
1. Introduction

The past few years have seen a revolution in the develop-
ment of graphics hardware. The advent of the GPU has com-
pletely changed the scenery of computer graphics and has
given new hope and inspiration to researchers in scientific
visualization and the non-gaming community. Although all
new developments on consumer graphics architectures are
motivated by the demands of the gaming industry, a very
pleasant side-effect of the increasing level of hardware pro-
grammability are the numerous applications this offers in
scientific visualization and specifically volume rendering.

The new processing model for the GPU uses aggregate
pipelines that process very small independent SIMD compu-
tations in parallel. Any algorithm that can be built around
this model can be made highly scalable and can be tremen-
dously sped up by the use of graphics hardware.

3D texture-mapping accelerated volume rendering, as
well as ray casting based algorithms, have gained many ben-
efits from the new GPU based boards. That is because these
algorithms fully utilize the ability of the hardware to handle
large vector based parallel computations. In each step of ray
casting, all rays are processed in parallel and are completely
independent, giving rise to high speedups if the application
is constructed properly.

Splatting, however, does not fall into the category of
algorithms that can be easily divided into one independent
computation element for every pixel. Splatting blends the
effects of nearby volume points by overlapping their kernels
(or basis function). These overlapping kernels are rasterized
onto an accumulation buffer, and the buffer may only be
processed for shading after all points have been rasterized.
Splatting is a “scatter” operation, which means that for
every volume point the multiple destination pixels are calcu-
lated at runtime. This is opposite to “gather” operations,
where every pixel’s destination is defined before rasteriza-
tion, and every pixel depends on a predefined set of sources
which results in a predefined set of texture lookups. In
Splatting, every pixel depends on a variable number of
points, as opposed to ray casting where every pixel only
depends on the previous ray step and the neighbors around it
for gradient estimations.

As an attempt to convert splatting into a “gather” opera-
tion one may seek to implement it at the fragment level on
the GPU. Attempting such a scheme would acquire, for each
pixel, all the neighboring kernel contributions that need to
be added to the pixel, depending on the distance from their
GPU Accelerated Image Aligned Splatting

Neophytos Neophytou, Klaus Mueller

Center for Visual Computing, Computer Science, Stony Brook University
Abstract
Splatting is a popular technique for volume rendering, where voxels are represented by Gaussian kernels,
whose pre-integrated footprints are accumulated to form the image. Splatting has been mainly used to render
pre-shaded volumes, which can result in significant blurring in zoomed views. This can be avoided in the
image-aligned splatting scheme, where one accumulates kernel slices into equi-distant, parallel sheet buffers,
followed by classification, shading, and compositing. In this work we attempt to evolve this algorithm to the
next level: GPU based acceleration. First we describe the challenges that the highly parallel “Gather” archi-
tecture of modern GPUs poses to the “Scatter” based nature of a splatting algorithm. We then describe a num-
ber of strategies that exploit newly introduced features of the latest-generation hardware to address these
limitations. Two crucial operations to boost the performance in image-aligned splatting are the early elimina-
tion of hidden splats and the skipping of empty buffer-space. We will describe mechanisms which take advan-
tage of the early z-culling hardware facilities to accomplish both of these operations efficiently in hardware.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computing Methodologies]: Computer
Graphics-Hardware Architecture; I.3.3 [Computing Methodologies]: Computer Graphics-Picture/Image Gen-
eration; I.3.7 [Computing Methodologies]: Computer Graphics-Three-Dimensional Graphics and Realism
Volume Graphics (2005)
I. Fujishiro, E. Gröller (Editors)

http://www.eg.org
http://diglib.eg.org

N.Neophytou & K.Mueller / GPU Accelerated Image Aligned Splatting
centers. But even if the number of relevant points per area
was restricted, such a scheme would cause an excessive
number of texture lookups, effectively draining the texture-
memory bandwidth of even the most powerful boards.

In this paper we describe a system that addresses the
major challenges of a hardware based splatting system with-
out converting it to a “gather” method. It achieves interac-
tive rendering rates by exploiting many of the newest
features of GPU hardware. Our system is based on the
sheet-buffered image aligned splatting algorithm [MC98]
which was initially introduced to better address the perfor-
mance/quality concerns of the existing splatting algorithms.
Splatting is especially attractive for the rendering of sparse
data sets. It can also handle very efficiently irregular data
sets as well as alternative grid topologies such as the BCC
(Body Centered Cubic) grid, as introduced in [TMG01] and
[NM02]. Our system currently demonstrates the ability to
interactively visualize both Cartesian and BCC regular data
sets.

The design of an efficient GPU splatting system is quite
challenging. While most previous implementations used the
splat-everything approach and were restricted to pre-shaded
rendering, we have opted for a system that will produce high
quality images and make efficient use of the hardware
resources.

Splatting is an object order approach, however, it cannot
benefit from hardware z-buffering for visibility ordering
because it uses front-to-back compositing and it requires a
bucketing operation to be applied to the data whenever the
viewpoint changes. In this implementation, we keep the vis-
ibility bucketing portion of the system on the CPU. How-
ever, even after bucketing, a major inefficiency of this
approach is the splatting onto already opaque regions. To
address this, we have devised a mechanism that exploits
early-z culling to eliminate extraneous splat rasterization at
the fragment level. Furthermore, image aligned splatting
performs post-shading on the reconstructed slices. To make
this process more efficient, one has to restrict these expen-
sive operations only to areas that have received kernel con-
tributions in the splatting phase. Previous CPU based
methods have used tiles, bounding boxes and quad-tree
based methods to achieve some level of approximation to
aid the skipping of empty regions. It turns out that these
complex approaches are no longer necessary as modern
GPUs provide very efficient means to control this skipping
at the fragment level. In this paper we describe a mechanism
for splatting that takes advantage of early-z culling in order
to achieve high resolution empty space skipping.

