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These are the course notes for the third part of the tutorial on “CUDA and Applications to Task-based
Programming”, as presented at the Eurographics conference 2022. In this part, we treat advanced
mechanisms of CUDA that were not covered by earlier parts, novel features of recent toolkits and
architectures, as well as overall trends and caveats for future developments.
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About These Course Notes

• Practically-oriented portions rely on ability to maintain code samples

• For the full version on the fundamentals of CUDA, GPU hardware and 
recent developments, please refer to the tutorial’s web page at: 
https://cuda-tutorial.github.io

• The full version of these course notes includes additional slides, 
auxiliary media and code samples 
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In order to ensure compliance with applicable copyright and enable continuous maintenance of slides and
relevant code samples, we have decided to create two separate versions of these course notes.

The version at hand was prepared for a one-time electronic distribution among the Eurographics 2022
conference participants ahead of the presentation itself and includes the documentation of previous and
ongoing research into task-based programming with CUDA, as per April 2022.

For the full, extended version of the course notes including an easily approachable introduction, up-to-
date code samples, and descriptions of recently enabled features in CUDA, please see the tutorial‘s web
page.
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Managed Memory

The first topic that we want to consider in this portion of the tutorial is CUDA‘s opt-in approach for
unified memory between host and device, managed memory.
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Using Managed Memory

• CUDA‘s opt-in approach to unified, automatically managed memory

• Define static variables in .cu files with
new CUDA __managed__ keyword

• Allocate managed memory dynamically: 
cudaMallocManaged

• Supported since CC 3.0 with 64-bit OS
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__managed__ int foo;

__global__ void kernel(int* bar)
{

printf("%d %x\n", foo, *bar);
}

int main()
{

foo = 42;
int* bar;
cudaMallocManaged(&bar, 4);
*bar = 0xcaffe;
kernel<<<1, 1>>>(bar);
cudaDeviceSynchronize();

}

Ever since compute capability 3.0 (Kepler), CUDA has had support for the basic concept of unified
memory. The methods for managing it allow for a significant amount of control, even on devices where it
is not supported directly by the system allocators. The fundamental additions to the CUDA architecture
that managed memory provides are the __managed__ keyword for defining variables in memory, as
well as the cudaMallocManaged method to allocate storage on the host side. The managed memory will
automatically be migrated to the location where it is accessed, without explicit commands to trigger the
transfer. This solution decouples the handle to a memory range from its actual physical storage, which is
transient and may change multiple times during execution.
Initially, there was a noticeable performance penalty associated with the use of unified memory, but
recently, managed memory has experienced a significant boost, making it much more practical than it
used to be in addition to simplifying the code base, so we will quickly revisit it here.
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Concurrent Access by CPU and GPUs

• If kernels and CPU execution overlap, both may access same memory

• Concurrent access supported since CC 6.0, but not guaranteed
• Even Turing GPUs and newer may not support concurrent access
• Before attempting it, must check property concurrentManagedAccess

• If not supported, developer must ensure that managed memory is
not accessed by the CPU while the GPU is running kernels

• Applies to all managed memory, regardless of whether the GPU accesses it
• cudaDeviceSynchronize to secure access from the CPU
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With unified or managed memory, both the CPU and GPU may try to access the same variables at the
same time, since kernel launches and CPU-side execution are asynchronous. While it is now possible on
some systems to have concurrent accesses, older cards with compute capability lower than 6.0 and even
moderately modern ones may not support it. In this case, the CPU must ensure that its access to managed
memory does not overlap with kernel execution. This can for instance be achieved with synchronization
primitives.
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Concurrent Access by CPU and GPUs

• Also applies if GPU uses different memory or no memory at all
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__managed__ int x, y=2;

__global__ void kernel() {
printf("%d\n", x);

}

int main() {
kernel<<< 1, 1 >>>();
y = 20; // Error on some GPUs, all CC < 6.0
cudaDeviceSynchronize();
return 0;

}

__managed__ int x, y=2;

__global__ void kernel() {
printf("%d\n", x);

}

int main() {
kernel<<< 1, 1 >>>();
cudaDeviceSynchronize();
y = 20;
return 0;

}

In this example, we see on the left a code segment that is problematic on cards without concurrent access
support. On the right is an alternative implementation that makes sure to separate access from CPU and
GPU temporally. This version is safe to execute on older hardware as well.
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Concurrent Access with Streams

• Possible to associate given ranges of
memory with streams / processors

• cudaStreamAttachMemAsync

• Access to a memory range given to:
• cudaMemAttachHost (CPU)
• cudaMemAttachGlobal (all streams)
• cudaMemAttachSingle (one stream)
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__managed__ int x = 42, y = 2;

__global__ void kernel() {
printf("%d\n", x);

}

int main() {
cudaStream_t s1;
cudaStreamCreate(&s1);
unsigned int acc = cudaMemAttachHost;
cudaStreamAttachMemAsync(s1, &y, 4, acc);
kernel <<<1, 1 >>> ();
y = 20;
cudaDeviceSynchronize();
return 0;

}

Alternatively, it is also possible to attach particular managed memory ranges to streams. This way, the
access to particular managed memory ranges can be exclusively associated with a particular stream.
Furthermore, the access to the range can be restricted to, e.g., signify that until further notice, managed
memory may only be accessed by the host.
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Use Case: Simpler Multi-Threaded Access

• Multiple CPU threads 
with managed access

• Default stream would
cause synchronization

• With streams, CPU 
threads can control
exclusive access
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void run_task(int *in, int *out, int length)
{

int *data;
cudaMallocManaged((void **)&data, length, cudaMemAttachHost);
cudaStreamAttachMemAsync(stream, data);
cudaStreamSynchronize(stream);

for(int i=0; i<N; i++) {
transform<<< 100, 256, 0, stream >>>(in, data, length);
cudaStreamSynchronize(stream);
host_process(data, length);
convert<<< 100, 256, 0, stream >>>(out, data, length);

}
}

A common use case for the assignment of managed memory to streams is the processing of separate tasks
in individual CPU threads. With every thread creating and associating a separate stream to the memory it
intends to use, they are free to use managed memory concurrently without the need for synchronization
across multiple threads. An exemplary setup that achieves this is given in the code segment above.
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Tuning Managed Memory Performance

• Several issues that programs should consider with managed memory
• Avoid excessive faulting: can cause data migration and page table updates
• Keep data close to accessing processor: decrease latencies on access
• Memory thrashing: memory is constantly migrated back and forth

• Developers can assist memory management with performance hints
• Migrate a range of data to a specific location and map it to processor’s page 

tables within a given stream with cudaMemPrefetchAsync
• Additionally, can provide hints on the usage of data with cudaMemAdvise:

preferred location, devices on which it should stay mapped, mostly read
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Important performance guidelines for managed memory is the avoidance of excessive faulting, since this
negatively impacts performance. Furthermore, it should be ensured that data is always close to the
processor that accesses it. Lastly, when memory is often migrated between host and device, this can
quickly lead to thrashing, which is detrimental to performance as well. Managed memory has recently
been made significantly more effective, insofar as the migration of data can now occur with a fine-
granular page faulting algorithm, which somewhat alleviates these problems. However, developers can
additionally provide hints that make memory management easier at runtime. In order to do so, they can
„prefetch“ memory to a certain location ahead of it being used. Furthermore, developers can define
general advice on the utilization of memory to indicate the preferred location of physical storage, the
devices where it should remain mapped, and whether or not the access is governed by reading rather than
writing.
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ITS – Opportunities & Pitfalls

Next up, we will take another look at some of the details of Independent Thread Scheduling, which was
introduced with the Volta architecture.
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Independent Thread Scheduling (ITS)

