
Joint EUROGRAPHICS - IEEE TCVG Symposium on Visualization (2004)
O. Deussen, C. Hansen, D.A. Keim, D. Saupe (Editors)

Isosurface Computation Made Simple: Hardware
Acceleration, Adaptive Refinement and Tetrahedral Stripping

V. Pascucci†

Center for Applied Scientific Computing, LLNL, Livermore,CA, USA.

Abstract

This paper presents a simple approach for rendering isosurfaces of a scalar field. Using the vertex programming
capability of commodity graphics cards, we transfer the cost of computing an isosurface from the Central Process-
ing Unit (CPU), running the main application, to the Graphics Processing Unit (GPU), rendering the images. We
consider a tetrahedral decomposition of the domain and draw one quadrangle (quad) primitive per tetrahedron. A
vertex program transforms the quad into the piece of isosurface within the tetrahedron (see Figure2). In this way,
the main application is only devoted to streaming the vertices of the tetrahedra from main memory to the graphics
card. For adaptively refined rectilinear grids, the optimization of this streaming process leads to the definition of a
new 3D space-filling curve, which generalizes the 2D Sierpinski curve used for efficient rendering of triangulated
terrains. We maintain the simplicity of the scheme when constructing view-dependent adaptive refinements of the
domain mesh. In particular, we guarantee the absence of T-junctions by satisfying local bounds in our nested error
basis. The expensive stage of fixing cracks in the mesh is completely avoided. We discuss practical tradeoffs in the
distribution of the workload between the application and the graphics hardware. With current GPU’s it is conve-
nient to perform certain computations on the main CPU. Beyond the performance considerations that will change
with the new generations of GPU’s this approach has the major advantage of avoiding completely the storage in
memory of the isosurface vertices and triangles.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Isosurface computation
and rendering I.3.6 [Computer Graphics]: Methodology and Techniques - View-dependent refinement

Keywords: isosurfaces, graphics hardware acceleration, view-dependent refinement, tetrahedral meshes, rectilin-
ear grids.

1. Introduction
Isocontouring is widely used in the visualization of scalar
data and an integral component of almost every visualiza-
tion environment. Computation of isocontours has applica-
tions in visualization ranging from extraction of surfaces
from medical volume data [Lor95] to computation of stream
surfaces for flow visualization [vW93].

Inherent in the selection of an isocontour, defined by
C(w) : {x|F(x)−w= 0}, is that only a selected subset of the
data is represented in the result. In many applications, the
ability to interactively modify the isovaluew while viewing

† This work was performed under the auspices of the U.S. Depart-
ment of Energy by University of California Lawrence Livermore
National Laboratory under contract No. W-7405-Eng-48. UCRL-
JC-149277

the computed result is of great value in exploring the struc-
ture of the global scalar field. In fact, it has been observed
in user studies that the majority of the time spent interact-
ing with a scientific dataset is devoted to the modification of
the visualization parameters, not in changing the viewing pa-
rameters [Hai92]. Hence there has been great interest in im-
proving the computational efficiency of isocontouring algo-
rithms [WG92, CMPS96, NH91, PSL∗98, SHLJ96, UH99].

In this paper we present a simple and elegant isocontour-
ing approach that exploits new capabilities of commodity
graphics hardware. We use a vertex program to perform the
interpolation and normal estimation necessary to compute
an isosurface. In this way the visualization application does
not need to store any auxiliary surface mesh to represent
the current isosurface. The selection of an adaptive mesh is
also greatly simplified by the use of view-dependent nested

c© The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org

V. Pascucci / Isosurface Computation Made Simple

(a) (b) (c) (d)
Figure 1: Four isosurfaces computed entirely by the GPU. The main application sends the vertices of the tetrahedra to the
graphics card while a vertex program executed by the GPU computes the edge interpolation and the surface normals. (a)
Aneurysm (rectilinear grid). (b) Skull (rectilinear grid). (c) Engine piece (unstructured mesh). (d) Blunt Fin (curvilinear grid).

errors. Satisfying these errors directly produces consistent
meshes. We conclude with a discussion of the potential ad-
vantage of using tetrahedral strips for speeding up the data
transfer from CPU to GPU. We provide a detailed descrip-
tion of our prototype implementation and report experimen-
tal running times obtained in our performance tests.

2. Related Previous Work
Techniques for the efficient computation of isosurfaces date
back to the late 80’s with the introduction of the March-
ing Cubes algorithm [LC87]. This algorithm speeds up the
isosurface computation by using a reduce lookup table.
The main downside of the Marching Cubes algorithm is
that it traverses all the cells of the domain mesh indepen-
dently of the size of the output surface. Wilhelms and Van
Gelder [WG92] were the first to propose an optimized data-
dependent technique. In their work, they build an octree hi-
erarchy on top of the domain grid and store for each node the
minimum and maximum values of the scalar field within the
corresponding region of space. During the isosurface extrac-
tion this information allows skipping the octree nodes that
do not contain the isosurface.

[LSJ96, SHLJ96] define the notion of span space, from
which they developed a number of efficient isosurface ex-
traction algorithms. [CMPS96] and [BPS96] introduced at
the same time the first optimal algorithm for the extraction
of full resolution isosurfaces. The second technique also in-
troduced the use of seed sets that minimize the auxiliary stor-
age of the algorithm. These schemes have been extended to
work in external memory [CSS98, CS97], for isosurfaces of
arbitrarily large data.

Recent approaches have introduced further optimization
using occlusion optimization. Livnat and Hansen [LH98]
proposed the first approach of this type. Their main idea is
to build image-space occluders using hierarchical tiles while
incrementally computing the isosurface. In a related tech-
nique Gao and Shen [GS01] propose a parallel multi-pass
approach. Each processor computes a piece of the isosur-
face, separating visible and invisible parts, until the whole
surface is completed.

For adaptive refinements of rectilinear grids it is com-
mon the use of the longest-edge bisection subdivision
rule [ZCK97, PB00, GP00, GDL∗02]. [PB00] use the re-
finement to achieve a time critical isosurface extraction
scheme. [GP00] show the use of saturated errors and their
extension to detect topological changes in the isosurfaces.
We use nested errors that extend the idea of saturated er-
rors to handle the view-dependent case. This is an exten-
sion to the volumetric case of the error technique introduced
in [LP02].

A recent trend in hardware accelerated tech-
niques [RKE00, WMFC02, GRS∗02, WKE02, RE02]
is to exploit advanced features of commodity graphics
cards to shift some of the computations from the CPU to
the GPU. Even if they do not always achieve immediately
high performance, they are expected to play an important
role in the near future because the speed and internal
parallelism of commodity GPU’s is improving at a high
rate. The technique that we propose differs from most of
these approaches in that it computes an isosurface for a
tetrahedral mesh, without performing the Shirley-Tuchman
decomposition of a tetrahedron [ST90].

3. A Simple Vertex Program
In the OpenGL pipeline a vertex program is a specialized
code that is executed by the graphics card each time a glVer-
tex primitive is issued. The rasterization of a triangle or
quad is performed only after the current vertex program has
mapped the position, normal, color, ..., of all its vertices.