Another challenge of GPU-based splatting is the
increased overdraw caused by rasterizing the overlapping
basis functions as textured splats. Image aligned splatting,
which slices the basis functions into multiple sections also
increases the vertex count. We address these two challenges
mainly by re-arranging our algorithm to take advantage of
the fact that graphics boards draw all 4 color channels
simultaneously, making it virtually free to render 4 kernel
slices at the same time for each voxel.
The proposed system also utilizes the newly introduced

16-bit floating point processing, which is now present in the
latest 6800 series of NVidia boards as well as the ATI
Radeon 9800 pro, throughout the rasterization pipeline. The
floating point pipeline is desirable since, although not very
pronounced, quantization artifacts do appear in 8-bit pipe-
lines. Such artifacts are more visible especially in specular
highlights where the errors pass through exponentiation.
Quantization artifacts in alpha compositing are more pro-
nounced in the case of semi-transparent rendering. In their
recent work [BNMK04], Bitter et. al. concluded that the
minimum precision required throughout the volume render-
ing pipeline is 16-bit per channel for displaying the render-
ing result on typical displays of 8-bit color precision per
channel. Furthermore, this is also the upper limit of the
requirement, if the results are to be visualized using stan-
dard 24-bit displays. The presence of hard-wired floating
point blending capabilities is crucial to splatting implemen-
tations, since the blending of up to a million of points using
floating-point fragment shader processing would make it
impossible to achieve interactive rates.

This paper is organized as follows: In Section 2 we
review some related previous works on volume rendering
and specifically GPU splatting. In Section 3 we review the
image aligned splatting algorithm and in Section 4 we dis-
cuss the major challenges of its hardware implementation
and how each of these concerns is addressed in our new
design. Section 5 presents some of our results, and finally, in
Section 6, we conclude and introduce our ongoing work on
extending this system.

2. Previous Work

The splatting algorithm was initially proposed by Westo-
ver in [Wes90]. It works by representing the volume as an
array of overlapping basis functions, commonly Gaussian
kernels. An image is generated by projecting these basis
functions to the screen. The screen projection of the radially
symmetric 3D basis function can be efficiently achieved by
the rasterization of a precomputed 2D footprint lookup
table, where each footprint table entry stores the analytically
integrated kernel function along a traversing ray. A major
advantage of splatting is that only voxels relevant to the
image must be projected and rasterized. This can tremen-
dously reduce the size of the volume data that needs to be
both processed and stored [MSHC99]. The most basic splat-
ting approach simply composites all kernels on the screen in
back-to-front order. Although this is the fastest method, it
can cause color bleeding and also introduce sparkling arti-
facts in animated viewing due to the imperfect visibility
ordering of the overlapping kernels. An improvement in
these regards is Westover’s sheet-buffer method [Wes90]
that sums the voxel kernels within volume slices most paral-
lel to the image plane. Although doing so eliminates the
color bleeding artifacts in still frames, it introduces very
noticeable brightness variations (popping artifacts) in ani-

N.Neophytou & K.Mueller / GPU Accelerated Image Aligned Splatting
mated viewing. A more recent method by Mueller et. al.
[MSHC99, MC98] eliminates these drawbacks, processing
the voxel kernels within slabs, or sheet-buffers, of width ∆s,
aligned parallel to the image plane- hence the approach was
termed image-aligned sheet-buffered splatting. All voxel
kernels that overlap a slab are clipped to the slab and
summed into a sheet buffer, followed by compositing the
current sheet with the sheet in front of it. Efficient kernel
slice projection can still be achieved by analytical pre-inte-
gration of an array of kernel slices and by using fast foot-
print rasterization methods to project these to the screen
[HMSC00]. Other performance optimizations for software
based splatting included post-convolved rendering [NM03],
hierarchical splatting [LH91], and 3D adjacency data struc-
tures [OM01].

Most of the above approaches focused on improving
image quality and speed. The aliasing problem however,
was not addressed until Swan et. al. [SMM*97] and Mueller
et. al. [MMS*98] and later by Zwicker et. al. [ZPvBG02,
ZPvBG01].

GPU accelerated splatting is specifically addressed in
[XC04] where several hardware-accelerated splatting algo-
rithms are compared, including an efficient point-convolu-
tion method for X-ray projections. Their system achieves
very high throughput rates using previous generation hard-
ware. Our implementation achieves similar voxel through-
put rates with hardware two generations newer, but on the
other hand, our image-aligned sheet buffered splatting
approach requires each voxel to be rasterized four times, in
four subsequent sheet buffers. This quadrupling of the ras-
terization effort needed is compensated for by the 4 times-
fold growth in GPU performance since then. Further, we
also perform post-shaded volume rendering which provides
substantially better quality but also requires additional com-
putational effort. We maintain the voxel throughput rates by
sensitively exploiting many of the latest features offered by
the current GPUs. Most relevant to our work is the hardware
accelerated EWA splatting approach proposed in [CRZP04].
The authors achieve high speedups using retained mode
splatting, keeping all the volume data in the GPU, but in
contrast to our work, they also use an axis aligned buffer
approach, which can suffer from popping artifacts, and also
does also not allow for high quality post-shaded rendering
[MMC99].

