normalization factor jden , the authors multiply

jw  for this factor, and arrive at the final chained version of 7.10
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The variance r of the basis functions is determined by an empirical risk driven rule based on

a  genetic  like  optimization  technique.  Applying  the  mutation  generates  a  population  of

individuals

)1(22
, alpharr jnewj  , 7.17

where alpha is a random number in a fixed range [- a, a]. This mutation step is iterated a

fixed number of times if the empirical risk 7.11 associated with 2
,newjr  is less than the same

quantity associated with 2
jr .

On a different note, Lee et al. [Le+99] introduces the concept of  robust RBFs and makes

suggestions on how to choose a function candidate, which fulfills this role.

7.2.2 Proposed Model
Modified Estimator for RBFN Weights 

The proposed model is a modification of an existing one [CaRa99]. In particular we have

modified the estimation of the weights by introducing a pseudo inverse matrix [Bi96] instead

of using the extended chained version of the Nadaraja--Watson estimator for updating the

weights.  The pseudo inverse method works  by resolving the following general  system of

linear equations:

YHW  , 7.18

where H is the matrix of the basis functions h design matrix of dimension (number of input

vectors x number RBF),  Y is the matrix of output vectors of dimension (number of output

vectors x 3), and W is the weights matrix of dimension (number of RBF x 3). The number 3

indicates the three dimensional space of the input and output vectors. In this equation there
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appears a Moore--Penrose pseudo inverse [Ma00] in the form of the matrix B, which has the

same dimensions as tH , and that has to satisfy the following four conditions:

   
BBHB
HHBH
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

 

   HB is Hermitian

   BH is Hermitian 7.19

The solution of the linear system 7.18, through the pseudo inverse matrix, is the matrix  W

7.20:

  YHHHW tt 1
 . 7.20  

There  are  different  methods  to  resolve  the  linear  system 7.18:  Gauss-Jordan  elimination,

Gaussian  elimination  with  Back-substitution,  LU  decomposition,  and  Singular  value

decomposition (SVD) etc. We used the SVD method because in comparison with the other

methods it gives satisfactory results and is the fastest algorithm [Pe+92].  Let take a general

matrix X. This method is based on the following theorem of linear algebra: any M x N matrix

X whose number of rows M is greater than or equal its number of columns N, can be written

as the product of an M x N column--orthogonal matrix  U, an N x N diagonal matrix  Q with

positive or zero elements (the singular values), and the transpose of an  N x N orthogonal

matrix V.

In other words the matrix X can be written as:
tUQVX  . 7.21

We have three different cases, about the form of the matrix X:

1) In the case the matrix X is square, this means that N=M, then U, V, and W are all

square matrices of the same size. Their inverses are also trivial to compute, in fact

U and V are orthogonal, and so their inverses are equal to their transposes. Instead

Q is  diagonal,  so  its  inverse  is  the  diagonal  matrix  whose  elements  are  the

reciprocals of the element jq . In this way the inverse of the matrix X is:

t

j

U
q

diagVX





















 11 , 7.22

in our case tHHX   and the value of the unknowns matrix W is:
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If the value of the term jq  is equal zero, we need to replace the term 1/ jq with zero, do not

have a division by zero.

2) If there are fewer linear equations M than unknowns N, then you are not expecting a

unique solution. Usually there will be an N-M dimensional family of solutions. In

this  case  is  possible  to  augment  your left-hand side  matrix  with  rows  of  zeros

underneath its M nonzero rows, until it is filled up to be square, of size N x N. In

this way the matrix becomes to be square and we can apply the SVD in the way

explained for the square matrix, equation 7.23.

3) If there are more equations than unknowns, we are in the case of over-determinate

set of linear equations, and the equation for the square case, equation 7.23, can be

apply without modification. 

The output of the network trained with our model is not calculated as in the model proposed

by Carozza [CaRa99], but rather by a sum of products of basis function output weights. The

RBFN model used in our experiments adopts only one hidden layer, and three dimensional

Gaussian basis functions for the nodes in the hidden layer with the same variance r. In our

model there are some parameters: the average c and the variances r for the basis function, the

weights W, times as the number of the training epochs and E as initial error (empirical risk).

Other initializations depend on the application at hand. After preliminary experiments, we

chose the following values to be suitable for our particular case: c = random (0,1), r = 0.5, W

= random (0,1), times = 10. The initial error E has to be large in order for error reduction to

work (100 times more than the acceptable error), and the node numbers of the hidden layer N

begins from 1.
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Our model

In this  subsection  we present  our  algorithm in  pseudo code  format,  followed by a  brief

explanation.

Parameter initialization

while (termination criterion is not met)

    if ( N > 1 )

        ;5.0Nr  

    Compute the average error E of the output model with respect to the output target

/* Update of basis function parameter c */

c = the input vector with index of the patterns with maximum error

Compute the weights W with the pseudo inverse

    end if

    /* Update of basis function parameter r */ 

    for  ( j = N to 1 )

        while ( l <= times )

            alpha  = random( -0.5, 0.5 )

            epsilonalpharr jnew  )1(

Compute average error newE  of the output model with respect to the output target  

            if ( newE < E )

                newj rr 

                E = newE

            end if

            l = l + 1

        end while

    end for

 Compute  the  weights  W  with  the  pseudo  inverse  and  use  the  basis  function

parameter                                     update

    N = N + 1

end while.

The parameter initialization defines the initial values for the parameters of the radial basis

functions: average c and variance r, and other network parameters such as: the weights W, the
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number of epochs times, the initial value of the hidden number N and the error E. In order to

obtain it we follow the initialization suggested above.    

This model has the capacity to generate the structure of the RBFN. In fact, it adds a new node

j during each iteration and initializes its parameters, the three dimensional vector jc , jr and

the  three  dimensional  vector  jw .  This  operation  stops  when the  termination  criterion  is

satisfied. 

