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CUDA and Applications 
to Task-based Programming

B. Kerbl, M. Kenzel, M. Winter, and M. Steinberger

These are the course notes for the final portion of the tutorial on “CUDA and Applications to Task-based
Programming”, as presented at the Eurographics conference 2022, wherein we discuss relevant results
from dedicated efforts in the scientific community, as well as the established and state-of-the-art use
cases for applications of task-based programming with CUDA.
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Overview

• Different levels of the GPU hierarchy

• GPU queues
• Task-based Scheduling

• Host Controller Architecture
• Persistent Threads & MegaKernels
• Dynamic Parallelism

• Mixed Parallelism usage scenarios
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In this last part, we will cover the different levels of the GPU hierarchy and how they can be exploited for
different programming patterns. We then turn to Task Scheduling, first detailing queues on GPUs, a core
component of most task scheduling approaches. Based on such queues, we then build different schemes
for task scheduling on the GPUs, controlled from the CPU or entirely from the GPU. Lastly, we will hear
about some examples, which greatly benefit from task parallelism and typically exhibit mixed parallelism
during execution.
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Motivation

• Heterogeneous parallelism in many applications
• Different stages 

• May have different levels of parallelism
• May have different requirements

• Shared Memory
• Registers

• May generate new work

• Hard to fit into existing 
programming model
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CTA / SM Registers / Thread Shared Memory

BoundSplit-U

BoundSplit-V

Dice & ShadeCheck

Blend

REYES-style
Micropolygon Rendering

When considering many applications one might like to parallelize, we notice that many of those exhibit
heterogeneous parallelism throughout. This can manifest differently depending on the application
• Some might simply experience different levels of parallelism throughout the stages of an application,

where, to give a hypothetical example, a work item might best be handled by a single thread for the
first stage but by a block in the last stage. Choosing one or the other overall will result in poor
performance

• Different stages might also have different requirements, i.e., need more or less shared memory or
registers etc.

• Lastly, stages might also generate new work and dynamic resource management is really challenging
on the GPU

Overall it is quite clear that fitting all of that into the existing programming model can be quite
challenging and requires a lot of manual effort and performance tuning to get right.
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Types of parallelism

Data Parallelism
• Parallelize same computation on 

different, independent data
• Distribute data to processors
• e.g. Image Processing, Loop-level 

Parallelism, Tiling, Divide and 
Conquer
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Task Parallelism
• Parallelize different, independent 

computation
• Distribute tasks to processors
• e.g. Multitasking, Pipeline 

Parallelism

When we talk about parallelism in general, there are typically two types that come to mind, task
parallelism as well as data parallelism.

In general computing environments, we typically experience task parallelism. This means, we have
different and independent computations and we want to parallelize these computations by distributing the
tasks to the available processors. Multitasking and Pipeline Parallelism are typical examples of task
parallelism.

On the GPU, we generally work with data parallelism, which means that we perform the same
computation on many different, independent data items. Here, the data is distributed to the processors.
The classical example would be any form of image processing (performing some operation per-pixel),
but also loop-level parallelism falls into that category as well as tiling and divide-and-conquer
approaches.

As our focus in todays tutorial is on task scheduling, we will try to see how this data-parallel architecture
on the GPU can be appropriated for task-parallel operations.
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Kernel-based Programming Model
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To shortly recap the overall terms and hierarchy on the GPU, here is a short overview.

Starting at the lowest level, we have threads, whereas 32 threads are executed together as a warp,
scheduled by the warp scheduler. Multiple warps are combined into so-called blocks. All threads within
a block are furthermore guaranteed to reside on one multiprocessor (SM) and share a faster cache (L1)
and have access to fast, shared memory, useful for communication between threads in a block.

Threads from different blocks do not share the same, fast memory in shared memory, and also do not
have any guarantees if they execute on the same or different SMs or concurrently or one after the other.
Hence, threads of different blocks should not rely on cooperation but perform largely independent
computations.

The whole configuration running on the GPU is called a grid.
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Kernel-based Programming Model
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Here we have a classical example which fits a rigid grid configuration quite well with image processing.