• Guaranteed progress, one branch can wait on another branch

• Diverged threads may not reconverge, should be explicitly requested!
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if(threadIdx.x & 0x4)
{

A();
waitOnB();

}
else
{

B();
waitOnA();

}
C();
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We previously discussed the behavior of ITS, and how it enables for instance use cases where threads in
the same warp may wait on each other, which would have caused a deadlock with legacy scheduling.
However, with guaranteed progress, such algorithms are now safe to implement in CUDA.
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Use Case: Mutual Exclusion (Busy Wait)

• Minimalistic busy-wait loop 
implementation, run on Turing

• threadfence acts as barrier,
can realize an acquire/release 
pattern in CUDA

• Hangs with ITS disabled, 
works with ITS enabled
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__device__ int lock = 0;

__global__ void incrementCounter() {
while (atomicCAS(&lock, 0, 1) != 0);
__threadfence();
count++;
__threadfence();
atomicExch(&lock, 0);

}

int main() {
incrementCounter<<<256, 256>>>();
return 0;

}

A simple test to demonstrate the new capabilities of ITS is given by this minimal example, in which we
control a critical section that has exclusive excess to a counter. __threadfence can be understood as
a general barrier, and therefore can model access patterns like release and acquire. Here, we combine it
with atomic operations on a global variable to secure the counter variable. Every thread will attempt to
acquire the lock, change the counter and release the lock again. In a warp, only one thread can succeed at
any time. If after succeeding the other branch is executed, with legacy scheduling, the routine can never
finish. Running without ITS support, this example will therefore likely cause a hang. With ITS enabled, it
is safe to execute and eventually terminates.
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Enabling/Disabling ITS

• Currently, GPUs can still switch between legacy scheduling and ITS

• Compiler flags to enable ITS 
• -arch=compute_70 -code=sm_70 for Volta
• -arch=compute_75 -code=sm_75 for Turing

• Compiler flags to disable ITS 
• -arch=compute_60 -code=sm_70 for Volta
• -arch=compute_60 -code=sm_75 for Turing
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The switches to disable or enable ITS are listed here. Currently, GPU models still support both modes, so
it is possible to run the previous example on newer GPUs with ITS enabled/disabled to see the results. It
is not yet certain if legacy scheduling will eventually be abandoned in favor of ITS, however, other GPU
compute APIs, like OpenGL‘s compute shader, appear to default to legacy scheduling for compatibility
reasons.
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Limitations and Caveats of ITS

• No amount of hardware scheduling can save you from live lock

• Only guaranteed progress for resident warps!
• Threads will wait forever if their progress depends on non-resident warp
• Number of concurrently resident warps can be retrieved with driver API
• cuOccupancyMaxActiveBlocksPerMultiprocessor × #SMs
• Computed based on resource requirements of kernel and hardware specs

• More care must be taken to ensure SIMD behavior of warps!
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There are of course a few limitations to ITS. First of all, ITS cannot absolve developers of improper
parallel coding. While it can in fact take care of deadlocks, it is still very much required of developers to
be aware of the scheduling model of GPUs to make sure they can avoid live locks as well. Second, ITS
can only provide a progress guarantee for threads and warps that are resident at any point in time. That is,
in case of a large launched grid, if the progress of threads depends on a thread that was not launched until
all SMs were filled up, the system cannot progress and will hang, since resident warps are not switched
out until they complete execution. Lastly, ITS, due to the fact that it is not guaranteed to reconverge, may
break several assumptions regarding warp level programming. In order to ensure a fully or partially
reconverged warp, developers must make proper use of __syncwarp and can no longer assume
lockstep progress at warp level, which is a hard habit to break.
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ITS and the Importance of __syncwarp

• The concept of threads progressing in strict lockstep no longer applies

• __syncwarp is used to explicitly force synchronization, reconvergence

• Force executing threads to wait until all in mask hit a __syncwarp
• Volta+: group of threads can synchronize from different points in the program
• Masks of the called __syncwarp must match

• Extremely important for porting code to Volta and newer architectures!
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__syncwarp may, at first glance, seem like a smaller version of __syncthreads, however, it has a
number of interesting peculiarities that make it more versatile. Most importantly, __syncwarp is
parameterized by a mask that indicates the threads that should participate in synchronization, in contrast
to __syncthreads, which must always include all non-exited threads in the block.
__syncwarp may be executed from different points in the program, enabling for instance a warp to
synchronize across two different branches, as long as the masks match. If optimizations at warp-level are
made by developers, in order to write correct code, they will need to make generous use of
__syncwarp in many common patterns.
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Warp Synchronization (e.g., Reduction)

25.04.2022 16

__shared__ shmem[blockDim.x];
unsigned tid = threadIdx.x;

shmem[tid] += shmem[tid+16];
shmem[tid] += shmem[tid+8];
shmem[tid] += shmem[tid+4];
shmem[tid] += shmem[tid+2];
shmem[tid] += shmem[tid+1];

__shared__ shmem[blockDim.x];
unsigned tid = threadIdx.x;
int v = shmem[tid];

v += shmem[tid+16]; __syncwarp();
shmem[tid] = v; __syncwarp();
v += shmem[tid+8]; __syncwarp();
shmem[tid] = v; __syncwarp();
v += shmem[tid+4]; __syncwarp();
shmem[tid] = v; __syncwarp();
v += shmem[tid+2]; __syncwarp();
shmem[tid] = v; __syncwarp();
v += shmem[tid+1]; __syncwarp();
shmem[tid] = v;

__shared__ shmem[blockDim.x];
unsigned tid = threadIdx.x;

shmem[tid] += shmem[tid+16];
__syncwarp();
shmem[tid] += shmem[tid+8];
__syncwarp();
shmem[tid] += shmem[tid+4];
__syncwarp();
shmem[tid] += shmem[tid+2];
__syncwarp();
shmem[tid] += shmem[tid+1];
__syncwarp();
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Consider the example on the left, which outlines the last stages of a parallel reduction. Naturally, if we
know that ITS is active, we cannot assume lockstep progress and must secure every update of the shared
variables with a __syncwarp operation. However, the initial response of many developers is not
sufficient. In this case, the access in each step is not secured by an if clause to restrict the participating
threads. Hence, the threads with a higher ID might overwrite their results before they are read by lower-
ID threads. In order to make these updates secure, either additional if clauses would have to be introduced
that exclude higher thread IDs, or a more generous use of __syncwarp is required.
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CUDA Graph API

In the next section, we will consider the CUDA graph API.
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CUDA Graphs

• Many HPC applications build on iterative structure
• Work submitted for every iteration
• Repetitive in nature
• E.g., physics simulations, learning or inference

• Modeling CUDA applications as graphs
• Typical HPC applications are strongly pipelined
• Series of stages, e.g., memory copies, kernel launches, …
• Connected by dependencies
• Often don’t change frequently or not at all
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Many applications consist of not one, but a larger number of kernels that are in some way pipelined or
processed iteratively. Usually, the nature of the computations that must occur does not change
significantly, and a program performs the same steps in the same order for a number of iterations. A good
example would for instance be the simulation of game physics, where in each frame, several small,
incremental updates are made to achieve adequate precision. These applications can often easily be
expressed in the form of a graph, where each step represents a node and edges indicate dependencies.
CUDA graphs enable the definition of applications with this graph structure, in order to separate the
definition of program flow and execution.
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Benefits

• Overhead of CUDA operations can be significant
• CUDA graphs allow to define or record execution ahead of time
• Reuse same launch schedule many times
• Separation of definition and execution reduces overall overhead

• Given a clearly defined schedule, driver can make optimizations
• As whole workflow is visible, including