3. Image-aligned sheet-buffered splatting

As introduced by Mueller et.al in [MC98], this algorithm
interpolates, via splatting of pre-integrated basis-function
slices, a series of image-aligned density sheets from the vol-
ume. It then shades, colors, and composites these sheet-buff-
ers in front-to-back order. As illustrated in Figure 1, all
kernel sections that fall within the current slicing slab,
formed by a pair of image-aligned planes spaced apart by
the sampling interval ∆s, are added to the current sheet
buffer. The kernel sections used are loaded from an array of
pre-integrated overlapping kernel sections. The integration
width of the pre-integrated sections is determined by the
slab width ∆s, while the z-resolution is determined by the
number of kernel sections. Since we are using a radially
symmetric kernel, the collection of kernel sections is exactly
the same for any viewing angle. To further optimize memory
storage for this algorithm, we may also store just the 2D pro-
jection of the section in the center of the spherical kernel.
This can then be modulated by a 1D array of weights, such
that weight[i]* splatProjection2D[x,y] will give pixel (x,y)
of kernel section i. This is particularly useful for our GPU
implementation, since this scheme only requires us to keep
one 2D texture to represent all possible kernel sections,
along with a 1-D modulation table.

4. Hardware accelerated Implementation

The first hardware based flavor of this algorithm took
advantage of early SGI workstations with 2D texture-map-
ping capability. The non-programmable OpenGL pipeline
was used for the compositing of already colored and shaded
voxels (pre-shaded splatting). The final color of the voxel
was used to modulate the 2D kernel that represented the
point and was rasterized as a textured rectangle. Thus, for
every slice that was composited, the textured splat was mod-
ulated by the color and a “section coefficient”, which was
precalculated by pre-integrating the represented slab for the
sampling interval along the z-direction. These coefficients
were calculated for an equidistant set of sampling positions
for a given slab width.

image plan
e

slicing slabs

interpolation kernel

compositi
ng

sheet
-buffe

r
slab

 width ∆s

contributing kernel sections

current
sheet-buffer /slicing slab

(a)

section 1 section 2 section S section 3

z-resolution

 ∆
s

kernelkernelkernelkernel

(b)

Figure 1: Image-aligned sheet-buffered splatting. (a) All
kernel sections that fall within the current slicing slab,
formed by a pair of image-aligned planes spaced apart by
the sampling interval ∆s, are added to the current sheet
buffer. (b) Array of pre-integrated overlapping kernel sec-
tions (shaded areas). The integration width of the pre-inte-
grated sections is determined by the slab width ∆s. The z-
resolution is determined by the number of kernel sections.

N.Neophytou & K.Mueller / GPU Accelerated Image Aligned Splatting
The post-shaded version of the algorithm addressed the
blurring artifacts of the previous approaches. It consists of
first splatting the densities of all the pixels that fall into an
image aligned slab and then perform shading after all the
contents of the slab have been accumulated [MMC99]. For
every pixel in the current sheet-buffer the color is assigned
using a transfer function and the shading calculation applies
Phong lighting using the computed gradient and position for
that pixel. This approach allows blur-free zooms and was
initially realized only in implementations that require the
CPU for a number of operations. The programmable shader
technology now makes per-pixel shading available and
enables post-shaded splatting to be performed entirely on
the GPU.

In the following paragraphs we discuss the major chal-
lenges in porting this algorithm to the latest generation GPU
based hardware, and we propose specific strategies and
hardware feature exploits to overcome each of the chal-
lenges.

4.1. Challenge 1: Increased vertex traffic

Compared to traditional ray casting and 3D slicing based
approaches, Splatting is at a great disadvantage as far as ver-
tex traffic is concerned. At least one textured polygon has to
be rasterized for every point (basis function) in the data set.
This makes the number of vertices 4 times greater than the
number of data points that have to be sent through the
graphics pipeline for every frame. Compare this to one poly-
gon required per sampling slice for the ray casting based
approaches. In the case of image aligned splatting this num-
ber is multiplied further by the number of slices of each
point, since the volume is traversed via sliced kernel sec-
tions along the viewing direction.

The first available strategy for this purpose is the use of
the Point Sprites extension, which was first introduced on
NVidia boards, but was soon adopted on the ATI Radeon
boards as well. This extension allows the definition of a tex-
ture that is applied to regular point primitives, effectively
causing them to be rasterized as screen aligned textured
polygons. The points are defined using the glPoint primi-
tive, which only requires one vertex to be sent. This trans-
lates into tangible benefits in a parallel projection pipeline,
since the vertex count and the associated transformations are
reduced by a factor of four. The final rasterized polygon,
however, is only created after the viewing and projective
transformations are applied to the point vertex, so the shape
of the polygon cannot be affected by any change to the
matrices. This makes the extension slightly more difficult to
use for perspective projection, since transformations can
only be applied indirectly to the texture coordinates, by
using fragment programs and devising a smarter way for
passing parameters to them. The use of Point Sprites in our
system has gained us a speedup of about 1.2-1.3 since the
Point Sprites extension is present on all NVidia boards after
GeForce4 and on. Although only a quarter of the total
geometry is passed to the processor, the application still
remains rasterization bound. Hence the speedup from using
point-sprites is still quite low.
The second obvious strategy to tackle the vertex traffic

issue is the use of Vertex Arrays. This extension allows us to
pack the points for each slice into a large array of vertices
which can be uploaded to the graphics board using the opti-
mized memory transfer techniques provided by the AGP
and PCI express memory interfaces. It also provides a big
chunk of computation that can be asynchronously processed
on the GPU, allowing for better utilization for both the CPU
and the GPU.