In  the  case  of  the  first  node,  N = 1,  we  only need  to  perform the  initialization  of  the

parameters  jr  and  jw  because the average  jc  is chosen randomly. In the other cases the

average jc  is the input vector with index of the output model with the maximum error with

respect to the output target. 

The updating of the weights parameters is performed with the pseudo inverse technique 7.23;

the variance parameter  jr  of the radial basis functions is updated following the technique

proposed by Carrozza [CaRa99].

This technique consists of using the following equation for each node j:

epsilonalpharr jnew  )1( , 7.24

where the terms alpha and epsilon, after preliminary experiments, were set to the following

initial values that are suitable for our application: for alpha a random value in the range from

-0.5 to 0.5, and epsilon was set to 0.01.

We update the value jr  for the node j with the new value obtained with equation 7.24 only if

the new error value newE , computed with the new parameters r, c and W, is less than the old

error  value.  We repeat  the  updating operation  for  the  parameter  jr  up to the  maximum

epochs condition is respected l <= times. In case the error condition is not matched till the

maximum value of epochs times, the new values for the parameters  jr  remain equal at the

old ones. 

This operation is repeated for all nodes  j of the hidden layer. When the updating has been

performed we compute the new value for the weights W with the pseudo inverse technique

7.23, with the new parameters of the basis functions. 
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7.3 Discussion

The neural  network approach, when applied to  the colorimetric  characterization problem,

presents some limitations that have so far limited the more widespread use of such methods

[ArWi03]:  high  computational  costs,  large  number  of  training  samples  needed  and  the

definition of a suitable termination condition for the learning process in the case of a direct

colorimetric characterization function (from an independent device colour space as CIELAB

to a dependent device colour space as CMY) is requested. 

High computational costs

High computational costs are related to the neural network structure, and the algorithm used

in  order  to  train  the  system.  Also  a  high  number  of  training  samples  influence  the

computation  time.  To  simplify  the  neural  network  structure  and  the  learning  algorithm,

reduce the requested computation time for the training phase. The model presenteddefines an

automatic way to find the best structure for the neural network without using more neurons

(in the hidden layer) than necessary. 

Number of Training Samples

The number of training samples is requested to be as small as possible, to reduce the time

necessary to measure the colour samples using a spectrophotometer. Also a small number of

training samples reduces the computation time requested for the learning phase. In Chapter 8,

where experiment results are presented, is shown that the number of the training samples has

been reduced to 125 samples, in comparison to the traditional techniques that normally use

729 samples, without reducing the quality performances.

Suitable Termination Condition

To define a suitable termination condition for the learning process in the case of a direct

colorimetric  characterization  function  is  still  an  open  question.  Usually  a  termination

condition is defined as an average colour error, of the training samples, between the original

colour  and  the  predicted  one.  It  does  not  present  problems  in  the  case  of  an  inverse

colorimetric characterization function, from a dependent device colour space as CMY to an

independent device colour space as CIELAB, because the average colour error is computed in

a pseudo uniform colour space as the CIELAB.

Instead,  if  we use the  same strategy in  the  case of  a  direct  colorimetric  characterization

function, the average colour error is computed in a dependent device colour space as CMY

that is a not uniform colour space. It means that the error information that we get does not
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respect the human perception, and it does not help define the right neural network structure

obtained by the learning process.  As discussed in [ArWi03], a possible solution is to adopt

the computation of the average colour error in the CIELAB colour space also for the direct

mapping function. In order to do it we need to use the inverse mapping function for each

termination check, which in turn also implies that  a neural  network for this  inverse case

ought to be used. This solution is not feasible because the computational cost of the inverse

network-learning phase is significant, and too much accuracy is lost  through the repeated

conversions.  The solution that  we adopted has been to generate a precise LUT with 729

uniform samples in CMY space with our type of RBF network, which was trained with 125

samples. It can be used with any of the most used colorimetric characterization techniques to

perform the direct mapping function (i.e. interpolation, multiply polynomials regression etc.).

In other words, the basic idea was to generate a big and precise LUT, only from 125 samples

measured, with the RBF network proposed and to be used with a more stable colorimetric

characterization model.
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Chapter 8

Experimental Results

Introduction

The experimental results have been divided into three parts and described in different section.

In Section  8.1  the  experiments  on  the  novel  time  dependent  tone  mapping operator  are

presented.  In  Section  8.2  we  described  the  experiments  on  the  framework  proposed  to

accelerate any pre-existing complex global tone mapping operator. Finally, in Section 8.3  we

present the experiments on the novel colorimetric characterization model usable inside the

tone mapping framework for printer.

8.1 Time-Dependent Tone Mapping Operator

In this section we present the obtained results of the novel time-dependent tone mapping

operator.  In  particular,  an  exhaustive  comparison  with  the  original  time-dependent  tone

mapping operator presented by Pattanaik et al. [Pa+00] was performed. The experiment are

divided into four subsections:  luminance compression, colour reproduction, visual effects

and chromatic adaptation. 

Luminance compression

In general a tone mapping operator has to deal with the compression of huge HDR of the

input scene. To do this, one has to consider several aspects such as contrast reproduction, the

visibility of object etc. When a TM operator solve some of these aspects, it usually negligees

the others. This fact prevents the use of these operators in all applications. It is the case of the

Pattanaik et al. model [Pa+00], that on the one hand reproduce carefully the dynamic visual
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adaptation of the HVS, on the other hand presents deficiencies in the compression of huge

luminance dynamic range. Figure 8.1 (left) shows an output scene obtained with the Pattanaik

et al.  model [Pa+00]. The same scene obtained using our operator is shown in Figure 8.1

(right). Both images are obtained in the last step of adaptation.

Figure 8.1: Hotel room [Crone, Fawler and Kerrigan 97] (3000 x 1950); image obtained with the Pattanaik et
al. model [Pa+00] (left), image obtained with our operator (right). The original image has luminance range equal
to [0.37; 18828] cd/ 2m  .