• Kernel execution
• CPU-side functions
• Data movement
• …
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When one places a kernel into a stream, the host driver performs a sequence of operations in preparation
for the execution of the kernel. These operations are what are typically called “kernel overhead”. If the
driver, however, is aware of the program structure and the operations that will be repeatedly launched, it
can make optimizations in preparation for this particular workload. In order to enable the driver to exploit
this additional knowledge, developers can construct these graphs either from scratch or existing code.
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Node Types

• Kernel launch
• CPU function call
• Memory copy operation
• Memory setting
• Child graph

• Option to modularize
• Attach subgraphs to parent graph

• Empty Node

25.04.2022 20

X

Y

Z

A

B C

D

CUDA and Applications to Task-based Programming

CUDA Graphs support fundamental node types that suffice to build arbitrary applications from their
combinations. It is possible to create, attach and parameterize nodes at any point before the graphs are
made final.
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Create CUDA Graph from Scratch
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cudaGraph_t graph;

// Define graph of work + dependencies
cudaGraphCreate(&graph);
cudaGraphAddKernelNode(kernel_A, graph, ...);
cudaGraphAddKernelNode(kernel_B, graph, ...);
cudaGraphAddKernelNode(kernel_C, graph, ...);
cudaGraphAddKernelNode(kernel_D, graph, ...);

// Instantiate graph and apply optimizations
cudaGraphInstantiate(&instance, graph);

// Launch executable graph 100 times
for(int i=0; i<100; i++)

cudaGraphLaunch(instance, stream);

A
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D
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Here we see a minimalistic example for the use of CUDA graphs. First, graphs must be created. After
creation, a graph’s structure, consisting of individual nodes and their dependencies, is defined. Before
execution, a defined graph must be instantiated to enable CUDA to analyze it, validate it, optimize it and
eventually yield the final, executable graph. Once instantiated, the executable graph can be reused as
often as desired.
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Record Existing CUDA Code as Graph

25.04.2022 22

if (!recorded)
{

// Define a graph and record CUDA instructions
cudaGraphCreate(&graph);
cudaStreamBeginCapture(stream, cudaStreamCaptureModeGlobal);
// Call your 100 kernels with unchanging parameters
for(int i=0; i<100; i++)

iterationKernel<<< …, stream >>>(i)
// End capture and make graph executable

cudaStreamEndCapture(stream, &graph);
cudaGraphInstantiate(&instance, graph, 0, 0, 0);
recorded = true;

}
else

cudaGraphLaunch(instance, stream);

CUDA and Applications to Task-based Programming

However, it is also possible to record code into a CUDA graph instead. This is particularly valuable for
the transfer of existing codebases to the graph API. In this example, once at program startup, a collection
of commands that are executed in every frame of a simulation are recorded into a graph, which is then
instantiated. After the initial recording, the graph is ready for execution and can be executed directly. In
the best-case scenario, an existing code segment can be wrapped with the commands for recording and
instantiating in order to replicate the behavior of legacy code with the graph API.
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Streams and Graph Dependencies

• When constructing graphs from scratch, no dependencies assumed
• Need to manually add them (compare Vulkan/DX12)

• When recording existing code, standard CUDA dependencies apply
• Events are assumed to depend on previous events in the same stream (strict!)
• No dependencies across different recorded streams in the same graph

• It is possible to record multiple streams into the same CUDA graph
• However, only one stream, the „origin“ stream, must start the recording
• To capture other streams, add dependencies on origin (e.g., event waits)
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In CUDA without graph APIs, we rely on streams in order to define the dependencies between different
CUDA operations. By sorting commands into different streams, we indicate that they are not dependent
on one another and can be concurrently scheduled. When using the graph API to build graphs from
scratch, by default no dependencies are assumed. That is, if multiple kernel execution nodes are added to
a graph without the definition of a dependency, they will execute as if they were all launched into
separate streams.

When code is recorded into a graph, the conventional dependency model is assumed. For instance, if a
single stream is recorded, all commands that may have potential dependencies on one another are treated
as such. If multiple streams are being recorded, the commands in different streams may run concurrently.
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Example
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// Start by initating stream capture
cudaStreamBeginCapture(stream1, cudaStreamCaptureModeGlobal);

// Build stream work as usual
A<<< ..., stream1 >>>();
cudaEventRecord(e1, stream1);
B<<< ..., stream1 >>>();
cudaStreamWaitEvent(stream2, e1);
C<<< ..., stream2 >>>();
cudaEventRecord(e2, stream2);
cudaStreamWaitEvent(stream1, e2);
D<<< ..., stream1 >>>();

// Now convert the stream to a graph
cudaStreamEndCapture(stream1, &graph);
// Create executable graph instance before launching…

Event required to initiate 
recording another stream

A

B C

D

A

B
C

…

…
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Capturing multiple streams into a graph takes a little extra care. Each captured graph must have an origin
stream, and other captures streams must somehow be associated with the origin. Simply starting a capture
in one stream before commands are executed in another will not suffice. In order to establish this
association, one stream may for instance wait on an empty event from the origin stream. This way, the
dependency of one stream on the other is made explicit and captured in the graph as well.
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Use Case: Cloth Simulation

• Mass-spring cloth model, Verlet integration, 30 iterations per frame…

• Used in GPU programming lecture

• 5ms per frame, initially

• 4.5ms after adding CUDA graphs
• 5 minutes of effort
• 10% performance benefit
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Here we show a use case from our GPU programming lecture. This example implements a simple cloth
simulation, where a mass-spring model is solved with Verlet integration. For updating the positions of the
individual vertices, a simple update procedure is called many times in each frame with a small time step.
Hence, the pipeline is highly repetitive and the kernels extremely simple, which makes the kernel launch
overhead more substantial in proportion. By capturing the update routine in a graph and replaying it in
each frame, we were able to improve the performance by approximately 10%.
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Accessing Tensor Cores

A highly popular topic of GPUs today is the introduction of tensor cores and their crucial
role in many machine learning algorithms. For those of you who wondered what exactly it
is that tensor cores do, we will now take a short look under the hood and describe what
makes them tick.
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Tensor Cores

• Volta architecture has prominently introduced Tensor Cores
• Programmable Matrix-Multiply-and-Accumulate (MMA)
• E.g., Titan V / Tesla V100 contain 8 Tensor Cores per SM

• Tensor core operates on matrices: A M × K , B K × N , C(M × N)
• 4 × 4 × 4 (M× N × K) matrix processing array, performs 𝐷 = 𝐴 ⋅ 𝐵 + 𝐶
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With the arrival of the Volta architecture, NVIDIA GPUs have added a new function unit to the streaming
multiprocessors, that is, the tensor core. The number and capability of tensor cores is rising quickly, and
they are one of the most popular features currently. A tensor core and its abilities are easily defined: each
tensor core can perform a particular fused matrix operation based on 3 inputs: a 4 × 4 matrix 𝐴, a 4 × 4
matrix 𝐵, and a third 4 × 4 matrix for accumulation, let’s call it 𝐶. The result that a single tensor core can
compute is 𝐴 × 𝐵 + 𝐶, which on its own does not seem too helpful. However, the strength of tensor cores
originates from its collaboration with other cores to process larger constructs.
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Tensor Cores

• Easily accessed through libraries
• Primarily via TensorRT, cuDNN and cuBLAS
• Recommended for highest performance in most use cases

• Also exposed directly in CUDA kernel code
• Exact data layout can be treated as blackbox, low-level definitions in CUDA 11
• No specific instructions to be performed individually per thread
• Warp matrix functions exposed to developers via mma.h header
• Threads in a warp work together to collaboratively execute tensor operations
• Each warp must uniformly perform the same nvcuda::wmma instructions
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This collaboration can be achieved in one or two ways. The first is by using one of the readily-available
libraries that make use of these capabilities in highly-optimized kernels, such as TensorRT, cuDNN or
cuBLAS. For general purpose applications, it is recommended to use these solutions for higher
performance.