Here, one can start on entity (can be a thread, a sub-group of a warp, a full warp or block) for each pixel
and perform any kind of operation per pixel. As long as these operations are uniform over the whole
image, we expect no differences in run-time between pixels and overall a well-optimized execution
pattern.
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Kernel-based Programming Model
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On the other hand, let’s think about the graphics pipeline in general. We have various stages with very
different levels of parallelism, levels of utilization of the GPU, requirements for sorting at certain points
etc.

This is a prime example of mixed parallelism that is hard/impossible to capture with one single, rigid grid
configuration and requires more effort to efficiently execute. One core problem is inherent in the dynamic
nature of the problem, given a certain input to the input assembly stage, the number of shader invocations
in the following stages is scene dependent and requires support for dynamic work generation.
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How to organize work?

• What we want
• Keep track of work items
• Allow simultaneous access by all cores for best utilization of cores
• Allow for work generation

• Organized work as tasks and store it in queues
• Allow “software scheduler” to fetch/append work
• Linearizable
• Low resource footprint
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Based on this problem of dynamic work generation, we first have to think about the organization of the
work at hand.

In a general environment, we want to keep track of a number of work items, allow access to these
simultaneously by all cores and also allow the cores to dynamically generate new work.

One possibility in this case would entail organizing work as tasks and storing these tasks or references to
these tasks in queues. These allow a software scheduler to fetch new work to execute but also enqueue
new work to be executed by a different core. Furthermore, it would be great if the queue is also
linearizable and has a low resource footprint, since especially memory resources can be quite scarce on
the GPU.
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Queues

In the following we’d like to present to you three different variants of queues that we have used in a
number of our own publications for various purposes. Hence this is not an exhaustive list of different
queue types on GPUs, but a selection based on our own research directions.
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Index Queue

• Queue for integral 
values

• Fixed size
• Concurrent enqueues & 

dequeues

value value valuevaluevalue 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF0xFF0xFF value value

back_ front_

__device__ bool IndexQueue::enqueue(index_t index)
{

int fill = atomicAdd(&count_, 1);
if (fill < size_)
{
unsigned int pos = atomicAdd(&back_, 1) % size_;
while (atomicCAS(queue_ + pos, FREE, index) != FREE)
sleep();

return true;
}
return false;

}

__device__ bool IndexQueue::dequeue(index_t& element)
{

if (atomicSub(&count_, 1) <= 0)
{
atomicAdd(&count_, 1);
return false;

}
unsigned int pos = atomicAdd(&front_, 1) % size_;
while((element = atomicExch(queue_ + pos, FREE)) == FREE)
sleep();

return true;
}

size_ = 12
count_ = 6 valuevaluevalue 0xFF0xFF0xFFcount_ = 7 value
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Lets start with a simple queue that can be used for integral values. These values can be used for multiple
purposes but typically they form a reference to a task or resource.

This queue has a fixed size as well as a front and a back pointer, acts as a ringbuffer and supports
concurrent enqueues and dequeues, which is a very important requirement for task scheduling with
dynamic work generation.

During an enqueue operation, first the count (counting the number of elements currently in the queue) is
increment and a check against the size protects against overwriting existing data. Most current queue
implementations do not explicitly handle “out-of-queue-storage”, hence choosing a sensible size from the
beginning is important.

After that, the back pointer is incremented atomically, resulting in a position in the queue modulo the
queue size. To enable concurrent enqueues/dequeues, elements are not just taken from the queue as the
assigned slot might have been reported as free by another thread in a concurrent dequeue operation, but
the data might not have been read yet. To protect against write-before-read, writing to the queue is done
using an atomic Compare-And-Swap operation, which will not alter the queue state until the position is
marked as free. The sleep operation is done using __nanosleep() on post-Volta architectures and
done using a threadfence() on older architectures, which we have found to also work heuristically,
resulting in re-scheduling.
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Dequeue operations are expected to fail quite often, as multiple threads might query
for new work to become available. Hence if decrementing the count fails, it is just
increment again atomically and control is returned to the user. Otherwise, the front
pointer is moved backed, once again resulting in a position in the queue modulo the
queue size. And as with enqueuing, an element is not just taken from the queue but
this is done using an atomic Exchange, as a queue position might have already been
advertised as containing a value but the write to this position has not happened yet.
This protects against read-before-write problems, whose frequency typically depends
on the number of concurrent threads potentially accessing the queue and the size of
the queue.