One can note that the contrast is better reproduced in the scene obtained with our operator

than for the same scene obtained with the original Pattanaik model. In Figure 8.2 we show

further images, with different contrast ratio, obtained with our model. In all of these cases the

algorithm used for luminance compression can reproduce the contrast and the visibility of

objects, without showing any deficiencies for very huge HDR luminance.

Figure 8.2:  Flat [Ward, Shirley, Devebec, Malik 1997], with luminance range equal to [1.78; 3248]  cd/ 2m
(left); Office_light [Ward 1997],  with luminance range equal to [2.26; 8379] cd/ 2m  (right). Images obtained
with our operator.

Colour reproduction

As is well known, the colour is an important aspect of the real world and must be considered

to reproduce a scene realistically. In Figure 8.1 and 8.2 it  is possible to observe how our

operator can reproduce the colour in the final scene.
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The solution proposed by Pattanaik et  al.  [Pa+00]  requires  some computational  steps,  as

discussed in Section 5.2.1, that can increase the final computation time. Our simple solution

(see section 5.2.2 Adaptation Model), that achieves good results compared with the results of

the Pattanaik model, requires just simple operations reducing the final computation time. 

Visual effects

As described  in  Chapter  1,  the  HVS presents  some limitations  under  particular  lighting

conditions. This can reduce or increase the ability of the HVS to see fine details and colours

of the objects in the scene. In our model we integrated three basic visual effects: glare, visual

acuity  and colour  sensitivity.  The glare  introduces  an impression of  great  brightness  and

interferences in the visibility of the object near the light source. We tested the glare as shown

by the example in Figure 8.3.

Figure 8.3: Hotel room [Crone, Fawler and Kerrigan 97] (3000 x 1950); image obtained with our operator but
without added the glare (left), image obtained with our operator with added the glare (right). The original image
has luminance range equal to [0.37; 18828] cd/ 2m  .

Remarkably enough the  glare  is  well  reproduced (see also Figure 8.4).  In particular,  the

details in the window and in the close bulb lamp are lost causes of the glare (right image). By

contrast, in the image on the left reproduced without applying the glare, the details of the

window and the bulb lamp are much better visible. 

Figure 8.4: Particular of the window in the Hotel room image: (left) without glare, (right) with glare.  The
details in the window (image on the right) are lost causes of the glare. By contrast the details in the window, are
present in the case the glare is not applied (image on the left).
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The acuity is a measure of the HVS ability to resolve spatial  details  [Fe+96].  Figure 8.5

shows an example in which the visual acuity is changing according with the light conditions.

On the left a scene without adding the visual acuity is reported. By contrast, on the right a

scene with added the visual acuity is shown. The details in the window and in the lamps

(bulbs)  are  better  visible  in  the  scene  on  the  right  than  in  that  in  the  left  (see  also  the

particulars in Figure 8.6). 

Figure 8.5: Hotel room [Crone, Fawler and Kerrigan 97] (3000 x 1950); image obtained with our operator but
without added the visual acuity (left), image obtained with our operator with added the visual acuity (right). The
original image has luminance range equal to [0.37; 18828] cd/ 2m  .

Figure 8.6: Particular of the window in the Hotel room image: (left) without visual acuity, (right) with visual
acuity.  The details in the window (image on the right) are more visible and in particular the bulb of the lamp is
well defined. 

Chromatic Adaptation

An important aspect of the HVS is the chromatic-adaptation. It represents the capability to

adjust  to  widely varying  colours  of  illumination  in  order  to  approximately  preserve  the

appearance of object colours. In other words, if the viewer conditions of the two observers

(real  observer  and  display observer)  are  different  we  need  to  consider  the  new viewing

conditions  of  the  display observer  in  order  to  reproduce  correctly the  real  scene  on  the

display.  

The results of the chromatic adaptation are shown in Figure 8.1, where the images obtained

with the two operators are presented. The image obtained with the original Pattanaik model

(left), is not adapted to the chromaticity of the display white point. In this case, the image

appears too reddish. By contrast, the image obtained with our operator (right) is chromatic

adapted to the display white point. This results in a better image.
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8.2 Real Time Tone Mapping Operator
The experiments, of the framework proposed in Chapter 6, are organized in the following

manner: first, we tested the software implementation of the all framework in order to find the

suitable  setting  for  the  final  configuration  of  its  hardware  implementation.  Second,  we

performed  the  experiments  of  the  best  configuration  of  the  framework  proposing  the

subdivision of the implementation between CPU and GPU. 

Software Implementation

We conducted a series of tests to capture the behaviour of different parts of the framework in

dependence on the type of the sampling algorithm, the number of samples, and the type of

interpolation.  For the first series of tests, we used the tone-mapping operator of Pattanaik et

al. [Pa+00]. To evaluate the time performance, we measured the time of the sampling, the

tone mapping, the fitting, the reconstruction and the total time. The results are summarized in

Table 8.1.

Time
Sampling #Samples Sampling

[ms]
TM
[ms]

Fitting
[ms]

Reconst.
[ms] 

Total
[ms]

Speed-
up
[-]

No
acceleration

- - - - - 54852 1.0

Halton 300 0.642 3.232 0.012 3118 3122 17.57
1000 2.287 7.212 0.029 3381 3391 16.18
2000 5.780 10.968 0.055 3423 3440 15.94
3000 7.823 13.071 0.074 3469 3490 15.72

down-
sampling

300 2024 3.604 0.014 3131 5159 10.63
1000 2024 13.384 0.132 3522 5557 9.870
2000 2051 20.075 0.162 3729 5800 9.457
3000 2032 30.080 0.300 3879 5941 9.233

filt. Rand. 
3 x 3

300 1.098 3.498 0.013 3222 3226 17.00
1000 3.833 11.260 0.047 3610 3625 15.13
2000 7.906 19.992 0.162 3813 3841 14.28
3000 12.127 29.502 0.330 3963 4005 13.70

Table 8.1: Evaluation of the framework in software using Pattanaik's operator on the Hotel room [Ar+03].