A vertex program has read-only access to 16 Vertex At-
tribute Registers that store the properties normally set by
OpenGL functions likeglNormal , glColor , or glVertex .
Each register has four floating point components that can be
set by the generic commandglVertexAttrib(i,x,y,z,w) , where
i is the index of the register andx,y,z,w are the floats stored
in its components. In addition, a vertex program has read-
only access to 96 Constant Registers. They can be changed
only outside aglBegin glEnd pair. Write-only access is pro-
vided for 15 Vertex Result Registers that store the output

c© The Eurographics Association 2004.

V. Pascucci / Isosurface Computation Made Simple

f =1

f =2

f =3

f =4

isosurface
isovalue

geometric
primitive

f = 0

f = 1.8

f = 2.5

f = 3.7

empty

triangle

quad

triangle

T

Figure 2: A tetrahedron with function values associated with
each vertex. The gray polygons show three possible isosur-
faces of the scalar field obtained by linear interpolation of
the function values at the vertices.

of the program. Read-write access is allowed to the twelve
temporary registersR0 throughR11.

We use a vertex program to perform (i) the linear inter-
polation along the edges of a tetrahedron to determine the
position of the vertices of its isosurface, and (ii) compute the
gradient of the function within the tetrahedron to determine
the normal of the isosurface.

Consider the tetrahedronT in Figure 2. One real value
is associated with each of its vertices to define, by linear
interpolation, a scalar field withinT. An isosurface of this
scalar field can be empty, can be a triangle or can be a quad.

In all cases we draw the isosurface as a quad that may
have two or all vertices coincident. OpenGL detects coinci-
dent vertices and, when necessary, reduces the quad to a tri-
angle (two coincident vertices) or rejects the quad altogether
(three or more coincident vertices). The overall structure of
the OpenGL application can be as simple as the following
pseudocode. Note that the indentation represents the nesting
of the program blocks.
set_global_parameters();
set_isovalue();
glBegin(GL_QUADS); // Start drawing quads
for i=0 to num_tets do:

set_tet_parameters(i); // Store vertices in registers
glVertex2b(0,0); // Run program four times
glVertex2b(1,1); // with v[OPOS].x set
glVertex2b(2,2); // successively to 0,1,2,3.
glVertex2b(3,3);

glEnd(); // Stop drawing quads

The functionset_global_parameters is called only once
in the application to load in the Vertex Constant Registers
the lookup tables necessary for the isosurface computation.
The functionset_isovalue , called each time the isosurface
is changed, stores the new isovalue in one constant reg-
ister. The coordinates and function values of the vertices
of a tetrahedron are set in Vertex Attribute Registers by
set_tet_parameters(i) . We store these parameters in reg-
isters 8 through 11. Assume that the vertices of the mesh
are stored in the vector vertices, and that the tetrahedra are

stored in the vector tets. One element in tets contains the
indices of the vertices of a tetrahedron. A basic implementa-
tion of set_tet_parameters(i) sets explicitly all four vertices
of the i-th tetrahedron is as follows.

DEF set_tet_parameters(i):
V0=vertices[tets[i][0]];
V1=vertices[tets[i][1]];
V2=vertices[tets[i][2]];
V3=vertices[tets[i][3]];
// Store vertices in registers 8,9,10, and 11
glVertexAttrib(8, V0.x, V0.y, V0.z, V0.w);
glVertexAttrib(9, V1.x, V1.y, V1.z, V1.w);
glVertexAttrib(10, V2.x, V2.y, V2.z, V2.w);
glVertexAttrib(11, V3.x, V3.y, V3.z, V3.w);
return;

Interpolation Cases The first step in the program deter-
mines what vertices have function value greater or smaller
than the current isovalue. An index in the range [0,15] is gen-
erated to identify each configuration. The isovalue is stored
in the registerc[67].x , while registerc[66] stores the con-
stants (1,2,4,8).

SGE R0.w ,v[8].w,c[67].x; # is V0.w >= isovalue ?
SGE R0.z ,v[9].w,c[67].x; # is V1.w >= isovalue ?
SGE R0.x ,v[10].w,c[67].x; # is V2.w >= isovalue ?
SGE R0.y ,v[11].w,c[67].x; # is V3.w >= isovalue ?
DP4 R0.x ,R0 ,c[66] ; # compute case index

The first four statements compare the current isovalue
with the function value at the vertices of the tetrahedron. The
results of the comparisons – 0 if smaller and 1 if greater or
equal – are stored in the four components ofR0. The dot
product ofR0 with (1,2,4,8) yields a distinct code for each
configuration in the range [0,15] (stored inR0.x).

Lookup Tables We use two lookup tables. The first table
– stored in Constant Registers 70 to 81 – defines the edges
of the tetrahedron and their endpoints. For example, edge 0
starts at vertex V0 and ends at vertex V1. The complete table
is reported below. The first four elements of the same table
are also used to select vertices from 0 to 3.

Const. Edge Vertex
Reg. Selection V0 V1 V2 V3 Selection
70 E0 start 1 0 0 0 V0
71 E0 end 0 1 0 0 V1
72 E1 start 0 0 1 0 V2
73 E1 end 0 0 0 1 V3
74 E2 start 1 0 0 0
75 E2 end 0 0 0 1
76 E3 start 0 1 0 0
77 E3 end 0 0 1 0
78 E4 start 0 1 0 0
79 E4 end 0 0 0 1
80 E5 start 1 0 0 0
81 E5 end 0 0 1 0

Edge/Vertex Table

The second lookup table is a standard marching tetrahe-
dral table that lists the edges intersected by the isosurface
in each possible configuration. Repeated indices are used to
complete the rows of the table corresponding to cases with
less than four vertices.

c© The Eurographics Association 2004.

V. Pascucci / Isosurface Computation Made Simple

Const. Interp.

Reg. 0 1 2 3 case
40 70 70 70 70 0
41 74 80 78 78 1
42 80 76 80 80 10
43 74 80 76 78 11
44 70 76 78 78 100
45 70 76 80 74 101
46 70 80 80 78 110
47 70 80 74 74 111
48 80 70 74 74 1000
49 70 78 80 80 1001
50 70 74 80 76 1010
51 76 70 78 78 1011
52 74 78 76 80 1100
53 76 80 80 80 1101
54 80 74 78 78 1110
55 70 70 70 70 1111

Isosurface Intersection Table.
Edge

A special one-component registerA0.x can be used to in-
dex into Constant Registers array. FirstA0.x is used to read
the entry of indexR0.x into the Isosurface Intersection Ta-
ble, and copy toR1 the indices of the edges intersected by
the isosurface.

ARL A0.x ,R0.x; # load case index
MOV R0 ,c[A0.x+40]; # lookup isosurface case

The coordinate passed byglVertex (stored inv[OPOS]) is
the index of the vertex in the current quad. Therefore, it is
used to select the edge to be interpolated as follows.

ARL A0.x ,v[OPOS].x ; # load vertex index
MOV R1 ,c[A0.x+70] ; # lookup vertex table
DP4 R0.x ,R0 ,R1 ; # select edge-start vertex

Since it is not possible to use the registerA0.x as an index
in the Vertex Properties array, we use the following trick (al-
ready used in [WMFC02]) that loads the first vertex of the
edge inR1 and the second vertex of the edge inR0. Their
function values are loaded in registersR6 and R7 respec-
tively.