Queues like this found use in multiple of our projects, ranging from dynamic graph
management, where a queue could track dynamic vertices or edges, to dynamic
memory management, tracking free pages of memory within the system.
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Hierarchical Bucket Queue

• If memory is abundant
• Multiple Queues (buckets)
• Access policy determined by user

• Applications
• Prioritization
• Task Aggregation
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Hierarchical Bucket Queuing for 
Fine-Grained Priority Scheduling 

on the GPU
Bernhard Kerbl, Michael Kenzel, Dieter Schmalstieg, 

Hans-Peter Seidel, Markus Steinberger
EG‘17

Another type of queue could be an approach called “Hierarchical Bucket Queue”, which relies on the
abundance of memory and allows for new applications by instantiating multiple queues, so-called
buckets with a user-determined access policy.

Based on such a design, one can realize new applications, like prioritization of tasks as well as task
aggregation. The underlying queue implementation can follow a similar design to the queue discussed
before, but the combination of multiple queues allows for new concepts.

This queueing approach was introduced by Bernhard Kerbl and colleagues as a paper at Eurographics
2017, called “Hierarchical Bucket Queuing for Fine-Grained Priority Scheduling on the GPU”, if one
wants to read up on the details.
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CUDA Cores

Bucket I (High)

HBQ: Prioritization

25.04.2022 CUDA and Applications to Task-based Programming 12

Bucket II (Low)

Task 4

CUDA Cores

Task 5

Task 2Task 3 Task 1

One new concept would be prioritization of tasks. One simple way of achieving prioritization would be
to instantiate multiple queues with varying priorities. This way, executing threads would query high
priority queues preferentially first before taking work from lower priority queues. This system can also
be extend hierarchically, where more than two queues would be instantiated into multiple levels of a
priority hierarchy. We will show an example of something like that later on.
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CUDA Cores
64 Threads

Bucket I

HBQ: Task Aggregation
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Another new concept would be task aggregation, whereas one queue could hold simple task items that
are executed one by one, while another might hold smaller tasks, that are then executed as an aggregate
for more efficient execution. In this example here, Bucket I has larger tasks that have 64 work items in
them, efficiently handled by 64 threads and generates a number of smaller tasks with 16 items each. The
second Bucket hence acts as an aggregation queue, where the executing cores always withdraw 4 tasks
with 16 work items each, hence once again 64 work items for 64 threads to execute the work efficiently.
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HBQ: Examples

• Ray-Prioritization in Path Tracing
• Regions with high variance need more samples

• Use coarse priority intervals
• High-to-Low Prioritization

• Variance as Priority

• N bucket queues of fixed size
• Choose bucket based on 

current observed variance
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…

One concrete example for the application of task prioritization would be ray prioritization in path
tracing. Here it may make sense to prioritize regions with a high variance, where it can make sense to
build up coarse priority intervals, and using the variance as a measure of priority, use a high-to-low
prioritization.

In this concrete example, one could instantiate a number of bucket queues with a fixed size per queue,
whereas a bucket is chosen depending on the currently observed variance.
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HBQ: Examples

• Reyes-style Micropolygon Rendering
• Prefer render jobs over split jobs
• Two buckets for routines
• Prioritize splits based on focus

distance
• High: Near
• Low: Far
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HI
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Render (Dice)
Split horizontally
Split vertically

Another example would be classical Reyes-style Micropolygon Rendering, an application consisting of
multiple stages that are executed, as shown in the graphic on the right. Since visual output is most
important, it would be favorable to prefer render jobs over splitting jobs to guarantee smoother playback.
Furthermore, one can prioritize geometry splits based on the distance to the camera, once again favoring
geometry close to the camera compared to further away.

That way, Rendering is prioritized over splitting geometry, whereas splitting near geometry is prioritized
over splitting geometry further away or maybe not in focus in an Augmented Reality scenario.
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16CUDA and Applications to Task-based Programming25.04.2022

This video shows an application of Reyes-style rendering. As the geometrical load is increased by
introducing more and more teapots to the scene, we can clearly see the left hand side visually slowing
down, as geometry splits are taking away valuable processing time for the render jobs. Meanwhile on the
right side, rendering is prioritized overall, but furthermore it is also possible to prioritize geometry splits
into a region around maybe a focus point, which could be interesting in an Augmented Reality scenario.
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Broker Queue | Design