However, the access to tensor cores is also exposed in CUDA directly via a separate header for matrix
multiplication and accumulation of small matrices, which are usually only a part of the total input. These
matrix tiles, or „fragments“, can be larger than 4 × 4 if threads in a warp cooperate. The MMA headers
define warp-level primitives, that is, tensor cores must be utilized collaboratively by all the threads in a
given warp.
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Tensor Cores

• Each core can do 64 floating point fused-multiply-add (FMA) per clock
• E.g., with 8 tensor cores: 64 * 2 * 8 operations/cycle  1024 operations/cycle

• Restrictions on format for input fragments, e.g.:
• A = __half (16bit float), B = __half, C = float 
• A = __half, B = __half, C = __half
• A = char, B = char, C = int
• A = precision::tf32, B = precision::tf32, C = float

• Warps collaborate to process larger fragments
• Maximal dimensions governed by data types used
• E.g., max. 16 × 16 × 16 for A = __half, B = __half, C = float
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The performance of these computations is significant since the tensor core is optimized for this very
specific operation. A tensor core can achieve 64 fused-multiply-add operations per clocks. With 8 tensor
cores per SM, this leads to a vast 1024 operations performed in each cycle.

However, restrictions do apply in their utilization. A common assumption is that tensor cores work
directly on single-precision floating point values, however, this is only true for the accumulation part of
the operation. So far, the input fragments 𝐴 and 𝐵 may not be 32-bit wide, but rather 16-bit half-precision
or the more adaptive tf32 type, which has a bigger range than half-precision types.

The choice of what data types are used as input directly affects the maximum size of the fragments that
can be collaboratively computed. A common configuration, with half-precision for input fragments 𝐴 and
𝐵, enables warps to compute MMA operations on 16 × 16 fragments. When using, e.g., tf32 for 𝐴 and 𝐵
instead, one of the dimensions must be halved.
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Using Tensor Cores in CUDA
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// Contains section of a matrix distributed across all threads in warp
template<typename Use, int m, int n, int k, typename T, typename Layout=void> class fragment;

// Waits until all warps are at load matrix and then loads matrix
void load_matrix_sync(fragment<...> &a, const T* mptr, unsigned ldm);
void load_matrix_sync(fragment<...> &a, const T* mptr, unsigned ldm, layout_t layout);

// Waits until all warps are at store matrix and then stores matrix
void store_matrix_sync(T* mptr, const fragment<...> &a, unsigned ldm, layout_t layout);

// Fill fragment with constant value v
void fill_fragment(fragment<...> &a, const T& v);

// Perform warp-synchronous matrix multiply-accumulate d = a*b + c
void mma_sync(fragment<...> &d, const fragment<...> &a, const fragment<...> &b,
const fragment<...> &c, bool satf=false);

CUDA and Applications to Task-based Programming

Here, we list the relevant types and functions that are exposed to warps for performing tensor core
operations:
- fragment: Overloaded class, containing a section of a matrix distributed across all threads in a warp.

Mapping of matrix elements into fragment internal storage is unspecified (and subject to change). Use
can be <matrix_a, matrix_b, accumulator>, M,N,K are shape of matrix.

- load_matrix: waits until all threads in a warp are at load and then loads fragment from memory. ptr
must be 256bit aligned, ldm is stride between elements in consecutive rows/columns (multiple of 16
Bytes, i.e. 8 half elements or 4 float elements). All values must be the same for all threads in a warp,
must also be called by all threads in a warp, otherwise undefined

- store_matrix: Same ideas as with load
- fill_fragment: Mapping is unknown, v must be the same for all threads
- mma_sync: performs warp-synchronous matrix multiply-accumulate (MMA)
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using namespace nvcuda;

__global__ void wmma_example(half* a, half* b, float* c)
{

// Declare the fragments
wmma::fragment<wmma::matrix_a, 16, 16, 16, half, wmma::col_major> a_frag;
wmma::fragment<wmma::matrix_b, 16, 16, 16, half, wmma::col_major> b_frag;
wmma::fragment<wmma::accumulator, 16, 16, 16, float> acc_frag;
wmma::fill_fragment(acc_frag, 0.0f);
// Load the inputs
wmma::load_matrix_sync(a_frag, a, 16);
wmma::load_matrix_sync(b_frag, b, 16);
// Perform the matrix multiplication
wmma::mma_sync(acc_frag, a_frag, b_frag, acc_frag);
// Store the output
wmma::store_matrix_sync(c, acc_frag, 16, wmma::mem_col_major);

}

Load/init
input/output

Magic!

Store output
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Multiplying two Matrices

Here, we show a minimal example of using tensor cores with the available functions. First, we define the
fragments that a warp can collaboratively work on, in this case, a 16 × 16 portion of a matrix, with the
data format being half-precision floats. The accumulator has a higher precision, it can be single-precision
float without reducing the fragment size. After filling the accumulator with all zeros, we collaboratively
load in the data to fill the input fragments 𝐴 and 𝐵. Once done, the warp must synchronize and perform
the matrix multiplication and accumulation in cooperation. Finally, the result of this computation, stored
in the accumulator, is written back to memory.
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Use Case: Denoising with CNNs

• Partial path-traced (1spp) results can be reconstructed using CNNs
• TensorRT enables directly using CUDA resources as input
• Sampling, inference, cleanup and visualization all on-chip
• Used, e.g., by Tatzgern et al. for “Stochastic Substitute Trees”[1]

25.04.2022 CUDA and Applications to Task-based Programming 32

Although knowing the exact functionality of tensor cores is interesting, a much more practical approach
for the most common use cases, like machine learning, is to use the available libraries, like TensorRT.
The corresponding solutions support the loading and inference with network layouts in common machine
learning formats, such as ONNX, and can compute results with unprecedented performance. For instance,
we have used TensorRT to use convolutional networks for the reconstruction of undersampled renderings
in previous work, which was published last year at I3D. In the paper, Stochastic Substitute Trees, the
sampling, reconstruction, and visualization of an approach inspired by instant radiosity can execute
completely on the GPU to give real-time performance in complex lighting scenarios.
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Cooperative Groups

Finding the most efficient solution to comparably simple goals, accounting for the available levels of the
hierarchy and their various ways of communication, require a lot of careful design and remembering the
individual optimizations that can be done in hardware. This may seem discouraging, especially for
newcomers to CUDA. However, in addition to exposing these new low-level operations, CUDA also now
provides developers with a helpful new, header-only library called cooperative groups, which
encapsulates these behaviors but abstracts the low-level details for improved usability.
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Cooperative Groups
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• To best exploit the GPU, threads may want to cooperate at any scope
• A few threads
• An entire warp
• An entire block
• All blocks in a grid

• Cooperative groups hide the details of collaboration between threads
• Efficient cooperation between threads in block/warp via primitives
• Require careful handling, correct masking, controlled synchronization
• Cooperative groups simplify the code structure, abstract low-level commands

Cooperative groups can be seen as NVIDIA‘s commitment to the idea that cooperation is key, regardless
of whether it happens across multiple blocks, within a block, within a warp, or even just a few threads
that happen to execute together. At each of these levels, it is important that developers can exploit the
means for cooperation between threads, and that they can exploit it easily. Cooperative groups try to
unify the defining properties of thread groups with a common utilization principle that can abstract away
many of the intricate, low-level details.
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Cooperative Groups
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…

Thread Block
Group
(Block)

Thread Block 
Tile<32> 
(Warp)