ARL A0.x , R0.x; # load edge-start vertex index
MUL R1 , v[8] , c[A0.x].x ;
MAD R1 , v[9] , c[A0.x].y, R1 ;
MAD R1 , v[10] , c[A0.x].z, R1 ;
MAD R1 , v[11] , c[A0.x].w, R1 ;
MOV R7 , R1.w ; # Store the function value in R7
MOV R1.w , c[66].x ; # Set w coordinate to 1
ADD R0.x , R0.x ,c[66].x ; # Increment R0 by 1
ARL A0.x , R0.x ; # load edge-end vertex index
MUL R0 , v[8] , c[A0.x].x ;
MAD R0 ,v[9] , c[A0.x].y , R0 ;
MAD R0 , v[10] , c[A0.x].z , R0 ;
MAD R0 , v[11] , c[A0.x].w, R0 ;
MOV R6 , R0.w ; # Store the function value in R6
MOV R0.w , c[66].x ; # Set w coordinate to 1

Interpolation Next, we compute the positionp of the iso-

surface vertex along an edge. We use the following interpo-
lation formulas, which are based on the parametera, on the
function value at the endpointsa, b and on the isovalueh.

α =
h− f (b)

f (a)− f (b)
p = α a+(1−α)b

The corresponding implementation is shown below. Note
that the result is recorded in the output registero[HPOS] ,
after applying the projection matrix stored in the constant
registersc[0] throughc[3] .

ADD R7 , R7 , -R6 ; # R7 = f (a)− f (b)
RCP R7 , R7.x ; # R7 = 1/(f (a)− f (b))
ADD R6 , c[67].x , -R6 ; # R6 =h− f (b)
MUL R6 , R6 , R7 ; # R6 =α
ADD R7 , c[66].x , -R6 ; # R7 = 1−α
MUL R0 , R0 , R7.x ; # R0 =(1−α)b
MAD R1 , R1 , R6.x , R0 ; # R1 =p = α a+(1−α)b
DP4 o[HPOS].x , c[0] , R1 ; # Project and store
DP4 o[HPOS].y , c[1] , R1 ;
DP4 o[HPOS].z , c[2] , R1 ;
DP4 o[HPOS].w , c[3] , R1 ;

The remainder of the program simply computes the nor-
mal to the isosurface. In particular, we first determine the
orientation of tetrahedron from the signs of the following
determinant,

s= sign

∣∣∣∣∣∣
∣∣∣∣∣∣

x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣∣∣∣∣
∣∣∣∣∣∣


wherexi = Vi.x−V0.x, yi = Vi.y−V0.y, andzi = Vi.z−
V0.z. Assuming also thatf i = Vi.w−V0.w, we compute the
normalN with three determinants as follows:

N = s

∣∣∣∣∣∣
∣∣∣∣∣∣

y1 z1 f 1
y2 z2 f 2
y3 z3 f 3

∣∣∣∣∣∣
∣∣∣∣∣∣ ,

∣∣∣∣∣∣
∣∣∣∣∣∣

z1 f 1 x1
z2 f 2 x2
z3 f 3 x3

∣∣∣∣∣∣
∣∣∣∣∣∣ ,

∣∣∣∣∣∣
∣∣∣∣∣∣

f 1 x1 y1
f 2 x2 y2
f 3 x3 y3

∣∣∣∣∣∣
∣∣∣∣∣∣
T

.

4. View-dependent Refinement
In this section we discuss a simple way to adaptively refine a
tetrahedral mesh with the longest-edge-bisection subdivision
rule. We implemented the approach to the restricted case of
regular grids (not necessarily rectilinear) but the technique
is applicable to a more general class of unstructured subdi-
vision meshes [Pas02].

Longest-edge BisectionConsider the decomposition of a
cube into six tetrahedra, shown in Figure3(top left). The
repeated subdivision of each tetrahedron by bisecting its
longest edge, leads to the same refinement produced by an
octree. The only distinction is that three tetrahedral subdi-
visions are required to generate the same refinement of one
step of octree subdivision. We maintain the parallel between
the two data structures and call levels of refinement those

c© The Eurographics Association 2004.

V. Pascucci / Isosurface Computation Made SimplePaper 69

INTERPOLATION Next, we compute the position p of the
isosurface vertex along an edge. We use the following
interpolation formulas, which are based on the parameter α, on the
function value at the endpoints a, b and on the isovalue h.

()
;

() ()
h f b

f a f b
α

−
=

−

(1) .p a bα α= + −

The corresponding implementation is shown below. Note that the
result is recorded in the output register o[HPOS], after applying the
projection matrix stored in the constant registers c[0] through c[3].

ADD R7 , R7 , -R6 ; # R7 = f(a)-f(b)
RCP R7 , R7.x ; # R7 = 1/ (f(a)-f(b))
ADD R6 , c[67].x , -R6 ; # R6 = h-f(b)
MUL R6 , R6 , R7 ; # R6 = alpha
ADD R7 , c[66].x , -R6 ; # R7 = 1-alpha
MUL R0 , R0 , R7.x ; # R0 = (1-alpha) b
MAD R1 , R1 , R6.x , R0 ; # R1 = p = alpha a + (1-alpha) b
DP4 o[HPOS].x , c[0], R1 ; # Project and store
DP4 o[HPOS].y , c[1], R1 ;
DP4 o[HPOS].z , c[2], R1 ;
DP4 o[HPOS].w , c[3], R1 ;

The remainder of the program simply computes the normal to the
isosurface. In particular, we first determine the orientation of
tetrahedron from the sign s of the following determinant,

1 1 1
2 2 2
3 3 3

x y z
s sign x y z

x y z

 
 =  
 
 

where xi=Vi.x-V0.x, yi=Vi.y-V0.y, and zi=Vi.z-V0.z. Assuming
also that fi=Vi.w-V0.w, we compute the normal N with three
determinants as follows.

1 1 1 1 1 1 1 1 1
2 2 2 , 2 2 2 , 2 2 2
3 3 3 3 3 3 3 3 3

y z f z f x f x y
N s y z f z f x f x y

y z f z f x f x y

 
 =  
  

T

4. VIEW-DEPENDENT REFINEMENT
In this section we discuss a simple way to adaptively refine a
tetrahedral mesh with the longest-edge-bisection subdivision rule.
We implemented the approach to the restricted case of regular
grids (not necessarily rectilinear) but the technique is applicable to
a more general class of unstructured subdivision meshes [P02].

Longest-edge Bisection Consider the decomposition of a
cube into six tetrahedra, shown in

Figure 3(top left). The repeated subdivision of each tetrahedron by
bisecting its longest edge, leads to the same refinement produced
by an octree. The only distinction is that three tetrahedral
subdivisions are required to generate the same refinement of one
step of octree subdivision. We maintain the parallel between the
two data structures and call levels of refinement those generated
by an octree, and call tiers the three intermediate refinements of
the tetrahedral mesh.

v4

level 0 - tier 0 level 0 - tier 1 level 0 - tier 2 level 1 - tier 0

v0
v1

v2

v3

v4

v0 v1
v2

v3

v0 v1

v2

v3
v4

Figure 3: Four steps of longest-edge-bisection for a rectilinear
grid. (top row) Concurrent refinement of tetrahedra and octree
cells. Three tiers of tetrahedral refinement are equivalent to one
level of octree refinement. (bottom row) A single tetrahedron
refined with repeated longest-edge bisections.