Our framework provides a speed-up of Pattanaik's operator in the range between 9.23 and

17.6.  For example using 1,000 samples, our method accelerates the operator 16.18 times on

an image of 3000x1950 pixels. We can see, in Figure 8.7, that down-sampling provides more

accurate results than random sampling at the cost of a slight increase in computational time

as  shown in  table  8.1.  When  the  number  of  samples  increases,  the  accuracy of  random

sampling  becomes  comparable  with  down-sampling.  In  order  to  reduce  the  increased  of

126



computational  costs  of  down-sampling,  we  tried  the  filtered  random sampling  approach.

Preliminary results have shown good results using a filter window size of 3 x 3 and 2000

samples.  In  Figure  8.7  we  can  see  that  the  results  for  filtered  random  sampling  are

comparable  to  down-sampling,  but  the  computational  costs  are  comparable  with  the

computational costs of random sampling (Table 8.1). For all measurements, the time of the

reconstruction is  the major  component  of the total  computational  time.  This  justifies  the

subdivision of the computation between the GPU and CPU, which suggests implementing the

reconstruction in the GPU.

Figure 8.7: Fitting accuracy of the framework using random sampling, down-sampling with 1000 samples, and
filtered random sampling with 2000 samples. The tone mapping operators used are Drago et al. [Dr+03] and
Pattanaik et al. [Pa+00], both on the Memorial church image [Ar+03].

In Figure 8.8 two examples  of  images,  obtained with two different  operators  Ashikhmin

[As02] and Drago et al. [Dr+03] (left), are shown and the same images obtained applying the

framework  on  these  two  operators  using  random  sampling  (centre)  and  down-sampling

(right) with 1000 samples,  respectively. It is possible to observe how the down-sampling

(right image) is able to preserve the quality of the original image (left image), compared to

the random sampling.
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Figure 8.8:  Hotel room [Crone, Fawler and Kerrigan 97] (3000 x 1950); The top images are obtained using the
original  Ashikhmin tone  mapping  operator  (left),  the  Framework using random sampling (centre),  and  the
Framework using down-sampling (right). The bottom images are obtained original Drago et al. tone mapping
operator  (left),  the  Framework  using  random sampling  (centre),  and  the  Framework  using  down-sampling
(right).

We also evaluated our method using other TM operators, namely the operator of Tumblin et

al. [TuRu93] and the operator of Drago et al. [Drago03].

For each input image we measured the results obtained by direct application of tone mapping

and the results obtained by applying our technique using random sampling with 1000 samples

and linear interpolation. Table 8.2 summarizes the results. The data in table 8.2 are related to

the Framework completely implemented in software.

Time
image Operator original

[ms]
acceleration

[ms]
Speed-

up
[-]

Hotel
(3000 x 1950)

Pattanaik et al.
[Pa+00] 54852 3391 16.18
Tumblin

[TuRu93] 5657 3344 1.70
Drago et al..

[Dr+03] 9359 3336 2.81
Airport

(1024 x 705)
Pattanaik et al.

[Pa+00] 6815 426 16.00
Tumblin

[TuRu93] 687 404 1.70
Drago et al..

[Dr+03] 1154 400 2.98
Table 8.2: Evaluation of the Framework, in software, applying three tone mapping operators using random
sampling (1000 samples) and linear interpolation on three different images [Ar+03].
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We can observe  that  all  three complex  global  operators  are  speed up,  and that  the  time

performance of the framework is practically independent from the tone mapping operator

used. The accelerated time in Table 8.2 is practically the same for all tested operators.

Figure 8.9 shows other results of our framework applied on different tone mapping operators.

In the first row the images are obtained with the original tone mapping operators, instead in

the second row the images are obtained applying our framework on these operators using

1000 samples and down-sampling.

Figure 8.9: The Airport [C. Ehrlich, G.Ward, 97] (1024 x 705); The top images are obtained using the original
tone mapping operators, the bottom images are obtained by applying our framework. (Left) Ashikhmin [As00];
(center) Drago et al. [Dr+03]; (right) Ward  [Wa94].
Hardware Implementation

For an evaluation of the hardware implementation of the method we used a simple OpenGL

interactive application, which uses high dynamic range environment maps. The tests were

conducted for the tone mapping curve produced by the following tone-mapping operators:

Ashikhmin [As02], Drago et al. [Dr+03], Exponential, and Tumblin [TuRu93]. In the case of

Ashikhmin's  operator,  we apply it  directly to  the pixel  luminance without  computing the

luminance adaptation.

We measured the time performance of the method in dependence on the type of the sampling

technique. We also measured the time of the actual tone mapping (executed on the CPU), and

the  total  frame  time.  We  also  measured  the  time  performances  of  a  direct  GPU

implementation of the tone mapping operator used in these experiments. Note that we did not

encounter any significant delays due to latency between CPU and GPU because only a very

small  image  is  read  back  from  the  graphics  card  into  main  memory.  The  results  are

summarized in Table 8.3.
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Time
sampling samples TM

CPU
[ms]

Total
[ms]

FPS
[-]

random 1024 1.23 18.71 56
downs. 1024 1 21.42 48

 filt. rand. 3x3 1024 1.01 18.87 56
direct GPU - - 19.76 51

Table 8.3: Evaluation of the real-time application using Ashikhmin's tone mapping operator accelerated by our
framework in hardware, and its direct implementation on the GPU. The image resolution is 512 x 512 [Ar+03].

The  results  show  that  the  hardware  implementation  provides  real-time  performance  to

Ashikhmin's tone mapping operator. It is interesting to note that our framework can even

compete in  terms of speed against  a  direct  hardware implementation  of  the quite  simple

Ashikhmin  operator,  albeit  at  reduced  quality  due  to  the  sampling.  The  filtered  random

sampling  technique  does  not  cause  noticeable  performance  degradation  as  compared  to

random sampling, but it provides better image quality. We also tried to use the binary search,

in the reconstruction phase, but the results in terms of computation time were three times

slower than the performances obtained with the LUT solution.