Coalesced
Groups

Thread Block 
Tile<16>

To illustrate this idea, we can visualize different levels of the execution hierarchy and associate each of
them with a particular pendant in the cooperative groups model. Conventionally, CUDA uses built-in
variables to identify the block that each thread belongs to. With cooperative groups, each thread can
retrieve a handle to a group that represents its block, which is of the thread block group type. A thread
block group can be further partitioned into thread block tile groups with a given size that must be a power
of 2 and no larger than a warp (except for the experimental cooperative groups extensions). Somewhat
orthogonal to groups created based on size, but always at most of size 32 is finally the coalesced group,
which represents a group of threads that are, at some point in time, converged (compare to our previous
example of opportunistic warp-level programming).
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Cooperative Groups

• Not built-in, extra features included via cooperative_groups.h

• Cooperative groups functionalities include:
• Data structures and types for groups of different sizes
• Methods to create new groups from implicit scopes or larger groups
• Methods to synchronize threads in a group
• Algorithms to collaboratively perform more complex operations
• Operations to inspect group properties

• Total group size
• Thread ID within a given group
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The cooperative groups design is available through an additional header, which includes data structures
that describe types for the individual groups of threads, methods to synchronize groups, algorithms that
allow them to collaborate toward a specific goal, and functions that developers can use to access generic
properties of groups, such as their size.
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Creating Cooperative Groups
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// Obtain a group for the current thread block
auto threadblock = cooperative_groups::this_thread_glock();
// Obtain a group for each warp in the thread block
auto warpgroup = cooperative_groups::tiled_partition<32>(threadblock);
// Obtain a group for each warp in the thread block
auto subwarp16 = cooperative_groups::tiled_partition<16>(threadblock);
// Obtain a group for all currently coalesced threads in the warp
auto active = cooperative_groups::coalesced_threads();

// Thread block groups can sync, reflect
threadblock.sync();
printf("Size: %d Id: %d\n", threadblock.size(), threadblock.thread_rank());

// Explicit groups are smaller than warps - can use warp-level primitives!
uint answer = active.ballot(foo == 42);
uint neighbor_answer = active.shfl_down(answer, 1);

Here, we see examples for the creation of a thread‘s variable describing a group that represents its thread
block, a group that represents its warp, a smaller group representing a 16-wide tile of the block that the
thread happens to fall into, and lastly the group of converged threads that this thread is a part of. The
threadblock group, like all the others, has the option to synchronize with the other threads in it.
Synchronization is now abstracted by the group interface, so instead of calling the specific
__syncthreads(), developers may simply call the .sync method. Each group will also provide its
members with a unique „rank“ within each respective group, regardless of their higher-level position.
E.g., a thread with threadIdx.x == 7 may very well be the thread with rank 0 in a coalesced
group, such that ranks always run from 0 to group.size(). Furthermore, tiled partition groups and
coalesced groups may exploit fast warp-level primitives as methods of their groups. Note that providing
masks is not necessary: the threads that should participate are an implicit property of the group.

37



Reims 2022

Use Case: Updating Reduction Final Stage

• Cooperative groups also provide reduction functions on CC < 8.0
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__global__ void reduceSharedShuffle(const float* input, float* result, int N)
{

…
x = data[threadIdx.x];
if (threadIdx.x < 32)
{

x += data[threadIdx.x + 32];
x = __reduce_add_sync(0xFFFFFFFF, x);
}
if (threadIdx.x == 0)
atomicAdd(result, x);

}

__global__ void reduceSharedShuffle(const float* input, float* result, int N)
{

…
auto warp = cooperative_groups::tiled_partition<32>(threadblock);
if (warp.meta_group_rank() == 0) // First warp group only
{

int warpLane = warp.thread_rank();
float v = values[warpLane] + values[warpLane + 32];
v = cooperative_groups::reduce(warp, v, cooperative_groups::plus<float>());
if (warpLane == 0)

atomicAdd(&result, v);
}

}

We can use cooperative groups to rewrite the final stage of our reduction with these new mechanics.
While in this case, the code does not become shorter, it arguably becomes clearer. Behavior is not
explicitly governed based on thread ID. Instead, a block is first partitioned into warps, and only a single
warp chooses to participate in the final stages of the reduction. Second, the warp then proceeds to call the
more general reduce method, which now may be called even on architectures that do not support the
__reduce intrinsic. E.g., on Turing cards or earlier, the reduce method will default to shuffle
operations. The inclusion of high-performance primitives where possible and efficient software fallbacks
elsewhere is an important step toward additional relief for developers who can now quickly write code
that performs well on multiple architectures without introducing special control flow paths.
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Use Case: Opportunistic Group Creation

• Revisit aggregation of atomic increments with warp-level primitives
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{
unsigned int writemask = __activemask();
unsigned int total = __popc(writemask);
unsigned int prefix = __popc(writemask & __lanemask_lt());
int elected_lane = __ffs(writemask) - 1;
int base_offset = 0;
if (prefix == 0) {

base_offset = atomicAdd(p, total);
}
base_offset = __shfl_sync(writemask, base_offset, elected_lane);
int thread_offset = prefix + base_offset;
return thread_offset;

}

{
cg::coalesced_group g = cg::coalesced_threads();
int prev;
if (g.thread_rank() == 0)

{
prev = atomicAdd(p, g.size());

}
prev = g.thread_rank() + g.shfl(prev, 0);
return prev;

}

Finally, we can revisit the solution we previously explored for opportunistic warp-level programming.
The intrinsics and manipulations we used before enabled us to recreate the behavior that cooperative
groups is built upon: the focus on collaborative threads. With the creation of a coalesced group,
identifying leader threads, group size or shuffling results among coalesced threads becomes trivial.
Internally, of course, the same manipulations are still taking place, but are now hidden from the developer
who can achieve the same efficiency with much cleaner and more comprehensible code.
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CUDA Standard Library 
libcu++ 

Another exciting new feature that promises to make CUDAmuch more convenient is the CUDA standard
library, libcu++.
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A Unified Standard Library for CUDA

• Previously, thrust to use std::-like containers, sorting, scanning…

• libcu++ brings the functionality of the standard library to the device

• Incremental integration of features (chrono, complex, atomic, …)

• Introduce two new namespaces that may be used on host and device
• cuda::std:: for standard API functionality according to specification
• cuda:: for extended features to exploit device-side optimization
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Up until now, to have the comfort of the standard library, CUDA provided thrust, which offers commonly
used operations for sorting, scanning, as well as basic containers and interfaces on the host side.
However, with libcu++, NVIDIA is bringing the functionality of the standard library, according to
specification (and beyond) to the device side. This is an incremental effort. The first parts that have been
realized include the chrono library, numeric features such as complex numbers, and atomics. To conform
to the specifications, the library provides a namespace cuda::std. However, since the GPU has
architectural peculiarities that are not completely captured by specification, it also includes the opt-in
name space cuda::, which offers data types and algorithms with additional parameters and settings.
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Time, Numerics and Utility

• cuda::std::chrono: provides system and high-resolution clock
• May be used on either CPU and GPU, but using different system clocks:
%globaltimer (PTX) for device, gettimeofday or equivalent on CPU

• Logical discrepancies between readouts may occur (accepted by standard)

• Numerics library: ratios, complex numbers, cstdint, cfloat and climits

• Utility library: tuples, pairs, functional and version

• Further support (std::iostream, std::vector) in progress
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For chrono, the CUDA standard library now offers a system and high-resolution clock that make use of
the special built-in clock registers defined by the PTX ISA. In the numerics portion, the library includes
support for complex numbers, ratios, as well as limits for built-in types. The utility library currently
focuses on the implementation of tuples and pairs. A highly demanded addition is the vector containter
which, according to the developers, is already high up on their TODO list.
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Memory Coherency Model Recap