For a cube mesh, the longest-edge bisection can be written in pure
combinatorial terms, without measuring the edge lengths. One
parent tetrahedron is subdivided into two children tetrahedra using
the subdivision rules shown in the table below and illustrated in
Figure 3(bottom row).

Longest edge bisection of a tetrahedron T=(v0,v1,v2,v3).

T tier children’s vertices children’s tier v4

0 v0,v1,v2,v4 v3,v1,v2,v4 1 (v0+v3)/2

1 v0,v1,v4,v3 v2,v1,v4,v3 2 (v0+v2)/2

2 v0,v4,v2,v3 v1,v4,v2,v3 0 (next level) (v0+v1)/2

We store auxiliary information on a per diamond basis, where a
diamond is the set of tetrahedra that share the same longest edge.
For example a tier 0 diamond is a cube. Figure 4 shows the type
of diamonds that occur at each tier of the subdivision process. We
call v4 the center of the diamond and the diamond itself. We say
that the diamond vi is a parent of vj if any tetrahedron in vi has a
child in vj. Note that the hierarchy of the tetrahedra is a binary
tree, while the hierarchy of the diamonds is a Directed Acyclic
Graph (DAG).

We implement a simple recursive function that splits a tetrahedron
until a view dependent error tolerance is met or the fine resolution
is reached (l=0). The refinement is also stopped if a tetrahedron is
part of a diamond that is outside of the view frustum or that does
not contain any piece of isosurface.

DEF Refine_Mesh (iso,V0,V1,V2,V3,l,tier):
 V4 = (V1+V3)/2
 if ((l=0) or satisfy_tolerance(V4)) then
 DrawIso (V0,V1,V2,V3)
 else
 if (min_f [V4]>iso or max_f [V4]<iso or not_in_frustum(V4)) then
 return
 if (tier=0) then Refine_Mesh (iso,V0,V1,V2,V4,l-1,1)
 Refine_Mesh (iso,V3,V1,V2,V4,l-1,1)
 if (tier=1) then Refine_Mesh (iso,V0,V1,V4,V2,l-1,2)
 Refine_Mesh (iso,V2,V1,V4,V2,l-1,2)
 if (tier=2) then Refine_Mesh (iso,V0,V4,V1,V2,l-1,0)
 Refine_Mesh (iso,V1,V4,V1,V2,l-1,0)
 return

Figure 3: Four steps of longest-edge-bisection for a rectilin-
ear grid. (top row) Concurrent refinement of tetrahedra and
octree cells. Three tiers of tetrahedral refinement are equiv-
alent to one level of octree refinement. (bottom row) A single
tetrahedron refined with repeated longest-edge bisections.Paper 69

tier 1 tier 2

v0 v1
v2

v3

v4

v0 v1
v2

v3

v4
v0 v1

v3

v2

v4

tier 0

Figure 4: The types of diamonds that occur at each subdivision-
tier. The vertices of one tetrahedron in the diamond are marked
consistently to Figure 3(bottom row). Each diamond can be
uniquely identified with the vertex v4 where its tetrahedra are
bisected.

The arrays min_f and max_f store respectively the minimum and
maximum function values contained in a diamond. For error
tolerance and frustum checks, we use the following view-
dependent nested evaluations. The diamond vi is associated with a
bounding sphere Si centered in vi. If vi is an ancestor of vj, then
the sphere Si contains the sphere Sj. The function not_in_frustum(vi)
simply checks if Si is outside the view frustum. Similarly, any
error associated with vi is inflated to be larger then the errors of
all its descendants. The function satisfy_tolerance(vi) projects the
error of vi onto the current view plane from the closest point of Si.
satisfy_tolerance(vi) returns true if the projected error is smaller
than a given tolerance. In this way we can guarantee that if any
diamond is included in the current adaptive mesh, all its parents
are also included. Therefore the adaptive mesh has no cracks.
Figure 5 shows an example of such refinement for a curvilinear
grid.

(a) (b)

Figure 5: View-dependent refinement of an isosurface of the
Blunt Fin dataset. The view-point is at the center of the red sphere
and the view direction is along the red line. (a) Side view of the
isosurface refined adaptively. (b) Same view at uniform
resolution.

For a rectilinear grid the radius of the diamonds depends only on
the level of resolution and therefore does not need to be stored in
the diamonds. If the tolerance is computed only on the basis of the
projected size of the tetrahedra, one can achieve a view-dependent
refinement without storing any auxiliary information. This is
illustrated in Figure 6.

5. STREAMING VERTICES
Depending on the speed and number of the vertex processing units
of the GPU, a possible bottleneck of the rendering operation is the
cost of sending the vertices from the CPU to the graphics card.
For the vertex program in section 3 this cost can be greatly
reduced using tetrahedral strips. In a tetrahedral strip, any two
consecutive tetrahedra differ only by one vertex. In the OpenGL
pipeline this can be exploited because the vertex properties are

persistent in the vertex registers. The function set_tet_parameters(i)
used in section 3 can be replaced by a function set_new_vertex(i),
setting only the vertex that transform tetrahedron i into tetrahedron
i+1 in the strip. The pseudocode becomes.

(a) (b)

Figure 6: View-dependent refinement of an isosurface of the
neghip dataset. The view-point is at the center of the red sphere
and the view direction is along the red line. (a) Side view of the
isosurface refined adaptively. (b) Same view at uniform
resolution.

glBegin(GL_QUADS); // Start drawing quads
for i=0 to num_tets do:
 set_new_vertex (i); // Store tet vertices in vertex registers
 glVertex2s(0,0); // Run vertex program with v[OPOS].x=0
 glVertex2s(1,1); // Run vertex program with v[OPOS].x=1
 glVertex2s(2,2); // Run vertex program with v[OPOS].x=2
 glVertex2s(3,3); // Run vertex program with v[OPOS].x=3
glEnd(); // Stop drawing quads

In terms of data flow, the function set_new_vertex(i) sends four
floats to the graphics card, instead of the sixteen sent by
set_tet_parameters(i). The four glVertex2s instruction send two short
each. Overall, there is a 60% reduction in data transferred (from
80 to 32 bytes per tetrahedron).

In the case of a single-resolution tetrahedral mesh it is easy to
build the strips by traversal of the adjacency graph of the mesh.
For tetrahedral meshes generated by longest-edge bisection, it is
know that is not possible to maintain a tetrahedral strip while
performing the simple recursive subdivision discussed in the
previous section.

To maintain a tetrahedral strip while performing the simple
recursive refinement we adopt the oldest-edge refinement strategy
illustrated in Figure 7.

Old Edge Medium Edges New Edges

Old vertices

Medium Vertex

New Vertex

(a) (b)

Figure 7: Oldest-edge refinement strategy. (a) The vertices of a
tetrahedron are marked by age and the edges are classified
accordingly. (b) The oldest edge is bisected and the age of each
vertex is increased.