Our original  experiments with the hardware implementation revealed significant  temporal

aliasing in the form of flickering. This occurred especially when random sampling was used,

because the input parameters of the used tone mapping algorithms, i.e., minimum, maximum

or average, were not well captured by the small sample set used in the implementation. In

order  to  reduce these artefacts,  we reuse each sample for  a certain  number  of frames as

discussed by Scheel et al. [Sc+00]. Note that the measurements in Table 8.3 already reflect

this improvement. Each sample was reused for 8 frames, which reduced the flickering by a

significant amount. An interesting observation was that even the direct implementation of the

Ashikhmin operator exhibited noticeable flickering in dynamic scenes. It happens because an

interactive application can often suffer from large temporal discontinuities in the dynamic

range.

Such discontinuities can be smoothened also by incorporating a model of time-dependent

adaptation. 

8.2.1 Summary

We have presented a framework that delivers interactive performance to complex global TM

operators.  When  integrated  into  the  rendering  pipeline,  the  proposed  framework  allows
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studying the response of complex global tone mapping operators interactively. It also enables

to select interactively the most appropriate tone mapping operator for a given application.

The structure of the framework is designed for easy integration into the rendering pipeline of

recent  graphics  hardware.  Unlike  previous  TM  techniques  using  graphics  hardware,  our

method does not require modification of the rendering pipeline as it works as a post-process

on a HDR image. We proposed an efficient subdivision of the workload between the CPU

and the GPU. The TM operator is applied on the CPU, which maintains the generality of the

method. The GPU resolves the computationally simple but costly stages of the algorithm. An

important feature of the framework is that the GPU implementation is simple and it does not

need to be modified for an application with a different tone mapping operator. The hardware

implementation of our method shows a speed-up of one order of magnitude compared to the

pure software solution. This proves the potential of the proposed technique for interactive

rendering applications. The modularity of the proposed framework enables to concentrate on

improving each of its parts independently. 

8.3 Colorimetric Characterization Model for Ink-jet Printers
The first  step  in  our  research  was to  find  a  good learning algorithm to  train  the  RBFN

function  with  small  training  sets.  In  order  to  do  this,  we  evaluated  different  learning’s

algorithm in the following order: first linear models with forward selection and local ridge

regression (GCV [Go+79],  UVE [EfTi93],  FPE [Ma73],  BIC [Sc78]); we used the Matlab

implementation of these algorithms by Orr [O96]. Then we considered non-linear models as

proposed by Lee [Le99] and Carozza [CaRa99]; we implemented these ourselves in C. Our

proposed own non-linear model was again implemented in Matlab. All these algorithms were

then compared to multiple polynomial regression and tetrahedral interpolation.

When we wanted to find out whether a particular learning algorithm is adequate to solve the

posed problem, we first tested it only for the conversion CIELABCMY   on an Epson

Stylus Pro5000, and only if this preliminary test turned out favourably, we conducted further

experiments on other printers and with the conversion CMYCIELAB  .  How to reproduce

the training and test sets is presented in Subsection 8.3.1. In Subsections 8.3.2 are presented

the all experiments results. Finally a summary of the results is presented in Subsection 8.3.3.
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8.3.1 Training and Test sets

The colorimetric patterns of the training and test sets, which we used in these experiments,

are formed by pairs of three dimensional vectors. One of these vectors specifies the  CMY

coordinates, and the other specifies the CIELAB coordinates of a printed colour. The colour

sets for the training and test phases are obtained by printing a number of hues, specified in

CMY space, in squares of approximately 1 2cm  at the highest resolution the printer has to

offer. These colour swatches are then measured with a SPECTROLINO spectrophotometer

produced by GretagMacbeth.

For the training phase of our experiments we used four different sets of this kind, labelled

Training1 through  Training4. The sets  Training1 and  Training2 were made up of 729 and

125 colours, respectively, which were obtained by uniform sampling in CMY space. The sets

Training3 and Training4 consisted of 392 and 252 colours, which were obtained as suggested

by Moroni [Mo96]. The Test set contains 777 colours obtained by random sampling of CMY

space. The error of the models was calculated in CIELAB space according to the formula

     2'2'2' bbaaLLE  8.1

where (L,a,b) is the output of the models and (L',a',b') is the target output. The experiments

were conducted using several different ink--jet printers,  namely an  Epson Stylus Pro5000

(with photo quality paper), an Olivetti Artjet 20 (with coated paper) and a HP2000C (with cut

sheet paper). The code for the algorithms tested in these experiments was written in C and

Matlab.

8.3.2 Experimental Results

In this subsection we present the all experimental results that compare different techniques

used to perform the colorimetric characterization of an ink-jet printer.

These results  are summarized from table 8.4 to table 8.15, where in the columns for the

training and test sets we show the average error on the left and the maximum error on the

right  of  the  respective  cells.  The  maximum  error  has  particular  importance  because  it

represents the main parameter to evaluate if a colorimetric characterization model is usable or

not in real application. For instance a model that has a better maximum error is preferable, if

the divergences in the average error are not higher than 3 cdu (cdu is the unit  of colour

difference) in CIElab coordinates.
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We began the experiments by initially testing existing learning algorithms, specifically those

proposed by Golub [Go+79], Efron [EfTi93], Mallows [Ma73] and Schwarz [Sc78] on the

colour printer  Epson Stylus Pro 5000;  we used two training sets (labelled  Training1 and

Training2 in tables) and tested the networks with a set labelled Test. The results are shown in

Table 8.1 for the function CIELABCMY  . 

RBFN Traning1 Test Training2 Test

Avg. Max Avg. Max Avg. Max Avg. Max

GCV
0.287 1.182 0.823 5.551 0.525 1.487 3.025 10.867

UEV
0.114 0.486 0.823 5.249 0.016 0.067 3.006 10.635

FPE
0.157 0.706 0.808 5.188 0.016 0.067 3.006 10.635

BIC
0.185 0.754 0.827 5.570 0.016 0.067 3.006 10.635

Table  8.4:  Error  comparison  of  CIELABCMY   conversion  using  the  initial  RBFN,  with  the  selection
criterions (GCV, UEV, FPE, BIC), without ridge regression for the Training1, Traning2 and Test datasets on the
Epson Stylus Pro5000.