• Static ring buffer of size N
• Head/Tail pointers (packed into 64-bit integer)
• Can contain elements or pointers
• Head and Tail can wrap around buffer

• Ticketing System
• Enqueue/Dequeue associated with ticket number

• Operations only execute if their ticket has been issued
• Position in buffer can have multiple tickets
• Results in fair ordering

• Operations with earlier ticket is guaranteed to finish first

CUDA and Applications to Task-based Programming 1725.04.2022

void waitforTicket(T Pos, T ExpectedTicket)
{

auto Ticket = Tickets[Pos];
while (Ticket != ExpectedTicket) do
{

backoff();
Ticket = Tickets[Pos];

}
}

The Broker Queue: A Fast, 
Linearizable FIFO Queue for 

Fine-Granular Work Distribution 
on the GPU 

Bernhard Kerbl, Michael Kenzel, Joerg H. Mueller, 
Dieter Schmalstieg and Markus Steinberger

ICS‘18

Finally, lets look at another design for a queue, called the Broker Queue. The basic queue is once again
very similar to the basic index queue discussed before, build on a static ring buffer of a certain size with
head and tail pointers (in this case packed into one 64bit integer). It can also contain just references to
tasks but also complete tasks as well.

The main change compared to the previous approach is the introduction of a ticketing system. Each
operation on the queue, each enqueue/dequeue operation, is associated with a ticket number. An operation
only executes once its ticket has been issued, resulting in fair ordering overall. Operations that have an
earlier ticket are guaranteed to finish first. Furthermore, each queue position can have multiple tickets
concurrently.

This queue design is based on a paper, once again by Bernhard Kerbl and colleagues, at ICS’18 called:
“The Broker Queue: A Fast, Linearizable FIFO Queue for Fine-Granular Work Distribution on the GPU”.
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Broker Queue | Access Data

• Write/Read Data
• Increment head/tail to get ticket
• Wait for Ɵcket → perform operaƟon

• If successful → issue next Ɵcket for slot

25.04.2022 CUDA and Applications to Task-based Programming 18

void putData(T Element)
{

auto Pos = atomicAdd(&Tail, 1);
auto P = Pos % N;
waitForTicket(P, 2 * (Pos/N));
RingBuffer[P] = Element;
Tickets[P] = 2 * (Pos/N) + 1;

}

T readData()
{

auto Pos = atomicAdd(&Head, 1);
auto P = Pos % N;
waitforTicket(P, 2 * (Pos/N) + 1);
Element = RingBuffer[P];
Tickets[P] = 2 * ((Pos + N) / N);
return Element;

}

Accessing the queue now utilized the ticketing system to grant or temporarily deny access to a queue
element. A position is found by increment the head or tail pointer as before, resulting in a position
modulo the queue size.

But before an access can occur, each executing thread has to wait for its ticket to be issued.

Only once this has happened, the operation, enqueue or dequeuing from the queue, can occur and after
completion the next ticket for the current slot will be issued.

18
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Broker Queue | Broker

• Broker
• Acts as safeguard

• Many overlapping operations
• Won’t let just any trying thread pass

• Keeps tally of promised operations
• Ensures balanced ratio between enqueue/dequeue

• Count
• Reflects fill state after promised operations
• Modified via atomicAdd/Sub
• Contended atomics less of an issue on GPU

• Would be a problem on CPU
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Additional to the ticketing system, there exists also a so-called Broker, which acts as a safeguard in-
between the incoming enqueue and dequeue operations, as there can be many overlapping operations,
while the actual write/read accesses only occur much later and also in unpredictable order. It keeps a tally
of the number of promised operations and overall tries to keep a balanced ratio between the enqueue
and dequeue operations.