• We can enforce 
memory 
coherency with 
basic barriers…

• But the PTX ISA
defines common
coherency model

• A lot of effort spent on enforcing coherent memory model: since Volta, 
PTX exposes acquire, release, relaxed, acq_rel,…!
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__device__ void signal_flag(volatile int& flag)
{

__threadfence();
flag = 1;

}

__device__ void poll_flag_then_read(volatile int& flag, int& data)
{

while (flag != 1);
__threadfence();
return data;

}

Before we focus on atomics in the CUDA standard library, let‘s first quickly recap the basic CUDA
memory model. Regarding memory ordering, the __threadfence operation is an established, though
somewhat crude, mechanism for achieving ordered access, by acting like a general barrier. However, a
considerable amount of time has now been spent on actually enforcing a clearly defined memory
coherency model on NVIDIA GPUs, that reflects that of common CPUs. This memory coherency model
has clear definitions for access with release and acquire semantics, which are much more nuanced than
thread fences.
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libcu++ Atomics 

• cuda::std::atomic and cuda::atomic expose most parts of 
the coherent memory model through atomic variables and operations

• Support for std::atomic, extensions to exploit device peculiarities

• Maps instructions of std:: library to underlying PTX commands

• Reduce code complexity, improve code reuse, avoid common pitfalls
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This is where the libcu++ atomics come in. Currently, they are the preferred way to expose this modern
memory coherency model to C++ without the need to write explicit PTX instructions. By introducing a
memory coherency model that mirrors the CPU, as well as exposing it through a standard library, writing
CUDA code now becomes significantly more portable. In addition, the ability to write __device__
__host__ functions that behave the same on both architectures enables a significantly higher code
reuse.
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Use Case: Flags with libcu++ Atomics
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__host__ __device__ void signal_flag(atomic<bool>& flag) { // Works on CPU and GPU!
flag = true;

}

__host__ __device__ int poll_flag_then_read(atomic<bool>& flag, int& data) {
while (flag != 1);
return data;

}

__host__ __device__ void signal_flag(atomic<bool>& flag) {
flag.store(true, memory_order_release);
flag.notify_all();

}

__host__ __device__ int poll_flag_then_read(atomic<bool>& flag, int& data) {
flag.wait(false, memory_order_acquire);
return data;

}

This is an example of coding with the libcu++ standard library. Note that we can replicate the same
operations as before, which needed to be protected by __threadfence and decorated with a vague,
non-portable volatile qualifier, with clear atomic definitions instead. In addition to atomic store, load
and arithmetic operations, the new atomics also support waiting and notification of waiting threads.
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Use Case: Locks and Critical Sections

• Synchronization primitives from std:: already available in libcu++
• May of course only be used on devices that can utilize them (Volta and later)

25.04.2022 CUDA and Applications to Task-based Programming 46

__global__ void incrementCounter(cuda::std::binary_semaphore* semaphore)
{

semaphore->acquire();
count++;
semaphore->release();

}

int main()
{

cuda::std::binary_semaphore* sem;
cudaMallocManaged(&sem, sizeof(cuda::std::binary_semaphore));
new (sem) cuda::std::binary_semaphore(1);
incrementCounter<<<256, 256>>>(sem);

…

These new features make it easy to create efficient implementations of common synchronization
primitives, however, several of them, like binary semaphores, are already included in libcu++ as well to
spare developers the additional effort.
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libcu++ Caveats 

• When porting, std:: needs more verbose code for same behavior
• E.g., atomics default to strongest memory coherence (sequentially consistent)
• Also, default scope of synchronization primitives is system (host+device)
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// Before
__device__ void increment_old(int* val)
{

atomicAdd(val, 1);
}
// Now
__device__ void increment_new(cuda::atomic<int, cuda::thread_scope_block>* val)
{

val->fetch_add(1, cuda::memory_order_relaxed);
}

While it is definitely on its way to becoming an integral part of CUDA applications, the use of the
libcu++ library is not without caveats, especially to long-term users of „conventional“ CUDA. For
instance, with the new constructs, achieving the same behavior that developers are used to on the device
side can now be much more verbose. E.g., the default behavior of atomic operations conventionally is
relaxed, which is not the default in the standard library. Also, care must be taken that, when performance
is essential, cuda::std may not be used, since only the primitives in cuda:: offer the ability to define
reduced visibility of atomic variables (e.g., shared atomics).
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libcu++ Caveats 

• Expect very different compilation results!
• If you frequently inspect your code, this may need some getting used to
• Minor differences, e.g., atomic operations may not convert to reductions
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// Before
__device__ void increment_old(int* val)
{

atomicAdd(val, 1);
}
// Now
__device__ void increment_new(cuda::atomic<int, cuda::thread_scope_device>* val)
{

val->fetch_add(1, cuda::memory_order_relaxed);
}

RED.E.ADD.STRONG.GPU [R2.64], R5

ATOM.E.ADD.STRONG.GPU PT, RZ, [R2.64], R5

Another, more subtle difference is that while in general, the compiled results of code that uses libcu++
can exploit the memory coherency model better than legacy code, sometimes the result is not what you
would expect. For instance, in this case, we perform atomic operations on a variable in both device
functions, without using the returned results. The compiler should be able to turn the atomic addition into
a simple reduction, however, in the case where the standard library is used, it cannot make this
conversion.
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Use Case: Asynchronous Data Copies

• First step in many algorithms is copying data from global to shared

• Until now, no direct line of communication between the two
• Data has to move via intermediate register, visible after __syncthreads
• Ampere architecture offers hardware acceleration for this type of transfer
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Register (temp)

foo[id]

__global__ void kernel(int* foo)
{

__shared__ int shared_foo[256];
int id = threadIdx.x + blockIdx.x * blockDim.x;
shared_foo[id] = foo[i];

__syncthreads();
...

}

shared_foo[id]

Libcu++ also includes definitions for CUDA barriers, which largely mimic the behavior of std::barrier
types. These become important to exploit, e.g., a new feature of the Ampere architecture for efficiently
transferring data from global to shared memory. Until now, such transfers, which are very common in
most kernels, had to go through an intermediate register before being stored in memory.
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Use Case: Asynchronous Data Copies

• Transfer directly from global memory to shared, no register needed

• May synchronize with the availability of data only at a later time
• Copy operation can be tied to a barrier
• Data becomes visible eventually when threads wait on barrier
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foo[…]

…
__shared__ int shared_foo[256];
__shared__ cuda::barrier<cuda::thread_scope::thread_scope_block> barrier;
…
auto block = cooperative_groups::this_thread_block();
size_t blockID = block.group_index().x * block.size();
cuda::memcpy_async(block, shared_foo, foo + blockID, 4 * 256, barrier);
barrier.arrive_and_wait();
…

shared_foo[…]

With libcu++, we can use barriers and the new cooperative memcpy_async functionality, which enables
us to kick off an asynchronous copy of data from global to shared memory and, at some later point in the
program, wait for that transfer to finish before progressing. The true benefit of this new functionality,
which enables staging in shared memory, is significant for performance, but its implementation is a bit
more involved–we won‘t address it in detail here. However, the interested participant is strongly
encouraged to refer to the appendix of the CUDA Programming guide on asynchronous data copies.
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Set-Aside L2 Cache

The last recently introduced feature that we want to mention in this tutorial is the set-aside L2 cache.
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Controlling the Residency of Data in L2

• Data read from global memory have different access frequency
• Data that is accessed frequently – persistent 
• Data that is accessed rarely (perhaps only once) – streaming

• For best performance, L2 should ensure persistent data remains
• Fewer accesses to slower global memory
• Impossible to predict, L2 behavior is reactive, eviction randomized