Our  results  demonstrate  that  this  model  is  already able  to  improve  the  performance  of

multiple polynomial regressions for polynomials up to 60 terms and tetrahedral interpolation,

shown in table 8.5, in the case of the set Training1. However, this does not extend to the set

Training2,  where  the  unmodified  RBFN approach  fares  no  better  than  the  conventional

techniques. This is probably due to the fact that in this case the network encounters over-

fitting problems as mentioned in Chapter 7. It is characterized by the fact, as showed in Table

8.4 in the column of Avg. and Max error, that with some learning methods (UEV, FPE, BIC)

we obtain the same values for the error using the Training2. In order to resolve this problem

we have tried to use regularization theory (local and global ridge regression), but this failed

to  improve  the  results.  These  results  are  shown  in  table  8.6,  and  also  in  this  case  we

encountered the same problem but for both training set (Training1 and Training2).
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Method Traning1 Test Training2 Test

Avg. Max Avg. Max Avg. Max Avg. Max

60 terms
2.390 10.970 3.170 10.970 2.490 7.670 3.220 9.790

69 terms
2.310 10.920 3.100 10.910 2.450 7.630 3.170 10.110

87 terms
1.810 8.040 2.510 8.190 1.720 5.450 2.650 8.270

105 terms
1.630 8.790 2.300 8.660 1.470 4.370 2.570 7.670

Tetrahedral
0.0 0.0 0.810 5.01 0.0 0.0 2.110 7.490

Table 8.5:  Error comparison of CIELABCMY  conversion using regression, with different polynomials and
tetrahedral interpolation for the Training1, Traning2 and Test datasets on the Epson Stylus Pro5000.

RBFN Traning1 Test Training2 Test

Avg. Max Avg. Max Avg. Max Avg. Max

GCV
0.477 2.171 0.834 4.818 0.525 1.487 3.024 10.873

UEV
0.469 2.118 0.827 4.841 0.035 0.100 3.003 10.637

FPE
0.469 2.118 0.827 4.841 0.035 0.100 3.003 10.637

BIC
0.522 2.295 0.867 4.653 0.035 0.100 3.003 10.637

Table  8.6:  Error  comparison  of  CIELABCMY  conversion  using  the  initial  RBFN,  with  the  selection
criterions (GCV, UEV, FPE, BIC), with ridge regression for the Training1, Traning2 and Test  datasets on the
Epson Stylus Pro5000.

Another  approach  was  to  generate  more  training  sets  with  smaller  numbers  of  samples

compared  to  the  original  large  set  Training1.  We  produced  two  such  sets  in  the  way

suggested by Moroni [Mo96], labelled Training3 and Training4, with 392 and 252 samples

respectively. Results from test runs with these sets are reported in table 8.7, 8.8 and 8.9 show

that there are indeed improvements with respect to multiple polynomial regression with the

set Training3, and equal performance with Training4.
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RBFN Traning3 Test Training4 Test

Avg. Max Avg. Max Avg. Max Avg. Max

GCV
0.223 1.030 1.296 4.127 0.200 0.787 3.429 11.637

UEV
0.099 0.378 1.577 5.231 0.119 0.600 3.723 16.176

FPE
0.109 0.432 1.528 5.108 0.192 0.735 3.446 11.746

BIC
0.138 0.578 1.496 4.531 0.192 0.735 3.446 11.746

Table  8.7:  Error  comparison  of CIELABCMY   conversion  using  the  initial  RBFN,  with  the  selection
criterions (GCV, UEV, FPE, BIC), without ridge regression for the Training3, Traning4 and Test datasets on the
Epson Stylus Pro5000.

RBFN Traning3 Test Training4 Test

Avg. Max Avg. Max Avg. Max Avg. Max

GCV
0.390 1.849 1.286 4.347 0.355 1.027 2.811 9.003

UEV
0.366 1.738 1.271 4.383 0.310 0.939 2.995 9.046

FPE
0.390 1.849 1.286 4.347 0.313 0.938 2.984 8.900

BIC
0.390 1.849 1.286 4.347 0.330 0.966 2.902 9.000

Table  8.8:  Error  comparison  of  CIELABCMY  conversion  using  the  initial  RBFN,  with  the  selection
criterions (GCV, UEV, FPE, BIC), with ridge regression for the Training3, Traning4 and Test  datasets on the
Epson Stylus Pro5000.

Method Traning3 Test Training4 Test

Avg. Max Avg. Max Avg. Max Avg. Max

60 terms
2.386 8.114 3.315 10.674 2.470 9.217 3.603 10.934

69 terms
2.328 8.432 3.271 10.863 2.372 9.320 3.731 9.920

87 terms
1.771 6.066 2.669 8.644 1.771 5.708 3.271 8.096

105 terms
1.556 5.810 2.543 7.501 1.461 5.642 3.497 10,043

Table 8.9:  Error comparison of CIELABCMY   conversion using regression, with different polynomials for
the Training3, Traning4 and Test datasets on the Epson Stylus Pro5000.

However, compared to the still large size of the new reduced training sets the improvement is

rather small and also in this case we encountered the over-fitting problem encountered with

the  others  methods  (Table  8.7  and  Table  8.8).  The  methodology  for  generation  of  the
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condensed training set proposed by Moroni [Mo96] apparently does not allow for the desired

increase in efficiency.

In this phase of the experiments we also tried other innovative learning algorithms found in

literature (such as Lee [Le99] and Carozza [CaRa99]), but the results we obtained were of

poor  quality.  We  then  altered  our  strategy  and  decided  to  modify  an  existing  learning

algorithm. Our choice here has been to modify the learning algorithm proposed by Carozza

[CaRa99], mainly because it does not get significantly more complex when it is modified,

and also because it does not have inherent convergence problems like the algorithm of Lee

[L99]. The results we obtained are shown in tables 8.10 and 8.11; the tests were done on an

Epson Stylus Pro5000 for the function CIELABCMY  .