Figure 4: The types of diamonds that occur at each
subdivision-tier. The vertices of one tetrahedron in the dia-
mond are marked consistently to Figure3(bottom row). Each
diamond can be uniquely identified with the vertex v4 where
its tetrahedra are bisected.

generated by an octree, and call tiers the three intermediate
refinements of the tetrahedral mesh.

For a cube mesh, the longest-edge bisection can be writ-
ten in pure combinatorial terms, without measuring the edge
lengths. One parent tetrahedron is subdivided into two chil-
dren tetrahedra using the subdivision rules shown in the table
below and illustrated in Figure3(bottom row).

Paper 69

INTERPOLATION Next, we compute the position p of the
isosurface vertex along an edge. We use the following
interpolation formulas, which are based on the parameter α, on the
function value at the endpoints a, b and on the isovalue h.

()
;

() ()
h f b

f a f b
α

−
=

−

(1) .p a bα α= + −

The corresponding implementation is shown below. Note that the
result is recorded in the output register o[HPOS], after applying the
projection matrix stored in the constant registers c[0] through c[3].

ADD R7 , R7 , -R6 ; # R7 = f(a)-f(b)
RCP R7 , R7.x ; # R7 = 1/ (f(a)-f(b))
ADD R6 , c[67].x , -R6 ; # R6 = h-f(b)
MUL R6 , R6 , R7 ; # R6 = alpha
ADD R7 , c[66].x , -R6 ; # R7 = 1-alpha
MUL R0 , R0 , R7.x ; # R0 = (1-alpha) b
MAD R1 , R1 , R6.x , R0 ; # R1 = p = alpha a + (1-alpha) b
DP4 o[HPOS].x , c[0], R1 ; # Project and store
DP4 o[HPOS].y , c[1], R1 ;
DP4 o[HPOS].z , c[2], R1 ;
DP4 o[HPOS].w , c[3], R1 ;

The remainder of the program simply computes the normal to the
isosurface. In particular, we first determine the orientation of
tetrahedron from the sign s of the following determinant,

1 1 1
2 2 2
3 3 3

x y z
s sign x y z

x y z

 
 =  
 
 

where xi=Vi.x-V0.x, yi=Vi.y-V0.y, and zi=Vi.z-V0.z. Assuming
also that fi=Vi.w-V0.w, we compute the normal N with three
determinants as follows.

1 1 1 1 1 1 1 1 1
2 2 2 , 2 2 2 , 2 2 2
3 3 3 3 3 3 3 3 3

y z f z f x f x y
N s y z f z f x f x y

y z f z f x f x y

 
 =  
  

T

4. VIEW-DEPENDENT REFINEMENT
In this section we discuss a simple way to adaptively refine a
tetrahedral mesh with the longest-edge-bisection subdivision rule.
We implemented the approach to the restricted case of regular
grids (not necessarily rectilinear) but the technique is applicable to
a more general class of unstructured subdivision meshes [P02].

Longest-edge Bisection Consider the decomposition of a
cube into six tetrahedra, shown in

Figure 3(top left). The repeated subdivision of each tetrahedron by
bisecting its longest edge, leads to the same refinement produced
by an octree. The only distinction is that three tetrahedral
subdivisions are required to generate the same refinement of one
step of octree subdivision. We maintain the parallel between the
two data structures and call levels of refinement those generated
by an octree, and call tiers the three intermediate refinements of
the tetrahedral mesh.

v4

level 0 - tier 0 level 0 - tier 1 level 0 - tier 2 level 1 - tier 0

v0
v1

v2

v3

v4

v0 v1
v2

v3

v0 v1

v2

v3
v4

Figure 3: Four steps of longest-edge-bisection for a rectilinear
grid. (top row) Concurrent refinement of tetrahedra and octree
cells. Three tiers of tetrahedral refinement are equivalent to one
level of octree refinement. (bottom row) A single tetrahedron
refined with repeated longest-edge bisections.

For a cube mesh, the longest-edge bisection can be written in pure
combinatorial terms, without measuring the edge lengths. One
parent tetrahedron is subdivided into two children tetrahedra using
the subdivision rules shown in the table below and illustrated in
Figure 3(bottom row).

Longest edge bisection of a tetrahedron T=(v0,v1,v2,v3).

T tier children’s vertices children’s tier v4

0 v0,v1,v2,v4 v3,v1,v2,v4 1 (v0+v3)/2

1 v0,v1,v4,v3 v2,v1,v4,v3 2 (v0+v2)/2

2 v0,v4,v2,v3 v1,v4,v2,v3 0 (next level) (v0+v1)/2

We store auxiliary information on a per diamond basis, where a
diamond is the set of tetrahedra that share the same longest edge.
For example a tier 0 diamond is a cube. Figure 4 shows the type
of diamonds that occur at each tier of the subdivision process. We
call v4 the center of the diamond and the diamond itself. We say
that the diamond vi is a parent of vj if any tetrahedron in vi has a
child in vj. Note that the hierarchy of the tetrahedra is a binary
tree, while the hierarchy of the diamonds is a Directed Acyclic
Graph (DAG).

We implement a simple recursive function that splits a tetrahedron
until a view dependent error tolerance is met or the fine resolution
is reached (l=0). The refinement is also stopped if a tetrahedron is
part of a diamond that is outside of the view frustum or that does
not contain any piece of isosurface.

DEF Refine_Mesh (iso,V0,V1,V2,V3,l,tier):
 V4 = (V1+V3)/2
 if ((l=0) or satisfy_tolerance(V4)) then
 DrawIso (V0,V1,V2,V3)
 else
 if (min_f [V4]>iso or max_f [V4]<iso or not_in_frustum(V4)) then
 return
 if (tier=0) then Refine_Mesh (iso,V0,V1,V2,V4,l-1,1)
 Refine_Mesh (iso,V3,V1,V2,V4,l-1,1)
 if (tier=1) then Refine_Mesh (iso,V0,V1,V4,V2,l-1,2)
 Refine_Mesh (iso,V2,V1,V4,V2,l-1,2)
 if (tier=2) then Refine_Mesh (iso,V0,V4,V1,V2,l-1,0)
 Refine_Mesh (iso,V1,V4,V1,V2,l-1,0)
 return

We store auxiliary information on a per diamond basis,
where a diamond is formed by the set of tetrahedra that share
the same longest edge. For example a tier 0 diamond is a
cube. Figure4 shows the type of diamonds that occur at each
tier of the subdivision process. We callv4 the center of the
diamond and the diamond itself. We say that the diamond
vi is a parent ofv j if any tetrahedron invi has a child in
v j. Note that the hierarchy of the tetrahedra is a binary tree,
while the hierarchy of the diamonds is a Directed Acyclic
Graph (DAG).

We implement a simple recursive function that splits a
tetrahedron until a view dependent error tolerance is met or
the finest resolution is reached (l=0). The refinement is also
stopped if a tetrahedron is part of a diamond that is outside
of the view frustum or that does not contain any piece of
isosurface.

(a) (b)
Figure 5: View-dependent refinement of an isosurface of the
Blunt Fin dataset. The view-point is at the center of the red
sphere and the view direction is along the red line. (a) Side
view of the isosurface refined adaptively. (b) Same view at
full resolution.