Despite all these memory transfer improvements and the
reduction of the vertex count, the optimal solution would be
to keep the entire data set inside the graphics board. This
approach, dubbed “retained mode splatting” was used in
[CRZP04] and claimed speedups of 7-10 times compared to
immediate mode splatting. The data set in the referenced
work, however, uses the axis aligned predefined volume tra-
versals, which produce popping artifacts during animated
viewing, as was mentioned in the previous section. For our
application, a substantial amount of work would have to be
done on the GPU to maintain a correct image aligned vol-
ume traversal every time the viewing transform is changed.
The highly parallel architecture of the GPU only allows for
SIMD approaches to be efficiently used for this task. Some
“all-GPU particle system” approaches such as [Lat04,
KSW04] use bitonic sort and define the constraints of the
application in such a way that allows partial sorting to main-
tain correct visibility order, but the throughput of these sys-
tems is now close to about 1 million particles per second,
which is roughly enough for an overall performance of
about 1fps for a typical splatting application.

4.2. Challenge 2: Increased voxel/pixel overdraw

As described above, the image aligned post-shaded splat-
ting algorithm first collects the density contributions of all
points intersected by the current slab. It adds them up by
first multiplying their density with the appropriate slab coef-
ficient and then rasterizes the kernel texture, modulated by
that factor, into the accumulation buffer. After all densities
have been in that way collected the slice is ready for classifi-
cation and shading. The shading process is implemented in a
fragment program and applied to the slice, leaving the final
result to be composited into the frame buffer.

During the shading calculation for every pixel, the gradi-
ent can be interpolated from a gradient volume, along with
the densities. This way all 4 channels of the RGBA tempo-
rary buffer are utilized by encoding the modulated color as a
tuple of (Nx,Ny,Nz,Density). However, this method needs to
draw a textured polygon for every slice of each kernel,
which for a kernel radius of 2.0 translates to 4 slices per
point. Unfortunately this would drain the rasterization limits
of current boards, which is at most 3 to 4 million textured
points per second. At rendering scales higher than one,
which translates to larger textured splats, this rate drops
even more since splatting is already a rasterization bound
application.

N.Neophytou & K.Mueller / GPU Accelerated Image Aligned Splatting
The alternative approach, which we follow, is to splat all
4 slices for any point at the same time. This means that now
the temporary RGBA buffer will be utilized as 4 separate
(but consecutive) density slices. At any given slice i, the
temporary buffer will actually hold the temporary buffers
(i,i+1,i+2, i+3). This requires some extra accounting for
deciding the 4 slice coefficients for the point being splatted,
as well as a smarter set of fragment programs to perform the
shading calculations for the current slice. In addition, the
gradient of each pixel has to be calculated on-the-fly. The
cost for the 5 additional texture lookups per pixel required
for the central difference gradient calculation is quickly out-
weighed by the overall speedup of this approach. Our obser-
vations have shown this approach to be an average of 3
times faster than splatting every point multiple times, into
separate sheet buffers, as described in the previous para-
graph. Following is a more detailed description of our
framework, updated in order to include this extension.

Figure 2 illustrates our pipeline setup modified to per-
form simultaneous 4-channel splatting. First, all voxels are
arranged into arrays according to the first image aligned slab
that they intersect. The extent of the basis function is 2.0,
which means that every voxel will contribute to a total of
four slabs. So, the same voxel will affect all 3 subsequent
slabs as well. We arrange the ordering of the slabs in the

9
8
7
6
5

10
G
R
A
B
G

B

Active density buffers

Intersecting kernel sections

6
5
4
3

G
R
A

B

Temporary copy buffer

Final image buffer

(a)

(b)

(c)

Figure 2: Multiple density buffer pipeline: Every voxel is
splatted into the active density buffers (a), and adds its
contribution to all four slices that intersect it. When slice
i (i=6) is completed its contents are then copied to the tem-
porary copy buffer (b), which holds the last four com-
pleted slices. Slice i-1 is now ready for classification and
shading, and the gradient can be computed using the front
and back slices from the temporary buffer. The shaded
result is then composited to the final image buffer (c).
temporary RGBA buffer such that at any given time the cur-
rent slab and all its subsequent three slabs are available to
accumulate the slices of the splatted voxels. In addition to
determining the first intersecting slab we also identify which
precalculated kernel section of the point is intersected
according to the distance of the cutting planes to the center
of the intersected basis function. For simplicity and optimal
storage purposes we index these sections using a byte, giv-
ing them indices of 0...255 and therefore the sampling dis-
tance 1.0 between slabs is 64 indices long.

We adopt the convention that the temporary buffer chan-
nels are in order as R, G, B, A, R, G, B, A,... and will hold the
slabs 0, 1, 2, 3, 4, 5, 6, 7, 8,... The relative ordering tuple (i,
i+1, i+2, i+3) for slices 0...4 will then be RGBA, GBAR,
BARG, ARGB, RGBA, etc... Thus, a voxel that first intersects
slice 6 will have its four slice contributions arranged in the
order BARG. If we further assume that this voxel intersects
slice 6 with kernel section 5 and has density d, then the mod-
ulating color is defined by glColor4f(d*coeff[133],
d*coeff[197], d*coeff[5], d*coeff[69=(5+64)]).