This tally is tracked via an atomic count variable, which reflects the fill state after a promised operation
has been performed. As is the case with all queue designs discussed up until now, all rely heavily on
atomics, but since atomics are very well optimized on the GPU, contended access is much less of an issue
compared to the CPU, where such a design might be problematic.
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Broker Queue | Enqueue

• Enqueue/Dequeue
• Wait for Broker

• Ensure operations is balanced
• Always check full/empty state

• Broker and queue parameters loosely connected
• Both have to reflect same state

• Check in loop
• Non-blocking behavior
• Makes queue a linearizable FIFO queue
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STATUS enqueue(T element)
{

while(not ensureEnqueue()) do
{

auto s = queue_state; // Read head/tail
if(N <= s.tail - s.head < (N + MaxThreads/2))

return FULL;
}
putData(element);
return SUCCESS;

}

T dequeue()
{

while(not ensureDequeue()) do
{

auto s = queue_state; // Read head/tail
if((N + MaxThreads/2) <= s.tail - s.head - 1)

return EMPTY;
}
return readData();

}

Before the ticketing system is now access, each executing thread first has to get by the Broker, which
ensures that the operations are balanced. While waiting for the Broker, the state is always queried, as the
individual parameters of the Broker and the queue itself are only loosely connected and may return
differing state information. Hence, in a loop the state is checked using non-blocking access, which makes
this queue design a linearizable FIFO queue.
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Broker Queue | Example

25.04.2022 21

Dequeue

Enqueue

#Threads = 8

Buffer Size (N) = 2
H

T

Deq < Enq, Deqp = 2.
Enqp = Deqp + N = 4.

Here we have a concrete example, with a Broker with a certain policy, in this case enqueue operations
should be prioritized over dequeue operations and a certain number of operations, in this case six, might
access the queue at one point in time.

In this example we have a buffer size of two and eight threads trying to access the queue, two trying to
dequeue and the others waiting on an enqueue operation.

Given this policy, the Broker will let six threads through to the actual ticketing system and the enqueuing
threads will start their work. As there are more threads present then there are physical queue spaces, the
other threads are waiting on tickets to be fulfilled, while two enqueuing threads can start their work
immediately, the other two enqueue threads move the head pointer, but wait on their tickets.

The remaining two threads waiting for the enqueue operation are currently held back by the Broker.

As soon as the enqueue operations are done, the two dequeing threads can take this work from the queue
and signal the tickets of the remaining enqueuing threads.

21



Broker Queue | Non-linearizable variants

• Broker Work Distribution
• Ignores loop

• May report erroneous state

• Benefits
• Simpler
• Potentially faster

• Broker Stealing Queue
• Multiple Broker Queues
• Steals work if available
• Ensures looping

• Locally consistent
• Not globally linearizable
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This base design can also be utilized in different, non-linearizable variants, two of which are noted here.

By ignoring the loop, one can build a simpler and potentially faster work distribution at the cost of
potentially erroneous state information intermittently.

Another option would include a so-called Broker Stealing Queue, which consists of multiple Broker
Queues which still remain locally consistent and can steal work from another, but are not globally
linearizable.
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Task-based Scheduling

After this introduction to some queue types, lets now focus on task-based scheduling itself.
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What do we need to solve?

• We want 
• Handle heterogeneous 

workloads
• Dynamic work generation
• Efficient scheduling
• Exploit shared memory

25.04.2022 CUDA and Applications to Task-based Programming 24
CTA / SM Registers / Thread Shared Memory

BoundSplit-U

BoundSplit-V

Dice & ShadeCheck

Blend

First, we have to address the question: What do we need to solve? Hence, what are the properties, that
applications might have that our task scheduling system should be able to handle.

• First of all, the individual tasks might have very different requirements and levels of parallelism. The
two plots on the right show different representations of such an application setup. On top, we can
visualize an application consisting of multiple tasks, each of these tasks can have a queue in global
memory associated with it which can contain work items. It may also have a local queue, exploiting
shared memory and each work item might be handled by a different number of threads, starting from
just one thread, sub-groups within a warp, a warp or even a full block handling one item. On the
bottom, we see a visual representation for a Reyes-style renderer, with different stages and the bars for
each stage visualize the number of threads required per item, the shared memory requirements as well
as theregister requirements for each stage -> overall the requirements are very heterogeneous in this
scenario.

• The system should also be able to handle dynamic work generation, once again considering Reyes-
style rendering, the number of splits depends on the geometry currently in view and hence results in a
dynamic number of samples to shade

• All these different requirements can make efficient scheduling quite challenging
• Lastly, if possible, we should try to exploit shared memory to increase performance even further
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Run to Completion

• Simplest execution model
• All stages in a single kernel

• Does NOT support
• Global synchronization
• Dynamic work generation

• Requirements of largest
stage

25.04.2022 CUDA and Applications to Task-based Programming 25

Lets start by investigating very simple models for such task-based applications. One of the simplest,
although likely not the one typically chosen, would be the Run to Completion model, which puts all
stages of our application into one, single kernel.

