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Appendix A: Pseudocode

We provide pseudocode for our semantic homeomorphic map ex-
traction framework in Algorithm 1.

Algorithm 1: Semantic Surface Homeomorphism

Data: source A, target B
R + COALIGN(DinoViT(),A,B) ;
fuzzyMatches <

COMPUTEMATCHES (DinoViT(),A,B,R) ;
Agisk,Baisk < ASYNCCUT(A,B, fuzzyMatches);
Ansm + OVERFITNSM (Ayisk) 5
Bpysy < OVERFITNSM (Byig)
map < DISTILMAP(Aysy, Bnsy, fuzzyMatches) ;
return map

Appendix B: Rendering Details

In all cases, we render images of the same size, i.e., 1344 x 1344
with Mitsuba [JSR*22] using spp = 150 and a path integrator.
When extracting semantic matches, we limit to rotations around
the up-axis (y) - 20 steps between [0, 27) - and forward-axis (z) - 10
steps between [%’t, g) - obtaining 200 images for each shape. Sim-
ilarly, to align shapes, we rotate around the up-axis - 12 steps - with
fixed increments. To uplift 2D pixels to 3D for the matches, we use
ray-triangle intersection. On average, we get 328 correspondences
per view, totaling 65k correspondences across the 200 views.

Appendix C: Computing rendering correspondences

As discussed in the main manuscript, we render the two surfaces
from a given viewpoint to get two renderings, R{“/‘ and RE. We lever-
age DinoV2 [ODM™23] to extract semantic features in the image
space, thus obtaining ?»? and 7»,13 as features of rendering of R"} and
R‘];, respectively. Then, to segment foreground/background we rely
on PCA’s first component of these features as it naturally groups
them in opposite half-spaces.

Finally, we match features with the cosine similarity between
all feature pairs from the same viewpoint, as score S;;. We define
the match of patch i € R{} as the patch j € R‘]; with the highest
cosine similarity, and vice versa, the match of patch j € RE as the
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patch i € R{} with the highest cosine similarity. In summary, the
pair (i, j),i € R}, j € RY is a match, if

Sij:ml?xSik orSij:mla\xSlj. (1)

Patch generation, feature extraction, and PCA

Images are split into (non-overlapping) patches of 14 pixels. Then,
Dinov2 [ODM*23] embeds these patches in a forward pass. Fol-
lowing [AGBD21], we use keys as feature vectors.

To segment foreground/background we rely on PCA’s first com-
ponent of the features. As discussed in [ODM*23], the features’
sign naturally groups them in opposite half-spaces. As the sign is
appointed randomly, we use the attention mask from the last layer
to select the correct half-space: we average the first PCA compo-
nent of the features and take the half-space which agrees with the
positive attention mask. Matches are estimated only between fore-
ground patches.

Finally, to unproject a match to 3D, we first translate a patch to
a pixel using the known patch size, and then identify the 3D point
on each shape (ray casting).

Appendix D: Comparison Details

We discuss the main considerations for/against the competing al-
gorithms we compare against.

Blended Intrinsic Maps (BIM) [KLF11] is a classic method that
uses geometric priors without any learning component. Namely, it
picks a subset of self-consistent and low-distortion conformal maps

Table 1: Dino ViT pose ablation: DinoV2 [ODM*23] matches are
significantly more accurate than DinoVI1 [CTM*21] in case of pose
variation, with no significant difference between features from L9
and L11.

9|11‘9|11‘9|11

Layer
DinoV1 | 0.16 | 0.16 | 0.38 | 0.40 | 0.27 | 0.29
DinoV2 | 0.09 | 0.09 | 0.18 | 0.18 | 0.27 | 0.25
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Figure 1: Robustness to misalignment: the quality of matches de-

pends on the quality of alignment. In the case of severe misalign-
ment (60° or more), we observe poor correspondence.

Source BIM ICP

Smooth-Shells ZoomOut Ours

Figure 2: Qualitative comparison SHREC19: Functional maps-
based methods produce good maps, although often being discon-
tinuous. Ours explicitly encourages continuity and bijectivity.

and then blends them using weighted averages. Individual confor-
mal maps can handle very non-isometric surfaces, however, they
can produce high isometric distortion even in near-isometric cases.
Note also that the resulting blended map is not a homeomorphism
nor even continuous.