The next stage takes place right after a whole slice is
splatted to the active density buffers. The contents of the
completed buffer are copied into a temporary copy buffer,
which holds the latest density slices that have been com-
pleted. These slices are then used for the shading calcula-
tions, since the front and back neighbors are necessary for
each slice to calculate the pixel gradients. This part of the
calculation is implemented using four different fragment
programs (for each of the RGBA, GBAR, BARG, ARGB
orderings) and are activated according to the slice number.
The gradient is calculated using central differences, thus the
six neighbors of each pixel need to be read in the program.
However, since the front and back neighboring buffers are in
the same pixels but in different channels, we can access
them when the current pixel was sampled. Therefore, only
four additional texture accesses are necessary for the gradi-
ent calculations.

The shading program reads the transfer function as a 1D
texture, making a total of 6 texture accesses per fragment.
Although the additional texture lookups and the shading
computations are quite expensive, it seems that the coher-
ence of volume data within the slice is well exploited by
caching, making this implementation about 3 times faster
compared to the initial solution that rasterized every slice
separately.

4.3. Challenge 3: Shading of empty regions

An important inefficiency that affects both 3D texture/ray
casting-based and the slice-based splatting approach is the
expensive processing of empty-space pixels. The slice-based
splatting approach has an advantage here because after the
splatting stage for the slice, we know which area needs to be
composited and which parts of the slice did not receive any
contributions.

In order to exploit this feature of the slice-based splatting
algorithm we are using the OpenGL Depth test feature
which is further optimized on FX, 6800 and Radeon boards

N.Neophytou & K.Mueller / GPU Accelerated Image Aligned Splatting
by what is widely known as the “early z-rejection” test. The
early z-test optimization does the depth test before the frag-
ment is processed in the fragment processor and effectively
cancels the expensive computations for declared empty
fragments. This feature has been widely used in volume ren-
dering applications, which need to perform their potentially
expensive computations often only on a very small fraction
of the rasterized surfaces.

Unfortunately, the early-z test extension was not origi-
nally intended for applications in scientific computing and
volume rendering. It is more sensitive to conditions preva-
lent in polygonal rendering and specifically gaming envi-
ronments. A quite large list of rules, most of the time
undocumented and sometimes only discovered by experi-
mentation, determine whether the early-z test is actually
performed or not. For example, frequent clearing of the
depth buffer or frequent changes to the direction of the z-test
(from GL_LESS to GL_GREATER) tend to completely
cancel the optimization.

In our implementation depth test is used in conjuction
with the newly introduced GL_Depth_Bounds_Test_EXT
extension, which, in addition to Depth Test, restricts the
allowed fragments to those that fall within a user specific
range within 0.0...1.0. The speedup of this extension has
shown to be linear to the number of rasterized pixels in our
test bed implementation, which exaggerated the fragment
shader computational part. In our application, where about
50% of the pixels are actually fed to the shading program,
the overall speedup gained was about 1.2. This can be
explained by the other overheads imposed by our fairly
complex pipeline. Following are some implementation
details of applying this optimization to our framework.

Figure 3(a...c) illustrates our application of these exten-
sions to splatting. We need to restrict the calculations of
stage 2 and 3 (that is shading and compositing) to only the
parts of the slice that have been marked during the splatting
stage. To achieve this marking system we define all tempo-
rary buffers as auxiliary buffers of the same Render-to-Tex-
ture buffer object, and enable the depth buffer such that all
of the drawing surfaces share the same depth buffer. This

* *
(a) (b) (c)

Figure 3: Applying the empty space skipping optimization.
(a) Splat buffer with current depth buffer in the bottom
image. The darker regions denote less depth, and thus newer
slices. (b) Copy buffer, where only tagged pixels were cop-
ied. (c) Final image compositing buffer, where only tagged
pixels were composited.
way the splatting stage will leave the depth buffer with pix-
els marked as touched, and we then define the depth-test and
depth-bounds-test for the compositing stage in a way that
only allows the marked parts to actually be processed.

After some experimentation we have developed a robust
scheme that avoids all of the problem triggers and follows
the NVidia guidelines for the aforementioned extensions.
First the depth buffer is cleared to all 1s and the depth func-
tion is set to GL_LESS. This is the default value for a clean
depth buffer, and the test allows only the rendering of items
that are closer to the camera (their depth value is less than
the current value in the depth buffer). For every slice raster-
ized, a unique value in the range 0.01...0.99 will be assigned
using at most 24-bit resolution, which is the granularity of
the depth buffer. This number will be used as the depth
value for all the textured splats that are rasterized in a partic-
ular slice. Thus, for slice n, this sliceDepth value is defined
to be . After the raster-
ization of all textured splats that fall in this slice is complete,
the system is ready for the next stage. The depth-bounds-test
range is now reset to allow the range (0...sliceDepth(n)) to
be rasterized, which effectively allows only the pixels
touched by the latest textured splats to pass through the
shading and compositing computations.