DEF Refine_Mesh (iso,V0,V1,V2,V3,l,tier):
V4 = (V1+V3)/2
if ((l=0) or satisfy_tolerance(V4)) then

DrawIso (V0,V1,V2,V3)
else

if ((min_f [V4]>iso or max_f [V4]<iso) or
(not_in_frustum(V4))) then

return
if (tier=0) then

Refine_Mesh (iso,V0,V1,V2,V4,l,1)
Refine_Mesh (iso,V3,V1,V2,V4,l,1)

if (tier=1) then
Refine_Mesh (iso,V0,V1,V4,V2,l,2)
Refine_Mesh (iso,V2,V1,V4,V2,l,2)

if (tier=2) then
Refine_Mesh (iso,V0,V4,V1,V2,l-1,0)
Refine_Mesh (iso,V1,V4,V1,V2,l-1,0)

return

The arraysmin_f andmax_f store respectively the mini-
mum and maximum function values contained in a diamond.
For error tolerance and frustum checks, we use the follow-
ing view-dependent nested evaluations. The diamondvi is
associated with a bounding sphereSi centered invi. If vi is
an ancestor ofv j, then the sphereSi contains the sphereS j.
The functionnot_in_frustum(vi) simply checks ifSi is out-
side the view frustum. Similarly, any error associated with
vi is inflated to be larger then the errors of all its descen-
dants. The functionsatisfy_tolerance(vi) projects the error
of vi onto the current view plane from the closest point of
Si. satisfy_tolerance(vi) returns true if the projected error is
smaller than a given tolerance. In this way we can guarantee
that if any diamond is included in the current adaptive mesh,
all its parents are also included. Therefore the adaptive mesh
has no cracks. Figure5 shows an example of such refinement
for a curvilinear grid.

For a rectilinear grid the radius of the diamonds depends
only on the level of resolution and therefore does not need
to be stored in the diamonds. If the tolerance is computed
only on the basis of the projected size of the tetrahedra,

c© The Eurographics Association 2004.

V. Pascucci / Isosurface Computation Made Simple

(a) (b)
Figure 6: View-dependent refinement of an isosurface of the
neghip dataset. The view-point is at the center of the red
sphere and the view direction is along the red line. (a) Side
view of the isosurface refined adaptively. (b) Same view at
uniform resolution.

one can achieve a view-dependent refinement without stor-
ing any auxiliary information. This is illustrated in Figure6.

5. Streaming Vertices
Depending on the speed and number of the vertex processing
units of the GPU, a possible bottleneck of the rendering op-
eration is the cost of sending the vertices from the CPU to the
graphics card. For the vertex program in Section3 this cost
can be greatly reduced using tetrahedral strips. In a tetrahe-
dral strip, any two consecutive tetrahedra differ only by one
vertex. In the OpenGL pipeline this can be exploited because
the vertex properties are persistent in the vertex registers.
The functionset_tet_parameters(i) used in Section3 can
be replaced by a functionset_new_vertex(i) , setting only
the vertex that transform tetrahedroni into tetrahedroni +1
in the strip. The pseudocode becomes.

glBegin(GL_QUADS); // Start drawing quads
for i=0 to num_tets do:

set_new_vertex (i); // Store tet vertices in registers
glVertex2s(0,0); // Execute with v[OPOS].x=0
glVertex2s(1,1); // Execute with v[OPOS].x=1
glVertex2s(2,2); // Execute with v[OPOS].x=2
glVertex2s(3,3); // Execute with v[OPOS].x=3

glEnd(); // Stop drawing quads

In terms of data flow, the functionset_new_vertex(i)
sends four floats to the graphics card, instead of the sixteen
sent byset_tet_parameters(i) . The fourglVertex2s instruc-
tion send two short each. Overall, there is a 60% reduction
in data transferred (from 80 to 32 bytes per tetrahedron).

In the case of a single-resolution tetrahedral mesh it is
easy to build the strips by traversal of the adjacency graph of
the mesh. For tetrahedral meshes generated by longest-edge
bisection, it is know that is not possible to maintain a tetrahe-
dral strip while performing the simple recursive subdivision
discussed in the previous section.

To maintain a tetrahedral strip while performing the sim-
ple recursive refinement we adopt the oldest-edge refinement
strategy illustrated in Figure7.

Paper 69

tier 1 tier 2

v0 v1
v2

v3

v4

v0 v1
v2

v3

v4
v0 v1

v3

v2

v4

tier 0

Figure 4: The types of diamonds that occur at each subdivision-
tier. The vertices of one tetrahedron in the diamond are marked
consistently to Figure 3(bottom row). Each diamond can be
uniquely identified with the vertex v4 where its tetrahedra are
bisected.

The arrays min_f and max_f store respectively the minimum and
maximum function values contained in a diamond. For error
tolerance and frustum checks, we use the following view-
dependent nested evaluations. The diamond vi is associated with a
bounding sphere Si centered in vi. If vi is an ancestor of vj, then
the sphere Si contains the sphere Sj. The function not_in_frustum(vi)
simply checks if Si is outside the view frustum. Similarly, any
error associated with vi is inflated to be larger then the errors of
all its descendants. The function satisfy_tolerance(vi) projects the
error of vi onto the current view plane from the closest point of Si.
satisfy_tolerance(vi) returns true if the projected error is smaller
than a given tolerance. In this way we can guarantee that if any
diamond is included in the current adaptive mesh, all its parents
are also included. Therefore the adaptive mesh has no cracks.
Figure 5 shows an example of such refinement for a curvilinear
grid.

(a) (b)

Figure 5: View-dependent refinement of an isosurface of the
Blunt Fin dataset. The view-point is at the center of the red sphere
and the view direction is along the red line. (a) Side view of the
isosurface refined adaptively. (b) Same view at uniform
resolution.

For a rectilinear grid the radius of the diamonds depends only on
the level of resolution and therefore does not need to be stored in
the diamonds. If the tolerance is computed only on the basis of the
projected size of the tetrahedra, one can achieve a view-dependent
refinement without storing any auxiliary information. This is
illustrated in Figure 6.

5. STREAMING VERTICES
Depending on the speed and number of the vertex processing units
of the GPU, a possible bottleneck of the rendering operation is the
cost of sending the vertices from the CPU to the graphics card.
For the vertex program in section 3 this cost can be greatly
reduced using tetrahedral strips. In a tetrahedral strip, any two
consecutive tetrahedra differ only by one vertex. In the OpenGL
pipeline this can be exploited because the vertex properties are

persistent in the vertex registers. The function set_tet_parameters(i)
used in section 3 can be replaced by a function set_new_vertex(i),
setting only the vertex that transform tetrahedron i into tetrahedron
i+1 in the strip. The pseudocode becomes.

(a) (b)

Figure 6: View-dependent refinement of an isosurface of the
neghip dataset. The view-point is at the center of the red sphere
and the view direction is along the red line. (a) Side view of the
isosurface refined adaptively. (b) Same view at uniform
resolution.

glBegin(GL_QUADS); // Start drawing quads
for i=0 to num_tets do:
 set_new_vertex (i); // Store tet vertices in vertex registers
 glVertex2s(0,0); // Run vertex program with v[OPOS].x=0
 glVertex2s(1,1); // Run vertex program with v[OPOS].x=1
 glVertex2s(2,2); // Run vertex program with v[OPOS].x=2
 glVertex2s(3,3); // Run vertex program with v[OPOS].x=3
glEnd(); // Stop drawing quads

In terms of data flow, the function set_new_vertex(i) sends four
floats to the graphics card, instead of the sixteen sent by
set_tet_parameters(i). The four glVertex2s instruction send two short
each. Overall, there is a 60% reduction in data transferred (from
80 to 32 bytes per tetrahedron).