Traning2 Test

Avg. Max Avg. Max

Proposed RBFN
0.797 1.893 1.831 6.763

Table  8.10:  Initial  error  measurements  of  CIELABCMY   conversion using the  proposed  RBFN for  the
Training2 and Test datasets on the Epson Stylus Pro5000.

The results show how it is possible to obtain performance that is better than that of multiple

polynomial regression and tetrahedral interpolation with only 125 samples. This is shown in

the last two columns beginning at the right of Table 8.5 for both sets (Training and Test) and

both  error  metrics  (average and maximum).  In order  to  make sure  that  these  results  are

consistently reproducible  over  time  we repeated  the  experiment  in  May, June,  and  July,

reprinting the training and the test samples in each case;  the progression of the error over

time is shown in Table 8.11.

Month Traning2 Test

Avg. Max Avg. Max

May
0.927 1.980 2.024 6.833

June
0.744 1.537 2.043 5.780

July
0.784 1.737 2.210 5.699

Table 8.11: Subsequent error measurements of  CIELABCMY  conversion using the proposed RBFN for the
Training2] and  Test] datasets on the Epson Stylus Pro5000 measured at one month intervals.

The results are in line with the first experiment reported in Table 8.10. In order to validate

our  model  we  performed  similar  tests  on  two  more  ink-jet  colour  printers  from  other

136



manufacturers, namely a HP2000C and an Olivetti Artjet20. The results are shown in Table

8.12 for the Epson Stylus Pro5000, in Table 8.13 for the HP2000C and in Table 8.14 for the

Olivetti  Artjet20.  The  data  is  also  compared  against  results  from  multiple  polynomial

regression; all tests were done for the function CIELABCMY  .

Method Traning2 Test

Avg. Max Avg. Max

Proposed RBFN
0.797 1.893 1.831 6.763

Regression 60 terms
2.495 7.674 3.228 9.798

Regression 69 terms
2.458 7.639 3.176 10.111

Regression 87 terms
1.721 5.453 2.654 8.277

Regression 105 terms
1.475 4.337 2.571 7.676

Table 8.12:  Error comparison of  CIELABCMY  conversion using the proposed RBFN and regression with
different polynomials for the Training2 and  Test datasets on the Epson Stylus Pro5000.

Method Traning2 Test

Avg. Max Avg. Max

Proposed RBFN
2.876 5.774 3.691 9.800

Regression 60 terms
6.610 19.141 5.396 18.794

Regression 69 terms
6.516 19.344 5.728 18.995

Regression 87 terms
5.182 11.187 5.502 13.077

Regression 105 terms
4.607 10.714 4.744 13.072

Table 8.13:  Error comparison of  CIELABCMY  conversion using the proposed RBFN and regression with
different polynomials for the Training2 and Test datasets on the Hewlett Packard HP 2000 C.
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Method Traning2 Test

Avg. Max Avg. Max

Proposed RBFN
1.752 4.084 2.537 6.660

Regression 60 terms
1.901 10.268 2.236 9.739

Regression 69 terms
1.851 10.400 2.266 9.864

Regression 87 terms
1.514 9.100 1.994 8.664

Regression 105 terms
1.305 9.100 1.936 8.664

Table 8.14:  Error comparison of  CIELABCMY  conversion using the proposed RBFN and regression with
different polynomials for the Training2 and Test datasets on the Olivetti Artjet 20.

The results show that there is an improvement over multiple polynomial regressions for every

ink-jet colour printer. The results shown in tables 8.12 to 8.14 demonstrate that our model

has general validity.

The  final  problem  that  we  discuss  in  this  thesis  work  is  the  definition  of  the  function

CMYCIELAB   using our  model;  now the main problem is  that  of  the definition  of a

suitable termination condition for the learning process. If we use the same condition that we

used for the definition of the function CIELABCMY   and compute the error in CIELAB

space, is necessary to use the inverse transformation for each termination check, which in

turn also implies that a neural network for this inverse case ought to be used. This solution is

not  feasible  because  the  computational  cost  of  the  inverse  network-training  phase  is

significant,  and too much accuracy is  lost  through the repeated conversions.  Neither is  it

possible to compute the error in CMY space, because this approach is inherently incapable of

knowing when to stop the learning process.

The solution that we have adopted has been to generate a LUT with 729 uniform samples in

CMY space with our type of RBF network, which was trained with 125 samples. We then

used this LUT with multiple polynomial regressions on the set Test. We compared this result

to the result obtained with a LUT of 729 uniform samples, which were printed and measured

from CMY space, and which were also used with multiple polynomials regression on the

same set of samples. The results are reported in Table 8.15; this test was performed on an

ink--jet printer of the type Epson Stylus Pro5000.
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Regression Avg. Max

LUT (729) printed
2.244 9.894

LUT (729) created by proposed RBFN
2.290 8.890

Table 8.15: Error of CMYCIELAB  conversion Test datasets on the Epson Stylus Pro5000.

These results show that it is possible to generate a LUT from only 125 initial printed and

measured samples with our method, compared to 729 samples used by multiple polynomial

regression or interpolation models. Our model permits a fast re-characterization of ink--jet

colour printers because it needs only 125 printed and measured samples, and in addition its

training phase is very fast. On a Pentium II Celeron system with 128 Mbyte of RAM the

training  time with  the  initial  125 samples  is  approximately 10  minutes,  and  the  time to

generate the 729 entry LUT is one additional minute.

8.3.3 Summary

We have presented a new learning algorithm, which is a modification of a known technique

that trains the RBFN model  for the colorimetric characterization of colour printers.   Our

algorithm needs a training set of only 125 samples in order to train the RBFN. With this

model is even possible to generate a LUT of 729 samples, beginning with only 125 printed

and measured samples, and to use this LUT with other standard algorithms of colorimetric

characterization. 