For the splatting phase of the next slice, the new value is
then set to ,
and the depth-bounds-test range is set back to [0...1] to
allow splatting anywhere in the slice. The depth-test has to
always be active in order for the early-z-test optimization to
be applied. The depth for the new slice is still consistent
with the depth-test, since it is smaller than all of the current
z-values in the depth buffer, which now include values in
the range of [sliceDepth(n+1)...1.0]. Note, although the ren-
dering order is front-to-back, we set the initial value to 1.0,
and render the slices in decreasing distance from the screen
(which is counter-intuitive to front-to-back rendering). This
is because hard-wired conventions in the operation of the z-
buffer associate the value of 1.0 (furthest) to allow all ren-
dering, and the value 0.0 (closest) to disallow rendering and
apply early-z culling. Thus, the depth value of 0.0 is
reserved to be assigned to opaque fragments, as we will dis-
cuss in the next subsection. This scheme was chosen in
order to avoid changes in the direction of the depth-test (i.e.
from GreaterEqual to LessEqual), as well as frequent clears
of the depth-buffer, both of which will cancel the very sensi-
tive early-z culling extension on NVidia boards, as men-
tioned above. The only limitation of our scheme is the
restriction of the allowed number of slices to about 16K (for
24-bit depth buffer granularity), which, however, is more
than sufficient for the volumes that the current hardware can
handle.

4.4. Challenge 4: Shading of opaque regions

A final optimization that can be applied to our frame-
work is also related to the depth-test feature and the early z-
rejection test. A strategy that is quite similar to early ray ter-
mination used in ray-casting eliminates all pixels that have

sliceDepth n() 1023 n–() 1024⁄=

sliceDepth n 1+() 1023 n 1+()–() 1024⁄=

N.Neophytou & K.Mueller / GPU Accelerated Image Aligned Splatting
become opaque in order to avoid unnecessary calculations in
the splat rasterization stage. This technique is called “early
splat elimination”. The amount of such pixels is actually
very high for some isosurface rendering and the rendering of
semi-transparent volumes with considerable accumulation.
The speedups realized by the use of this extension vary
among applications, but in our case they allowed factors of
about 2. This comes from the way we use the extension to
eliminate both the splatting and shading operations on pixels
that are already opaque.

We slightly expand our use of the extensions described in
Section 4.3 and assign a depth value of 0 to all opaque pix-
els. The compositor fragment programs are slightly modi-
fied to input the current image buffer as a texture. In the end,
if the sampled pixel has already accumulated an alpha value
over the predefined threshold (usually 0.98), then the depth
output is set to zero. Otherwise it is set to the current
sliceDepth, which will allow normal operations at all stages.
All the pixels with depth 0 will be excluded even from the
splatting stage, since the depth-test feature is enabled
throughout all the stages of the rendering pipeline. Figure
4(a...c) better illustrates how this optimization works.

An additional level of opacity culling propagates infor-
mation from the graphics board to the CPU in order to
exclude whole voxels that have their textured splat in an
opaque region. This requires the creation of an “Opacity
Buffer”, as described in [HMSC00]. The alpha component
of the buffer is convolved with an averaging filter equal in
size to the splat. The result is a buffer that stores for every
pixel the average alpha of the splat-sized region around it.
This optimizes the query for checking if a whole basis func-
tion is completely opaque or not, and eliminates the vertex
itself. The opacity buffer is then transferred by an asynchro-
nous read back to the CPU and is updated once every ten

Fully opaque
Just splatted

Slice just
copied

Result
composited

(a) (b) (c)

Figure 4: Applying opacity culling optimization.
(a) Opacity culling does not allow most of the splats to be
processed. Black regions (z=0) denote opaque areas and
they are rejected. (b) The combination of tagging and
opacity culling will now allow only the tagged grey pixels
to pass through, so only a very small fraction of pixels will
proceed to the expensive operations of the copy and shad-
ing pipeline. (c) Only the small portion designated in the
magenta square was actually shaded and is going to be
composited.
slices. Testing of this solution compared with the use of the
depth buffer proved no additional benefits for the average
case, as the overheads of maintaining the opacity buffer can-
cel the benefits of not passing the point through the vertex
pipeline. This result is also consistent with the fact that our
application is clearly rasterization bound.

4.5. Putting it all together: The overall system

The resulting system which combines all the features
described above is an efficient CPU/GPU hybrid implemen-
taion. Figure 5 illustrates pseudocode of the overall system
as described in this section. The CPU is mainly concerned
with managing the data points of the volume and maintain-
ing a correct visibility order which is then transferred to the
GPU by means of pre-allocated vertex arrays. When the
viewing transformation changes, a new ordering is prepared
using an efficient RLE traversal which results in a set of ver-
tex arrays (one per image aligned slice), ready for rendering.
The data is then shipped to the GPU using the efficient
memory interface provided by the latest generation PCI
express graphics boards. The current RLE data structure is
capable of handling regular data sets sampled in both Carte-
sian as well as BCC (Body Centered Cubic) grids.

The GPU system consists mainly of an OpenGL PBuffer
object. This buffer is defined with 3 auxiliary surfaces which
all share a common depth buffer. The surfaces are allocated
for (i) the Splatting buffer, (ii) the temporary copy buffer
and (iii) the final image buffer. The depth buffer is used for
tagging pixels for and during processing, so information is
shared among all three buffers.