In the case of a single-resolution tetrahedral mesh it is easy to
build the strips by traversal of the adjacency graph of the mesh.
For tetrahedral meshes generated by longest-edge bisection, it is
know that is not possible to maintain a tetrahedral strip while
performing the simple recursive subdivision discussed in the
previous section.

To maintain a tetrahedral strip while performing the simple
recursive refinement we adopt the oldest-edge refinement strategy
illustrated in Figure 7.

Old Edge Medium Edges New Edges

Old vertices

Medium Vertex

New Vertex

(a) (b)

Figure 7: Oldest-edge refinement strategy. (a) The vertices of a
tetrahedron are marked by age and the edges are classified
accordingly. (b) The oldest edge is bisected and the age of each
vertex is increased.

Figure 7: Oldest-edge refinement strategy. (a) The vertices
of a tetrahedron are marked by age and the edges are classi-
fied accordingly. (b) The oldest edge is bisected and the age
of each vertex is increased.

Old Medium New
Figure 8: Oldest-edge refinement strategy. (left column)
The only traversal configurations (modulo symmetries) of a
tetrahedron within a strip. The arrows indicate the incom-
ing/outgoing face of the tetrahedron. (right column) In all
cases it is possible to maintain the continuity of the strip af-
ter the bisection of the oldest edge.

This subdivision is based on a single rule, where the tetra-
hedron(v0,v1,v2,v3) is bisected atv4= (v0+v1)/2 to gen-
erated the children(v0,v2,v3,v4) and (v1,v2,v3,v4). Fig-
ure8 shows how to maintain locally the continuity of a strip
while bisecting the tetrahedra.

Figure9 (top two rows) shows the adjacency graph of a
complete tetrahedral strip built in this way. This is the 3D
generalization of the 2D Sierpinski curve used to render an
adaptive refinement of a terrain as a single strip [Paj98]. To
the best of our knowledge this 3D space-filling curve was
not known before. Figure9(bottom row) shows two simple
(spherical) isosurfaces highlighting the artifacts that may de-
rive from the use of a different mesh.

c© The Eurographics Association 2004.

V. Pascucci / Isosurface Computation Made Simple

Figure 9: Three levels of refinement of our 3D space-filling
curve. The curve traverses once all the tetrahedra in the
mesh, forming a tetrahedral strip. The base mesh is a pyra-
mid with square basis (one sixth of a cube). (top row) Side
view. (middle row) Bottom view. (bottom row) Test isosur-
faces of a simple scalar field (distance from a point).

6. Results
We tested the performance of the proposed scheme on two
types of NVidia graphics cards: GeForce3 and GeForce4. We
have considered three variations of the scheme and reported
the results in the table below.

Comparison of average rendering performance
in millions of tetrahedra per second.

isocontour w-out w-out normal
complete normal + streaming

GeForce4 1.674 Mt/s 2.169 Mt/s 2.192 Mt/s

GeForce3 0.645 Mt/s 0.864 Mt/s 0.864 Mt/s

The complete vertex program computing interpolation and
normal is always slower (first column). This confirms the
consideration that the slow speed of the GPU becomes
quickly the rendering bottleneck when the vertex program
is too long. For both graphics cards sending the normals in-
stead of computing them in the vertex program provides a
30increase in performance. Note that this increase in per-
formance comes at the cost of additional storage since the
normals are pre-computed.

Adding the streaming component (right column) provides
no measurable benefit on the slow card. On the faster card
we measure a consistent but marginal benefit. This means
that the GeForce4 is at the performance threshold for benefit-
ing sensibly of the streaming component. If, in future cards,
the internal parallelism of the vertex processing units will be
increased more than the bus bandwidth, we can expect the
streaming component to play a more important role.

As expected, the view dependent adaptive refinement has
a substantial impact on the interactivity of the application
since it allows concentrating the rendering power to the re-
gions closer to the viewpoint. More importantly, it can run
with a very small memory footprint since min-max infor-
mation is sufficient for grids. On a 800Mhz Pentiun PC
with 800M of memory (running linux operating system) we
can navigate interactively through a 512x512x512 dataset
changing the isovalue in real-time.

7. Conclusions and Future Directions
In this paper we have introduced a simple technique for
computing isosurfaces of a scalar field exploiting the fea-
tures provided by commodity graphics cards. In particular
we have introduced a vertex program that maps a standard
quad into the isosurface contained in a tetrahedron. We also
provided an elegant way to generate consistent adaptive re-
finements of a tetrahedral mesh subdivided by longest-edge
bisection.

To optimize the data transfer from the CPU to the GPU
we discussed the idea of using tetrahedral strips and intro-
duced a subdivision scheme that allows maintaining strips
during the refinement. This scheme yields a new 3D space-
filling curve generalizing the Sierpinski curve widely used
to optimize the rendering of triangulated terrain datasets.

Since the execution of vertex programs appears to be the
current bottleneck of the approach we plan to better exploit
the concept of tetrahedral strips. At the moment we are able
to provide only one new vertex information per tetrahedron
but four vertex programs need to be always executed. Since
only three edges are really new, it may be possible to draw
one tetrahedron in the strip executing only three vertex pro-
grams.

For high-resolution data, we plan to combine the longest-
edge and oldest-edge refinements, because the latter asymp-
totically degrades the aspect ratio of the tetrahedra. To im-
prove the scalability of the scheme for larger datasets, we
plan to extend our approach by developing appropriate cache
coherent data layouts that may be appropriate for out-of-core
execution.

8. Acknowledgments
Special thanks go to Claudio Silva for explaining all the subtilties in-
volved in writing a vertex program. Section 3 is mostly an account of
the unpublished details that Claudio presented in his lectures given
at LLNL. I insisted in including so many implementation details in
the hope that others will benefit from this information when writing
their first vertex program.

References
[BPS96] BAJAJ C. L., PASCUCCI V., SCHIKORE D. R.: Fast

isocontouring for improved interactivity. In1996 Volume Visual-
ization Symposium(Oct. 1996), IEEE, pp. 39–46. ISBN 0-89791-
741-3. 2

[CMPS96] CIGNONI P., MONTANI C., PUPPOE., SCOPIGNOR.:

c© The Eurographics Association 2004.