The computational cost is very low in the training and testing phases, and is even better than

the  performance  of  other  standard  colorimetric  characterization  models  (e.g.

multidimensional polynomials regression and tetrahedral interpolation).  It can be expressed

as a difference between the maximum error obtained with the different approaches, and in

our case the improvement is between 1.1 and 3.2 cdu in CIELab coordinates.

In our opinion, the results suggest that may be possible to use this algorithm in consumer

products, because we have been able to resolve the two problems that have so far limited the

more widespread use of such methods:  high computational  cost  and the large number of

training  samples  needed.  The  small  size  of  the  training  set  also  permits  a  fast  re-

characterization of devices.
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We believe  that  there  are  several  possible  ways to  evolve  these  models  for  colorimetric

characterization problems: investigation of different mathematical models for the estimation

of  the  basis  function  parameters,  research  on  different  mathematical  models  for  the

estimation of the weights, introduction of one or two more hidden layers in the structure of

the RBFN, and eventually experiments that involve combinations of these new techniques.
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Chapter 9

Conclusions and Future Work

In this thesis we presented new ideas on how to accelerate processes in the context of the TM

problem. We also introduced a modification of an existing time-dependent TM methodology.

More precisely:

- In Chapter 5 we presented a modification of an existing time-dependent TM model and we

integrated some effects of the HVS in it. In order to take into account the different viewing

conditions of the two observers (real world and display), a chromatic adaptation model was

also integrated.

- In Chapter 6 we defined a new framework, applicable to monitor systems, which delivers

interactive performances to complex global tone mapping operators. When integrated into the

rendering pipeline, the proposed framework allows one studying the response of complex

global tone mapping operators interactively. It also enables to select interactively the most

appropriate  tone  mapping  operator  for  a  given  application.  This  addresses  to  two  basic

questions: 

- Generality: Our framework can be applied to any pre-existing global TM operator

without modifying it. It can be also easily integrated in the rendering pipeline without

any modification.

- Computational Complexity: Our framework reduces the complexity of the original

TM operator used, since apply it on a subset of the original image. In this way, the

computational complexity is independent from the specific existing TM operator. 

141



- In Chapter 7 we introduced a methodology to accelerate a framework applicable to a printer.

More precisely we presented a new learning algorithm, which is a modification of a known

technique that trains the RBFN model for the colorimetric characterization of colour printers.

Our modification solves two basic problems that reduce the use of neural networks in real

application:

- Computational costs: A small training set of just 125 samples is used  to train the 

RBFN. This reduces computation costs.

- Quality performances: Despite the reduced number of samples used in the training

phase,  the performances are comparable and even better  than the performances of

standard methods used for this purpose.

The solutions  proposed in  this  thesis  are far  from being final.  The integration of  a  time

dependent  adaptation  model  in  a  local  operator,  or  the  extension  of  the  existing  time

dependent  TM operators  to  work locally,  are  two possible  directions  for  future  work.  A

possible way to extend the model of Pattanaik et al. [Pa+00] in order to preserve local image

contrast, is to modify the exponential filter used in the Dynamic Adaptation model (section

5.2.1 Adaptation model) to be updated for each frame locally. This also allows simulating the

local adaptation mechanisms that are characteristic of the HVS during the visual adaptation

process.

The framework proposed in Chapter 6 is applicable only to a global TM operators, but fails

when  it  is  applied  to  local  TM operators.  Indeed,  a  local  TM operator  uses  the  spatial

structure of the image data and attempts to preserve local image contrast. This permits to

transform the same pixel intensity of the input image to different display values, or different

pixel intensities to the same display value [DiWa00]. 

To  capture  the  behaviour  of  a  local  TM  operator  one  needs  to  modify  the  framework

described in this thesis. In particular the sampling and the reconstruction steps need several

changes. 

A local TM operator works applying a filter on a subset of the original input image. Thus, the

sampling step needs to be modified to capture the real information needed  for the local TM

operator. One way to modify it is to sample the input image and transfer to the TM operator

also the neighbourhood pixels, included in the size of the filter kernel,  of the sampled pixel.

In this way, we can transfer the information that the TM operator needs, but restricted only on

a subset of the input image. Hence the aim of the original framework (i.e. to reduce the total

amount of operations that the operator has to perform on the whole image) is retained. Also
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the reconstruction step will be affected by the modification of the sampling step. Indeed this

step uses both data: the sampled pixels and the response of the local TM operator applied on

the sampled pixels. Finally, it has to reproduce the original behaviour of the TM operator.

Our opinion is that an algorithm suitable for this purpose should be a learning algorithm like

a neural network. For instance, a neural network has the ability to learn from a set of samples

and to generalize the behaviour learned.

In this way, the neural network  can learn the behaviour of the TM operator on the fly and can

generalize it on the whole input image.

We believe that several ways to evolve the colorimetric characterization model proposed in

Chapter  7,  are  possible.  For  example,  investigate  different  mathematical  models  for  the

estimation of the basis function parameters, and of the weights, introduce one or two more

hidden  layers  in  the  structure  of  the  RBFN,  and  finally  perform  experiments  involving

combinations  of  these  new  techniques.  Different  learning  algorithms  suitable  for  neural

networks like Mixture Models [Bi96], can also be analysed.  Mixture Models are a type of

density models which comprise a number of component functions, usually Gaussian. These

component functions are combined to provide a multimodal density. Mixture models are a

semi-parametric  alternative  to  non-parametric  histograms  (which  can  also  be  used  as

densities) [Bi96] and provide greater flexibility and precision in modelling the underlying

statistics of the sample data. They can smooth over gaps resulting from sparse sample data

and provide tighter constraints in assigning object membership to colour-space regions. Such

precision  is  necessary  to  obtain  the  best  possible  results  from  colour-based  pixel

classification for qualitative segmentation requirements. Gaussian mixture models can also

be viewed as a form of generalised radial basis function network in which each Gaussian

component  is  a  basis  function  or  `hidden'  unit.  The  component  priors  can be  viewed as

weights in an output layer.
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