The rendering process is organized in three stages for
each slice. For each slice, all the intersecting basis functions
are first splatted as textured point sprites with their RGBA
color modulating the active splatting buffers as described in
Section 4.2. The depth for all splatted point sprites is then
set to a unique value sliceDepth(i) chosen for the current
slice i, such that sliceDepth(i)<sliceDepth(i-1)<1. This
value will tag the affected pixels in the depth buffer for use
in subsequent stages. In the next stage, the tagged voxels of
the last active buffer are copied to the temporary copy
buffer. This prepares the finished slices for the last stage
which performs the classification and shading calculations
and composites them into the final image. The shading pro-
gram reads all neighboring pixels necessary for calculating
the central difference gradient of the current pixel from the
temporary copy buffer. Then it performs classification and
shading using material and environment information that
was passed from the application via uniform parameters.
The resulting color is then returned for compositing into the
final image buffer. An additional task of the shading pro-
gram is to determine whether the current pixel is already
opaque. If yes, it marks it as such by returning depth
value=0 instead of the current sliceDepth. This marks the
pixel inactive for all stages of the rasterization and while the
depth-test feature is active the pixel will be cancelled from
processing for the rest of the slices. The early-z-test optimi-
zation ensures that any fragments at the positions of the

N.Neophytou & K.Mueller / GPU Accelerated Image Aligned Splatting
OnViewingTransformChange()
Traverse RLE
For each slice create a VertexArray

Initialize PBuffer (3 aux surfaces, associated z-buffer)
//All surfaces share same z-buffer//
//datatype of PBuffer is defined as 16-bit float
Set SplattingPBuffer =PBuffer.Surfaces[0]
Set TmpCopyPBuffer =PBuffer.Surfaces[1]
Set FinalImagePBuffer =PBuffer.Surfaces[2]

For each slice
//Splatting Phase//
SetActiveSurface(SplattingPBuffer)
Enable(DepthTest)
DepthMask(true)
SetDepthBoundsEXT (0,1)
Use Assiciated VertexArray of points
Use Associated ColorArray of points
//depth for each slice is set to sliceDepth(slice)
//Rasterize primitive set to pointSprites
//Color=density(slice, slice+1, slice+2, slice+3)
//density() gives coefficients from 1-D gaussian
//Set pointSprite texture to 2D-Gaussian
//Set texture properties to Modulate color
DrawArrays
//After one whole slice is drawn,
//the Current Channel (one of RGBA) will be
//complete.

//Copying Phase//
SetDepthBoundsEXT (0,sliceDepth)
//Allow only latest fragments to be copied
DepthMask(false)
SetActiveSurface(TmpCopyPBuffer)
Copy CurrentChannel from SplattingBuffer

//Compositing Phase//
SetActiveSurface(FinalImagePBuffer)
//Enable writing to depth, so that alpha saturated
//pixels are updated to z=0 by the pixel-shader
DepthMask(true)
SetInputTexture(TmpCopyPBuffer)
//Link currentContents to read alpha channel//
//to decide which pixels are saturated
SetInputTexture(FinalImagePBuffer)
Activate ShadingFragmentProgram
Rasterize Polygon for full Size of Buffer
setDepth of Polygon to sliceDepth
//Shading Program updates both depth and
//final color which is composited
DeactivateShadingFragmentProgram

End Slice
//Final Image is available in FinalImagePBuffer
//TextureMap final image onto FrameBuffer

End Function

Figure 5: Pseudocode of the overall rendering process.
marked pixels will automatically be discarded before any
processing is applied to them.

The PBuffer in the GPU is allocated using the available
16-bit floating point format, forcing the pipeline to operate
in full floating point mode. This provides better quality
images with sharper highlights and less blending artifacts.
As mentioned in the introduction, this precision is adequate
to produce the best possible viewing results for on 24-bit
color display devices at 8bit per channel.

5. Results

We now present our experimental results as produced by
our software. The hardware configuration consists of a Pen-
tium 4 running at 3GHz and 1 GB RAM, and the graphics
board is an NVidia Quadro FX 3400 with 256MB RAM,
which is equivalent to a GeForce 6800 GT board. The soft-
ware was tested with the data sets listed in table 1 with cor-
responding screenshots in Figure 6 in the colorplate. All

data sets were rasterized at screen resolution of 400x400
pixels. The FPS listed were derived from the average raster-
ization time of several views during animated viewing.

After studying these results, an immediate observation
we can make is that the main overheads of this algorithm are
very closely related to the number of slices. This can be con-
firmed by looking at the comparisons of regular cartesian
volumes with their BCC counterparts (denoted BCC in the
data set name). Even though all of the BCC volumes are ras-
terized with up to 30% less voxels than the cartesian vol-

TABLE 1. Rasterization results for several data sets.

Data set Size
Effective
Splats FPS Fig.6

Vortex 1283 479K 5.2 i
Jet simul. 2563 648K 4.0 ii
Turbulant 104x1292 95K 6.1 iii
Foot Isosurf. 1283 191K 7.2 iv
Foot semiTran. 1283 184K 6.4 v
Foot semi-2 1283 181K 7.6 vi
Lobster 3202 x 34 219K 10.2 vii
Aneurism 1283 17K 9.1 viii
Bonsai 2563 1.3M 4.9 ix
BonsaiBCC 1812x362 955K 2.5 xii
CT Head semi 1283 526K 4.9 x
CT Head BCC 912x182 379K 3.1 xi
Engine Semi 2562x128 1.2M 2.1 xiii
Engine ISO 2562x128 1.3M 5.1 xiv
Engine BCC 1812x182 963K 5.3 xv

N.Neophytou & K.Mueller / GPU Accelerated Image Aligned Splatting
umes, the BCC volumes tend to have more slices along the
z-direction. This almost certainly results in increased render-
ing times. The only exception is the engine data set, which is
rendered in iso-surface mode that is aggressively optimized
for early ray termination.

6. Conclusions

We have described an efficient implementation of the
image aligned splatting algorithm for the latest generation of
GPU hardware. Our system design addresses all of the major
challenges that come with accelerating a highly sequential
task such as splatting on a highly parallel architecture, the
GPU.