• With CUDA 11 and CC 8.0+, it becomes possible to define a set-aside
region of the L2 cache that can be freely managed by the developer
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Not all data is made equal. Some of it used frequently in kernels, other data may be more transient and
not used more than once. In the context of the residency in L2 cache, we can distinguish these as
persistent data and streaming data. To achieve maximum performance, the L2 cache management should
encourage that persistent data remains while streaming data is quickly evicted. However, this behavior is
purely reactive, since the cache cannot predict program flow and frequently used information. With
CUDA 11 and the Ampere architecture, it is now possible to define set-aside regions of the L2 cache that
will be managed according to the definitions by the developer.
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Set-Aside L2 Cache Region

• Define desired set-aside region (must be smaller than total L2 size)
• cudaDeviceSetLimit(cudaLimitPersistingL2CacheSize,…)
• Size must be less than persistingL2CacheMaxSize limit

• Once defined, set-aside region can be associated with data
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cudaStreamAttrValue attrib; // Stream level attributes data structure
cudaAccessPolicyWindow apw;
apw.base_ptr = reinterpret_cast<void*>(data); // Global Memory data pointer
apw.num_bytes = window_size; // Number of bytes for persistence
apw.hitRatio = 0.6; // Hint for cache hit ratio
apw.hitProp = cudaAccessPropertyPersisting; // Persistence Property
apw.missProp = cudaAccessPropertyStreaming;
attrib.accessPolicyWindow = apw;
cudaStreamSetAttribute(s1, cudaStreamAttributeAccessPolicyWindow, &attrib);

The amount of L2 cache that can be used in this way is defined by a property that can be queried from the
active GPU. A memory range can then be associated with a portion of the set-aside L2 cache and
configured with various properties that define how it will be maintained.
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Set-Aside L2 Cache Region Access Policy

• hitRatio: Portion of given data that will receive hit/miss property
• E.g., 32 KB window size, 50% hit ratio:

• 16 KB (random) will receive property hitProp
• Remaining 16 KB will receive property missProp

• hitProp/missProp: What happens in case of a hit/miss
• cudaAccessPropertyStream – data less likely to remain in L2 cache
• cudaAccessPropertyPersisting – data more likely to remain in L2
• cudaAccessPropertyNormal – restore usual, „normal“ L2 behavior
(also important to evict cache lines from earlier kernels that may still remain!)
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The hit ratio of a memory portion defines how much of it (chosen randomly) should comply with the
defined hit property. The remainder will comply with the miss property. For instance, with a hit ratio of
50%, half of the memory associated will be treated with the hit property and the other half with miss. The
properties can be set to encourage behavior for persistent data or streaming data, or the associated
memory can be cleared of its persistent or streaming property to return to „normal“ caching behavior.
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Hopper, Lovelace and CUDA 11.x
What to expect of NVIDIA‘s upcoming GPU generation
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Finally, we want to provide with the most recent information that we have on the upcoming GPU
generations at the time of preparing this tutorial: the professional data center-oriented Hopper, and the
consumer-targeted Lovelace. Especially with regard to Lovelace, more detailed information will probably
emerge by the time this tutorial is held, so we may update the tutorial notes, the newest version of which
will be available on the tutorial website.
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Threadblock Clusters

• Hopper exposes new granularity in the CUDA hierarchy at GPC Level

• Adds ability to control multiple conventional blocks as a single cluster

• Methods for exchanging data exposed via cooperative groups

• SMs can access other SMs’ shared memory via barriers and TMA (?)
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Hopper introduces the concept of threadblock clusters. Threadblock clusters take the key idea of
transparent group creation directive of cooperative groups to the next level. Above the conventional
thread block, developers can now opt to combine multiple blocks into a collaborative group at the
Graphics Processing Cluster (GPC) level. Via methods exposed by cooperative groups, these new, larger
collections of threads can communicate and manipulate data as one.

Traditionally, in the hardware rasterization pipeline, the GPC is used as a self-contained rasterization unit
that is assigned to exclusive portions (tiles) of the framebuffer. The comparably low number of GPCs,
compared to SMs, enables the use of simple static policies for assigning framebuffer tiles to GPCs,
without causing severe workload imbalance. Up until now, if we attempted to replicate this behavior in a
software rasterizer, we would be limited by the size of thread blocks/SMs and thus, in order to balance
workload, needed more sophisticated tile assignment policies. Hence, this is good news for those out
there trying to write efficient, sort-middle hierarchical software rasterizers on NVIDIA hardware.
However, it raises the question of how the general-purpose exchange of data is enabled in Hopper: this is
due to a new dedicated hardware module called the TMA.
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Tensor Memory Accelerator (TMA)

• New dedicated hardware module introduced in Hopper

• Self-contained data movement engine, not tied to thread execution

• Enables efficient bulk copy of data or individual transactions between
global and shared, or blocks within a threadblock cluster,

• No explicit synchronization between producer and consumer thread: 
efficiency relies on use of asynchronous barriers introduced in A100
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In explicit terms, the TMA is the Tensor Memory Accelerator. It presents a new, dedicated hardware unit
introduced with Hopper, which targets the efficient exchange of data. Its design is in part motivated by
the high performance and demand for fast data transactions in applications that employ tensor cores. As
such, it is capable of transferring bulks of 1/2/3-dimensional data blocks and above. Furthermore, it
enables a number of new workflows for exchanging data between threads.

The TMA may be used for asynchronously copying data between shared and global memory (both ways)
or between shared memory in different SMs inside a threadblock cluster. The TMA is its own self-
contained unit. This means that writes initiated via the TMA can be “fire-and-forget”: the thread that
initiates a transfer is not required to synchronize or perform a handshake with the potential receiver (e.g.,
by implementing a conventional release-acquire pattern via fences). The functionality to exploit the TMA
in this way is provided by an extended set of asynchronous barrier methods.
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Asynchronous Transaction Barriers

• libcu++ extends its cuda:: variety of barriers, now can signal
• Thread arrival
• Initiated data transaction
• Wait on threads or data to arrive

• Pure wait on memcpy_async enables “self-synchronizing writes”
• No handshake to inform recipient that data has been released

• Extensions intertwine with the exploitation of new TMA features
• atomic_add_async, atomic_min_async… (no CAS though)
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Hopper extends the asynchronous barrier interface introduced with the A100, enabling the asynchronous
initiation and waiting for data transfers rather than explicit threads. This leads to scenarios that NVIDIA
refers to as “self-synchronizing writes”, i.e., they avoid the necessity to explicitly ensure data consistency.

Beyond the standard copying method memcpy_async, the new barriers expose functionality to use the
TMA with atomic functions. Hence, atomic counters and variables can be trivially shared by multiple
SMs with Hopper via the TMA.
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More Dynamic CUDA Graphs

• CUDA Graph API is continuously adapted for better flexibility

• Recent features facilitate prioritization

• Individual subgraphs or nodes can 
now be temporarily disabled

• Subgraphs or nodes can be assigned a
priority for scheduling workloads
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The CUDA graph API has continuously been extended with new convenience features for improved
flexibility. Most recently, two new changes have been introduced that enable selective prioritization of
nodes: subgraphs and nodes may now be disabled/enabled and hence temporarily ignored in the
execution of completed graphs. Furthermore, subgraphs may now be assigned execution priorities. These
will be considered for the scheduling policies of instantiated graphs and enable adaptive behavior,
especially for complex program flows and graphs.
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Expected Hardware Changes

• Hopper: beefier caches, technical advancements for SMs and memory
• Significant advances of the H100 vs the A100
• SMs with fourth-generation tensor cores, up to 6x faster
• 3x faster FP32 and FP64 arithmetic performance
• PCIe Gen 5, up to 2x higher bandwidth

• Lovelace: supposedly strong focus on memory bandwidth
• TMA and threadblock cluster may well be skipped in Lovelace
• Close to double the number of CUDA cores compared to 30 series
• Up to 16x(!) L2 cache size increase 
• Note: at this point, this has not been officially confirmed!
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Lastly, let’s talk numbers: for Hopper, we can draw from the most recent specifications of the H100, and
compare them to the previous generation (A100). SMs will be fitted with advanced components,
including fourth-generation tensor cores, promising a performance increase of up to 6x. Conventional
floating point operation performance is also projected to increase by approx. 3x, for both 32- and 64-bit
precision. Hopper will provide support for generation 5 PCIe, enabling up to 2x the bandwidth of the
A100.