Zoomout [MRR*19] and Smooth-shells [ELC20] are both func-
tional maps-based methods. Zoomout starts with a small functional
correspondence matrix and iterative upsamples it in the spectral
domain. Smooth-shells follow a similar coarse-to-fine scheme, re-
lying on shells as a proxy for functional basis. To handle self-
symmetries, Eisenberger et al. [ELC20] incorporate MCMC to
evaluate multiple possible functional maps.

We initialize Zoomout’s map (Cy1) as an identity of size 4 as
by official implementation. Then, we refine it until it contains
50 eigenvectors. Similarly, for Smooth-shells we follow the offi-

cial implementation and use MCMC to bootstrap the map using
Kpnin = 6 and Kjuax = 20. and evaluating Nprop = 500 proposal. In
both cases, no landmarks are used. Finally, for ICP we first align
the two input shapes as described in Sec. 3.1, and then estimate the
nearest neighbor for each vertex.

We depict maps for the different methods on SHREC19 in Fig-
ure 2. State-of-the-art methods work well as they exploit geomet-
ric cues, although they are susceptible to self-symmetries (see BIM
[KLF11] first row). Conversely, "Ours" relies purely on visual cues,
with no isometric regularization, thus being less accurate on aver-
age.

Appendix E: Differences with Neural Surface Maps

Neural Surface Maps [MAKM21] defines the general mapping
framework used to optimize maps. Following the original work, the
input two shapes must be homomorphic to a disk with their bound-
ary in correspondence. As this constraint is impossible to satisfy
automatically, this work relies on seamless maps, thus relaxing this
constraint to 3 corresponding points which are extracted automati-
cally. Furthermore, we define a soft correspondence term to handle
inaccurate correspondences, while NSM enforces exact correspon-
dences with an L2 loss over all correspondences.

Appendix F: Metrics

In all experiments, all shapes are automatically normalized and cen-
tered.

Bijectivity We estimate the map’s bijectivity of the shape vertices
for all baselines. For ICP, BIM, Zoomout, and Smooth-shells we
map all vertices forward (A — B) and then backward (A < B), us-
ing the forward and backward map respectively. Then, we compute
the geodesic distance between the starting vertex and its forward-
backward map.

Similarly, for consistency we evaluate "Ours" bijectivity only for
the shape vertices. In particular, we map a vertex in A onto B’s
2D domain through &, and then, we use the piecewise linear map
for 2D-3D. For B to A, we pullback vertices through barycentric
coordinates after mapping forward all A’s triangles. Empirically, for
"Ours" we never observe flips; while for baselines, correspondences
are always given, thus, no ambiguity arises. In the case of a non-
bijective map, we would consider the first triangle.

Appendix G: Ablation
On Dinov?2 features

As aforementioned, we deem a match if the cosine similarity S;;
between patch features - A* and AB - is the highest. While this
is a common similarity measure, it is important to acknowledge
its inherent limitations. Specifically, one notable challenge is that
similarity scores derived from different images may not be directly
comparable. For example, for two correspondences with scores 0.9
and 0.8, the former match pair is not necessarily better than the lat-
ter. In essence, features extracted from one view may be extremely
dissimilar to those extracted from another view, even for the same
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Table 2: Dino ViT ablation: DinoV2 [ODM*23] works better than
its predecessor [CTM*21], with no significant difference between
features from L9 and L11. The use of colored lights (rows DinoV1
and DinoV2) offers better visual cues to extract matches than white
lights. Although counter-intuitive, the use of simple texture reduces
the visual cues available to Dino ViT.

SHREC15 3DBiCar
Layer 9 11 9 11 9 11
DinoV1 | 0.10 | 0.12 | 0.32 | 0.32 | 0.36 | 0.49
DinoV2 | 0.11 | 0.11 | 0.24 | 0.24 | 0.33 | 0.33
white lights (V1) | 0.20 | 0.18 | 0.27 | 0.35 | 0.38 | 0.38
white lights (V2) | 0.11 | 0.11 | 0.24 | 0.24 | 0.30 | 0.31
texture (V1) - - - - 0.26 | 0.26
texture (V2) - - - - 0.29 | 0.29

shape. This arises from the inherent variation in image structure
across different views and how features are generated from them.
This inherent variability hinders consistency in cross-image fea-
ture comparisons. Consequently, the process of aggregating fea-
tures across different views can potentially yield unexpected out-
comes, leading to either incorrect matching or highly inaccurate
results.

