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Figure 1: PSEUDo creates a representation model for multivariate time series based on locality-sensitive hashing, conducts scalable pattern
retrieval with few initial labels and evolves with an interpretable relevance feedback mechanism to capture subjective pattern similarity.

Abstract

We present PSEUDo, a visual pattern retrieval tool for multivariate time series. It aims to overcome the uneconomic (re-
)training with deep learning-based methods. Very high-dimensional time series emerge on an unprecedented scale due to in-
creasing sensor usage and data storage. Visual pattern search is one of the most frequent tasks on such data. Automatic pattern
retrieval methods often suffer from inefficient training, a lack of ground truth, and a discrepancy between the similarity per-
ceived by the algorithm and the user. Our proposal is based on a query-aware locality-sensitive hashing technique to create a
representation of multivariate time series windows. It features sub-linear training and inference time with respect to data dimen-
sions. This performance gain allows an instantaneous relevance-feedback-driven adaption and converges to users’ similarity
notion. We are benchmarking PSEUDo in accuracy and speed with representative and state-of-the-art methods, evaluating its
steerability through simulated user behavior, and designing expert studies to test PSEUDo’s usability.

CCS Concepts

* Mathematics of computing — Time series analysis; * Information systems — Users and interactive retrieval;

1. Introduction

Searching for patterns similar to a given query in a time se-
ries database is one of the most frequent problems in time se-
ries analysis [LKWLO7]. In the literature, it is called pattern
search [JDDH19, LPH*20], time series indexing [CKMP02], sim-
ilarity search [NBOS, GA16], query by content, sub-sequence
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matching [FRM94], and twin search [GDK*21]. It is an abstrac-
tion of many real-world problems in natural science [LLS*20,
LPH*20], engineering [LL18], medicine [JDDH19, GDK*21], and
economics [NBOS, TFRCO7]. It remains an interesting and impor-
tant question to efficiently and accurately search for patterns in un-
labeled multivariate time series. Our automotive calibration engi-
neers search for patterns spontaneously in measurement from en-
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gine control units with over 10,000 tracks and wish for an answer
as promptly as possible. This is challenging, not only because of
the high dimensions (a large number of tracks), meager labels, and
the efficiency requirement, but also the subjective and use-case-
dependent similarity notion. Whereas model-free similarity mea-
sures lack trainable parameters and the power to model potentially
complex similarity rules catering to the user’s similarity notion, ma-
chine learning may suffer from few labels and slow training. Fur-
thermore, our application engineers ask for an interpretable pro-
cess, for instance, which tracks count most for the event behind the
pattern, to assist the subsequent domain-specific analysis.

We propose PSEUDo, a tool for visual pattern retrieval in mul-
tivariate time series, especially very high-dimensional time se-
ries. It is powered by Locality-Sensitive Hashing (LSH) for mul-
tivariate time series [YLC*19]. In a nutshell, LSH linearly maps
all tracks into one with groups of hash functions, making sub-
sequent processing scalable with respect to the data dimensions.
Our major contribution is the extension of this algorithm with an
efficient, steerable, and interpretable relevance feedback mecha-
nism. Relevance feedback is also introduced for tabular [BKSS14],
text [vdBS*21] and image data [DPL*19]. It is first introduced
to time series in [KP98] and appears recently in [LPH*20]. Fi-
nally, we implemented a user interface to assist the algorithm. Such
Uls for time series retrieval are often called Visual Query Sys-
tems (VQSs) [LLS*20, SLW*20, LPH*20].

2. Implementation

In this work, we address the problem: how to conduct pattern search
in very high-dimensional time series with very few ground truth
labels efficiently for user interaction, accurately regarding the sub-
jective similarity notion, and interpretably.

Our baseline is the Query-Aware Locality Sensitive Hashing
(QALSH) algorithm [YLC*19]. We choose it as the core algorithm
because of its speed and scalability for very high-dimensional time
series. We extend the algorithm with an also efficient and explain-
able relevance feedback mechanism. The overall pipeline works as
follows: 1) preprocessing with sliding windows and window nor-
malization ((D in Figure 1); 2) marking a pattern in the time se-
ries as the query by the user (()); 3) initial search with LSH (from
D® to @); 4) sampling results for relevance feedback (from @
to ®); 5) inspecting results and provide relevance feedback by the
user ((5); 6) evaluating feature/track importance, updating the LSH
model and rerunning search (from (5) back to (3)); 7) iterating the
steps 4) to 6) until the user is satisfied with the result.

This query definition approach is called query-by-
example [HB04, LPH*20]. A popular alternative is query-by-
sketch [CG16, MA18, LLS*20]. We favor the former because the
query can be unclear or overly complex for the user to draw.

To update the LSH model, we assume that the randomly initial-
ized parameters of the hash functions are trainable. Moreover, we
interpret them as feature/track importance. On the other hand, we
can infer track importance by calculating and comparing the vari-
ances of tracks distances among the positive user labels and the
query. The higher the variance, the lower the importance. This im-
portance information extracted from the user labels is led back to

the parameters in the hash functions. We opt for this approach be-
cause it is very fast without mathematical optimization and is in-
terpretable. The windows shown to the user for relevance feedback
are sampled from both confident and unsure windows to avoid con-
verging into a biased similarity notion. We also allow updating the
query by averaging the query and the user labels with Dynamic
Time Warping Barycenter Averaging (DBA) [PKG11].

We have implemented a prototypical Ul to assist the algorithm. It
has a main view showing tracks as line charts, a mini-map / range-
slider with events as differently colored dots, a view to show the
current query, a panel to show/hide tracks, a view to list sampled
predictions and accept relevance feedback, a view to review the
labels, a view for result statistics, and a view for training state man-
agement. For further interpretability, we visualize the classifiers /
hash functions by calculating the mean shape and standard devia-
tion of the windows perceived as similar by every single hash func-
tion in a dedicated view. Details can be found in Appendix A.

3. Results

We are evaluating the accuracy with and without relevance feed-
back and benchmarking speed (especially scalability with respect
to dimensions) with quantitative experiments. On the other hand,
we are designing expert studies to examine PSEUDo’s usability.

Our first results look promising. The accuracy benchmark sug-
gests that different datasets favor different methods, confirming
the finding in [CG16]. LSH did not cause much accuracy loss. In
the speed benchmark, LSH tightly followed the fastest similarity
search algorithm Mueen’s Algorithm for Similarity Search (MASS)
for univariate time series and overtook the latter in multivariate
cases. The scalability test with increasing dimensions also veri-
fied this finding: the speed advantage of LSH became more evident
with more dimensions. In the experiment for relevance feedback,
we witnessed improved accuracy with feedback rounds. We would
like to inspect the track importance implied by the hash functions to
check whether the relevance feedback mechanism has the desired
feature selection effect.

4. Conclusion and Future Work

In this work, we propose PSEUDo, an adaptive and interpretable
tool for pattern search in multivariate time series based on LSH
and relevance feedback. It is particularly efficient for very high-
dimensional time series and in use cases where initial labels are
meager, and the promptness of the result counts. In the future,
we expect an increasing collaboration between hashing algorithms
and machine learning due to the explosion of data size, e.g., for
massive video processing. This work is ongoing. We plan to ex-
amine scalable visualizations for high-dimensional data, such as
[KKA95,HKAO09, ATTA19] to better cooperate with the algorithm.
We also need rigorous expert studies to evaluate PSEUDo’s usabil-
ity. Finally, we are working on relevance feedback beyond binary
labels and visualization measuring quality of time series retrieval.
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