We do not have confirmed specifications for the consumer-grade Lovelace models at this point.
Individual parties have suggested that it may feature some of the cutting-edge Hopper features, such as
the TMA. However, at this point, it is just as likely that Lovelace will be more similar to Ampere, albeit
with significantly increased memory capabilities: inofficial statements suggest an increase in L2 cache
size by up to 16x. This could, in part, be due to addressing the demands for bandwidth of close to double
the size of CUDA cores that Lovelace is projected to feature in comparison to the 30 series. If confirmed,
this change would affect the way compute-heavy applications are written on NVIDIA hardware,
triggering a much stronger focus on exploiting the large L2 cache, especially for persistent-threads
solutions.
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Misconceptions and Hints
“It is better to know nothing than to know what ain’t so” – Josh Billings 

Finally, we would like point out general caveats, trends, things that changed from how they used to be
and our personal suggestions for working with CUDA.
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How the Tables Have Turned

• Shared memory vs caching: caches are becoming more effective
• Then: it usually paid off to use shared memory for manually managed “cache”
• Now: L1 and L2 more effective, forced shared memory can hurt performance

• Texture memory vs global memory: performance is equalized
• Then: recommended to use texture memory whenever data is read-only
• Now: in many cases, similar performance from global and texture memory

• Unified (managed) memory: data migration is now more efficient
• Then: performance might significantly degrade from managed memory use
• Now: fine-granular page faulting, much closer to manual management
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First, there a few things that used to be go-to solutions for increased performance, which are no longer
universally true. For instance, caches are catching up with the benefits of shared memory. The L2 and L1
cache have adapted caching policies, to the point where it is no longer always smarter to prefer manual
handling of shared memory over an automatically managed L1 cache.

Second, texture memory was long promoted as an immediate boost to performance for read-only data.
This property too seems to be less evident than it used to be. Performance of global and texture memory
is, for a wide range of patterns, mostly similar, except for random access patterns within a small, spatially
confined window. Of course, the additional functionality of texture memory (filtering, sampling) remains.

Lastly, as we already pointed out, unified (managed memory) is no longer the performance hog it used to
be. Thanks to fine-granular page faulting mechanisms and better migration policies, it has become a
viable alternative in many applications.
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Sending Threads to Sleep

• Previously, programmers would use __threadfence to force sleep

• No longer necessary, for two reasons:
1. Warps will now be scheduled 

due to progress guarantee
2. If individual threads should 

back off, Volta+ now exposes 
__nanosleep function

• Used, e.g., in libcu++ to wait
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__device__ void mutex_lock(unsigned int *mutex) {
unsigned int ns = 8;
while (atomicCAS(mutex, 0, 1) == 1) {

__nanosleep(ns);
if (ns < 256) {

ns *= 2;
}

}
}

Developers used to abuse the __threadfence operation to force threads to back off and release
certain resources. It was also a common requirement for blocking algorithms where threads depend on
the progress of other threads. A thread fence would cause the calling warp to yield and let other warps
progress before being scheduled again. These hacks are no longer necessary, since ITS guarantees
progress for all resident threads. In case where it is still desired that threads back off and releaes
resources, like locks, Volta introduced the __nanosleep function for that very purpose.
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Suggestions for Good CUDA Performance

• When optimizing CUDA applications for the modern GPU
1. Try to come up with an algorithm you know works well in parallel
2. If there are no previous results/recommendations, go with best assumption
3. From the start, think about minimizing memory requirements!

• Compressions? Encoding? Smaller data types? Alignment?
• This will pay off regardless of compiler optimizations

4. Once initial version is done, check performance metrics (Nsight Compute)
5. Optimizers can suggest load improvements–not better algorithms or layouts
6. Don’t bother with: 

• Writing basic math operations with bit magic (compiler is probably smarter than you)
• “Tweaks and tricks” like changing uint loop counters to int
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Given the recent developments and expected trends, we offer our personal recommendation of the above
steps to be followed in this order for developing algorithms with modern CUDA.
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Suggestions for Good CUDA Experience

• Embrace libraries shipped with CUDA (cooperative groups, libcu++…)
• They may change frequently, but they are here to stay
• Official way to expose barriers, memory consistency model without PTX

• Don’t be afraid of ITS, but make sure you understand legacy model
• If you have been assuming lockstep, ITS may surprise you, but it makes sense
• Other compute APIs will keep using the legacy scheduling on your Volta+ GPU

• Forget as much as you can about threadfence and volatile
• Replace as many instances as you can with new cuda::std
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Finally, we want to highlight key ideas that we believe will make development more stable, secure and
efficient moving forward. One would be the adoption of the libraries shipped with CUDA, specifically
cooperative groups and the standard library, particularly if one intends to write CUDA code in C++ rather
than PTX. Second, we would like to encourage developers to embrace the ITS. While it is a significant
change and breaks many of the previously used optimization patterns, Volta, in general, was a great step
towards bringing the CPU and GPU closer together and enabling more portable and stable code. Another
sign of this development is the effort to introduce the new memory coherency model, which makes
special solutions, like combining the volatile decorator with __threadfence no longer necessary.
The GPU takes care to ensure the new coherency model, and its behavior has changed accordingly,
making these special cases largely unnecessary.
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Suggestions for Good CUDA Experience

• Embrace the graph API for sequential and concurrent kernels
• Can replicate the behavior of streams with dependencies
• Defined before execution, can isolate setup and launch code
• Enables driver to optimize performance

• Consider cooperative groups over your own solutions
• Many developers have their own group implementation already available
• Cooperative groups are designed to optimize in hardware where possible
• Also provide software implementations for backward compatibility
• Facilitates comprehension of your code by others
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We also recommend embracing the graph API and considering its use over the conventional solution with
streams. Graphs that are directly designed from scratch have clear and easily understood dependencies
that can be extrapolated from a few lines that define a CUDA graph. But the main benefit of creating
graphs is the performance gain, which can be obtained regardless of whether graphs are built from scratch
or capture from code.

Many CUDA developers out there will have noticed that they themselves have something similar to the
cooperative groups implementation. We recommend that it should be attempted to switch to cooperative
groups instead or integrate them into custom solutions to benefit from the clean design and the
architecture-agnostic patterns they provide.
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Things We Did Not Cover

• Shared Memory Data Staging (shared pipelines)

• Virtual Memory Management

• Stream Ordered Memory Allocator

• Compiler Optimizations

• …
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Lastly, there are few important things that we did not manage to treat in this tutorial (and perhaps a few
more that we didn‘t think of), which are nonetheless exciting and worthy of you looking into them if you
are aiming to advance your CUDA expertise. Examples and detailed explanations for these can be found
in the list of recommended reading material that we provided in the first part of the tutorial. We hope that
during the course of this tutorial, you either confirmed or discovered that CUDA has a vast amount of
great features to offer and plan to pursue it on your own from here on out.
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