Experimentally, sampling the top k = 100 correspondences
based on the similarity produced far worse results than uniform

Figure 3:  Pose variation: we assess the ability of Di-
noV2 [ODM*23] to establish matches between shapes in different
poses, as those in the figure. Experimentally, DinoV?2 yields corre-
spondences able to guide our pipeline to a proper solution. Colored
landmarks and paths show automatically selected cones and cuts by
our method.
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Ours

Source

Figure 4: Similarity scores. Right: a map optimized with the
top k = 100 correspondences based on the similarity score. Mid-
dle: map optimized using all correspondences. Left: source mesh.
The map optimized with matches with the highest similarity score
matches shows several incorrectness, highlighted with a red circle.
This is the result of several incorrect matches which bias the map
towards an incorrect energy minimum. Differently, using all cor-
respondences prevents this behavior, as the optimization process
automatically filters out wrong matches.

sampling or uniform weighting, see Figure 4 for qualitative com-
parison. In both cases, we optimize maps following the proposed
algorithm: Ours uses all correspondences, while TopK is limited
to k = 100 correspondences with the highest similarity score. Visi-
bly, some of these correspondences are incorrect and bias the map
towards incorrect minima, thus their similarity score is not repre-
sentative of their quality. Indeed, the use of all correspondences
prevents the map from falling into such a degenerate solution, as
the majority of correspondences are reasonably correct.

Tuning DinoVit Matches

We ablate the quality of matches based on DinoViT’s degrees

of freedom - layer features - in different contexts: pose vari-

ation, presence of texture, lights, and misalignment. We con-

duct our analysis on three distinct datasets: [BRLB14],

3DBiCar [LCD*23], and SHREC15 [LZEE*15] each with
or sparse ground truth.

We select 12 shape pairs, 4 for each dataset, to ablate texture and
misalign concerning the choice of Dino ViT feature layer, as dis-
cussed in [AGBD21]. Similarly, we assess the effect of pose varia-
tion for the same model with a single instance of FAUST, SCAPE,
and TOSCA mapped onto all the other provided poses. We report
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the quantitative results in Table 2 and show shape pairs examples
and qualitative optimization results in Figure 3.

We assess the quality of the aggregated correspondences in terms
of the normalized average geodesic distance [KLF11]. We fol-
low the procedure described in the main paper to aggregate the
fuzzy correspondences, thus, obtaining a face-wise map M from
one mesh onto the other. Finally, the geodesic distance is computed
on the target mesh between the centroid of the mapped face to the
centroid of the ground truth target face.

In general, DinoV2 [ODM*23] outperforms its predecessor
V1 [CTM™*21], offering more accurate and robust matches. The
depth at which features are extracted (9 vs 11) does not impact the
matches of DinoV2, while it plays a significant role for DinoV1,
as discussed in [AGBD21]. The presence of texture is beneficial
to DinoV1, while it only offers a minor improvement for DinoV2.
This is reassuring as our method can only assume access to untex-
tured models. The choice of colored lights offers additional shading
and visual features for DinoV1, but it is less relevant for DinoV2
as white lights perform equally with the base case.

Effect of Initial Alignment

We ablate the effect and robustness to misalignment for correspon-
dences quality, see Figure 1. We start from a correct alignment
with 12 shape pairs and incrementally misalign one shape - step of
20° around the up axis. We report the quality of correspondences
in terms of geodesic error, i.e., accuracy. The quality sensibly de-
creases with severe misalignment - more than 40° - reaching a peak
with opposite orientation - 180°. We additionally compare the qual-
ity of correspondences for the last two layers of Dino-ViT and show
that, for such a case, a deeper level (L11) seems to encode slightly
better semantic information than the previous layer (L9).

Handling Noise and Holes

Raw scans present noise or holes, thus inhibiting the applicabil-
ity of our method since it assumes watertight genus zero meshes.
Intuitively the presence of large holes, and missing limbs such as
arms, may severely mislead DinoViT and thus our pipeline. On
the other hand, small holes can be dealt with by applying a sim-
ple hole-filling approach. In Figure 5, we use our method to map a
raw scan to the SMPL template [LMR*15]. We prefill small holes
with Meshlab [CCC™08] and then apply our pipeline.
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