V. Pascucci / Isosurface Computation Made Simple

Optimal isosurface extraction from irregular volume data. InPro-
ceedings of the Symposium on Volume Visualization(New York,
Oct. 28–29 1996), ACM Press, pp. 31–38.1, 2

[CS97] CHIANG Y.-J., SILVA C. T.: I/O optimal isosurface
extraction. InIEEE Visualization ’97 (VIS ’97)(Washington -
Brussels - Tokyo, Oct. 1997), IEEE, pp. 293–300.2

[CSS98] CHIANG Y.-J., SILVA C. T., SCHROEDERW. J.: In-
teractive out-of-core isosurface extraction. InIEEE Visualization
’98 (VIS ’98)(Washington - Brussels - Tokyo, Oct. 1998), IEEE,
pp. 167–174.2

[GDL∗02] GREGORSKI B., DUCHAINEAU M., L INDSTROM P.,
PASCUCCI V., JOY K. I.: Interactive view-dependent rendering
of large IsoSurfaces. InProceedings of the 13th IEEE Visualiza-
tion 2002 Conference (VIS-02)(Piscataway, NJ, Oct. 27– Nov. 1
2002), Moorhead R., Gross M.„ Joy K. I., (Eds.), IEEE Computer
Society, pp. 475–484.2

[GP00] GERSTNER T., PAJAROLA R.: Topology preserving
and controlled topology simplifying multiresolution isosurface
extraction. InProceedings Visualization 2000(2000), Ertl T.,
Hamann B.„ Varshney A., (Eds.), IEEE Computer Society Tech-
nical Committee on Computer Graphics, pp. 259–266.2

[GRS∗02] GUTHE S., RÖTTGER S., SCHIEBER A., STRASSER

W., ERTL T.: High-quality unstructured volume rendering
on the PC platform. InProceedings of the 17th Eurograph-
ics/SIGGRAPH workshop on graphics hardware (EGGH-02)
(New York, Sept. 1–2 2002), Spencer S. N., (Ed.), ACM Press,
pp. 119–126.2

[GS01] GAO J., SHEN H.-W.: Parallel view-dependent isosur-
face extraction using multi-pass occlusion culling.2001 Symp. on
Parallel and Large-Data Visualization and Graphics(Oct. 2001),
67–74, 152.2

[Hai92] HAIMES R.: Techniques for interactive and inter-
rogative scientific volumetric visualization. Available from
http://raphael.mit.edu/visual3/unpub.ps, 1992.1

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes:
A high resolution 3D surface construction algoritm.Computer
graphics 21, 4 (July 1987), 163–168.2

[LH98] L IVNAT Y., HANSEN C.: View dependent isosurface
extraction. InIEEE Visualization ’98 (VIS ’98)(Washington -
Brussels - Tokyo, Oct. 1998), IEEE, pp. 175–180.2

[Lor95] LORENSENW.: Marching through the visible man. In
IEEE Visualization ’95 (VIS ’95)(Atlanta, Georgia, Oct. 1995),
IEEE, pp. 368–373.1

[LP02] L INDSTROM P., PASCUCCI V.: Terrain simplification
simplified: A general framework for view-dependent out-of-core
visualization.IEEE Transactions on Visualization and Computer
Graphics 8, 3 (July/Sept. 2002), 239–254.2

[LSJ96] L IVNAT Y., SHEN H. W., JOHNSONC. R.: A near op-
timal isosurface extraction algorithm for structured and unstruc-
tured grids.IEEE Transactions on Visual Computer Graphics 2,
1 (1996), 73–84.2

[NH91] NIELSON G. M., HAMANN B.: The asymptotic de-
cider: Removing the ambiguity in marching cubes. InVisualiza-
tion ’91 (1991), pp. 83–91.1

[Paj98] PAJAROLA R.: Large scale terrain visualization using
the restricted quadtree triangulation. InProceedings IEEE Visu-
alization’98(1998), IEEE, pp. 19–26.5

[Pas02] PASCUCCI V.: Slow growing subdivision (SGS) in any
dimension: Towards removing the curse of dimensionality.Com-
puter Graphics Forum 21, 3 (Sept. 2002), 451–460.4

[PB00] PASCUCCI V., BAJAJ C. L.: Time critical adaptive re-
finement and smoothing. InProceedings of the ACM/IEEE Vol-
ume Visualization and Graphics Symposium 2000(Salt lake City,
Utah, October 2000), pp. 33–42.2

[PSL∗98] PARKER S., SHIRLEY P., LIVNAT Y., HANSEN C.,
SLOAN P.-P.: Interactive ray tracing for isosurface rendering. In
IEEE Visualization ’98 (VIS ’98)(Washington - Brussels - Tokyo,
Oct. 1998), IEEE, pp. 233–238.1

[RE02] ROETTGER S., ERTL T.: A two-step approach for in-
teractive pre-integrated volume rendering of unstructured grids.
In Proceedings of the 2002 IEEE symposium on Volume visual-
ization and graphics (VOLVIS-02)(Piscataway, NJ, Oct. 28–29
2002), Spencer S. N., (Ed.), IEEE, pp. 23–28.2

[RKE00] RÖTTGER S., KRAUS M., ERTL T.: Hardware-
accelerated volume and isosurface rendering based on cell-
projection. InProceedings Visualization 2000(2000), Ertl T.,
Hamann B.„ Varshney A., (Eds.), IEEE Computer Society Tech-
nical Committee on Computer Graphics, pp. 109–116.2

[SHLJ96] SHEN H. W., HANSEN C. D., LIVNAT Y., JOHNSON

C. R.: Isosurfacing in span space with utmost efficiency (IS-
SUE). InIEEE Visualization ‘96(1996), pp. 287–294.1, 2

[ST90] SHIRLEY P., TUCHMAN A.: A polygonal approxima-
tion to direct scalar volume rendering.Computer Graphics 24, 5
(Nov. 1990), 63–70.2

[UH99] UDESHI T., HANSEN C. D.: Parallel multipipe render-
ing for very large isosurface visualization. InData Visualiza-
tion ’99, Gröller E., Löffelmann H.„ Ribarsky W., (Eds.), Euro-
graphics. Springer-Verlag Wien, May 1999, pp. 99–108.1

[vW93] VAN WIJK J. J.: Implicit stream surfaces. InPro-
ceedings of the Visualization ’93 Conference(San Jose, CA, Oct.
1993), Nielson G. M., Bergeron D., (Eds.), IEEE Computer So-
ciety Press, pp. 245–252.1

[WG92] WILHELMS J., GELDER A. V.: Octrees for faster iso-
surface generation.ACM Transactions on Graphics 11, 3 (July
1992), 201–227.1, 2

[WKE02] WEILER M., KRAUS M., ERTL T.: Hardware-
based view-independent cell projection. InProceedings of the
2002 IEEE symposium on Volume visualization and graphics
(VOLVIS-02)(Piscataway, NJ, Oct. 28–29 2002), Spencer S. N.,
(Ed.), IEEE, pp. 13–22.2

[WMFC02]WYLIE B., MORELAND K., FISK L., CROSSNO P.:
Tetrahedral projection using vertex shaders. InProceedings of
the 2002 IEEE symposium on Volume visualization and graphics
(VOLVIS-02)(Piscataway, NJ, Oct. 28–29 2002), Spencer S. N.,
(Ed.), IEEE, pp. 7–12.2, 3

[ZCK97] ZHOU Y., CHEN B., KAUFMAN A.: Multi-resolution
tetrahedral framework for visualizing regular volume data. In
IEEE Visualization ’97 (VIS ’97)(Washington - Brussels - Tokyo,
Oct. 1997), IEEE, pp. 135–142.2

c© The Eurographics Association 2004.