The main inefficiencies of splatting on the GPU result
from the excessive overdraw and the heavy vertex traffic.
These were addressed by rewiring the algorithm in such a
way that the number of vertices (that is splats) are mini-
mized without incurring a loss in image quality. Our new
approach treats each color channel as a separate density
buffer, thus quadrupling the amount of data that can be pro-
cessed. In addition, vertex traffic was further reduced by the
use of two hardware-specific extensions: Point Sprites and
accelerated Vertex Arrays.

The second most important inefficiency was the wasting
of GPU cycles by allowing expensive fragment programs to
run on empty or opaque pixels. This issue was addressed
using the early z-test optimization combined with the
NVidia specific Depth Bounds test extension. An elaborate
tagging scheme was developed throughout the pipeline to
ensure that only the useful pixels are able to pass through the
processing pipeline.

All of these strategies combined have gained respectable
speedups and have enabled the high quality image results of
image aligned splatting to be achieved at interactive frame-
rates.

Our current focus is to extend our image aligned splatter
to a more general framework which would also handle irreg-
ular data sets represented by arbitrary ellipsoidal basis func-
tions. We believe that the interactive rendering of
generalized ellipsoidal point based data sets is an application
that will benefit substantially from a hardware based splats
framework.

7. Acknowledgements

This research was supported by NSF CAREER grant ACI
0093157 and DOE grant MO-068.

8. References

[BNMK04] Bitter I., Neophytos N., Mueller K., Kaufman A.:
Squeeze: Numerical-precision-optimized volume rendering. In
Siggraph/Eurographics Workshop on Graphics Hardware 2004,
pp. 25–34.

[CRZP04] Chen W., Ren L., Zwicker M., Pfister H.: Hardware-
accelerated adaptive EWA volume splatting. In Proceedings of
IEEE Visualization 2004.
[HMSC00] Huang J., Mueller K., Sharef N., Crawfi R.: Fastsplats:
Optimized splatting on rectilinear grids. In Proceedings of IEEE
Visualization 2000, Ertl T., Hamann B., Varshney A., (Eds.),
pp. 219–226.

[KSW04] Kipfer P., Segal M., Westermann R.: Uberflow: A GPU-
based particle engine. In Eurographics Symposium Proceedings
Graphics Hardware 2004 (2004), pp. 115–122.

[Lat04] Latta L.: Building a million particle system. In Game Devel-
opers Conference (2004).

[LH91] Laur D., Hanrahan P.: Hierarchical splatting: a progressive
refinement algorithm for volume rendering. In Computer
Graphics, SIGGRAPH ‘91, ACM SIGGRAPH, pp. 285–288.

[MC98] Mueller K., Crawfis R.: Eliminating popping artifacts in
sheet buffer-based splatting. In Proceedings of IEEE Visualiza-
tion ’98, Ebert D., Hagen H., Rushmeier H., (Eds.), pp. 239–
246.

[MMC99] Mueller K., Möller T., Crawfis R.: Splatting without the
blur. In Proceedings of IEEE Visualization ’99, Ebert D., Gross
M., Hamann B., (Eds.), pp. 363–370.

[MMS*98] Mueller K., Möller T., Swan II J. E., Crawfis R., Shareef
N., Yagel R.: Splatting errors and antialiasing. IEEE Transac-
tions on Visualization and Computer Graphics 4, 2 (Apr. – June
1998).

[MSHC99] Mueller K., Shareef N., Huang J., Crawfis R.: High-qual-
ity splatting on rectilinear grids with efficient culling of
occluded voxels. IEEE Transactions on Visualization and Com-
puter Graphics 5, 2 (Apr.June 1999), 116–134.

[NM02] Neophytou N., Mueller K.: Space-time points: 4d splatting
on efficient grids. In Proceedings of the 2002 IEEE symposium
on Volume visualization and graphics (2002), pp. 97–106.

[NM03] Neophytou N., Mueller K.: Post-convolved splatting. In
Proceedings Joint Eurographics - IEEE TCVG Symposium on
Visualization 2003, pp. 223-230.

[OM01] Orchard J., Moeller T.: Accelerated splatting using a 3d
adjacency data structure. In GI 2001 (June 2001), pp. 191–200.

[SMM*97] Swan J. E., Mueller K., Möller T., Shareef N., Crawfis
R., Yagel R.: An anti-aliasing technique for splatting. In Pro-
ceedings of Visualization ’97, pp. 197–204.

[TMG01] Theußl T., Möller T., Grölle M. E.: Optimal regular vol-
ume sampling. In IEEE Visualization (2001), Ertl T., Joy K. I.,
Varshney A., (Eds.), IEEE Computer Society.

[Wes90] Westover L.: Footprint evaluation for volume rendering. In
Computer Graphics, SIGGRAPH 90 (Dallas, TX, July 1990),
vol. 24(4), ACM, pp. 367–376.

[XC04] Xue D., Crawfis R.: Efficient splatting using modern graph-
ics hardware. Journal of Graphics Tools 8, 3(2004), 1–21.

[ZPvBG01] Zwicker M., Pfister H., van Baar J., Gross M.: Surface
splatting. In SIGGRAPH 2001 Conference Proceedings, August
12–17, 2001, pp. 371–378.

[ZPvBG02] Zwicker M., Pfister H., van Baar J., Gross M. H.: Ewa
splatting. IEEE Trans. Vis. Comput. Graph. 8, 3(2002), 223–
238.