Since we cannot guarantee that all blocks fit on the device at once, we cannot guarantee support for
dynamic work generation (also in this simple model, we typically also don’t have a queue for work
items), also no global synchronization between stages is possible. Furthermore, the requirements of the
largest stage (i.e. register requirements, shared memory, etc.) count towards the possible occupancy
achieved.

On the positive side, this model does not require synchronization with the CPU and may hold data in
shared memory from one stage to the next, but the drawbacks largely outweigh these benefits.

25
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Kernel by Kernel

• Most commonly used
• Split application into series of kernel launches

• Each kernel tailored to task
• Requirements per kernel

• CPU Synchronization
• Requires controller on 

CPU for dynamic work generation

25.04.2022 CUDA and Applications to Task-based Programming 26

Next we have the most well-known approach, so-called Kernel by Kernel, where the application is
simply split into a series of kernel launches for each stage in the application. The obvious benefit is that
each kernel is specifically tailored to the task, hence we can reach optimal occupancy for each of the
stages.

On the downside, we now require CPU synchronization, which means additional overhead and removes
the possibility of using shared memory to keep memory local from one stage to the next. And in general,
it would require some form of a controller on the CPU to allow for dynamic work generation, as
otherwise the stages would just run once for the given work and then are done.

26
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Time-Sliced Kernels

• Variant of KBK that supports dynamic work generation
• CPU checks amount of work per task

• Launches kernels with work
• Into separate streams for concurrent execution

• Wait for kernels to finish
• Check work again and start launching again

25.04.2022 CUDA and Applications to Task-based Programming 27

A variant of the Kernel by Kernel approach is typically called Time-sliced Kernels. This augments the
basic approach by a controller on the CPU side to allow for dynamic work generation. This also means
that work queues have to be used.

The controller then can read back the current queue fill levels from the GPU and then launch new kernels
with work, possibly also in separate streams for potential concurrent execution. This checking is done in a
loop, where the controller waits for the kernels to finish, checks the amount of work and potentially
launches new kernels.

27



Time-Sliced Kernels

28

e.g. Laine et al. [2013]

CPU

GPU

launch sync launchsynclaunch sync

Here we can see a visualization of this approach. The CPU controller is in charge of monitoring the
current amount of work, and after fixed synchronization points it can start new work. This means copying
the fill levels of the GPU queues back to the CPU at each synchronization point, so that the host
controller can decide how much new work to launch on the device.
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Time-Sliced Kernels

+no divergence
+optimal occupancy

–CPU synchronization
29

CPU

GPU

launch sync launchsynclaunch sync

The benefits of this approach are
• There is no (added) divergence within a kernel
• This also means that we should observe optimal occupancy for each kernel

The drawbacks are
• There is need for CPU synchronization, which adds some overhead to the execution
• We cannot easily use shared memory to keep data local from one stage to the other (only within one

stage, consider a stage that could generate new input for itself)
• Load imbalance might be a problem

• If one kernel runs longer than the others due to longer processing, parts of the device might be
unused until the next CPU sync as no new work can be launched until the synchronization
point with the CPU comes up

29
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Persistent Threads

• Threads execute in a loop
• Global work queue 

• Draw in new work from queue
• Execute work
• Enqueue new work

• Depends on the queue implementation
• Continue until no work left

• Implicit load balancing
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One of the first ideas that shouldered the responsibility of scheduling directly on the GPU was called
Persistent Threads. With this approach, threads execute in a loop and draw in new work from a global
work queue. This queue, at least as first mentioned, supports only one task type.

Each thread (or work unit) can draw in new work from the queue, execute it, enqueue new work (if the
queue supports concurrent enqueues/dequeues) and simply continues until no work is left. Since each
thread can immediately draw new work as soon as it is finished, this results in implicit load balancing.
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Persistent Threads

31

e.g. Aila and Laine [2009]

work queue

worker block

task

In its original form, it mainly dealt with the issue of load balancing, but the queue as used by Aila and
Laine does not support dynamic work generation. Each block keeps executing as long as work is
available in the work queue, hence load balancing is done implicitly.

As no new work can be generated, at least with this basic design, blocks simply return if the queue is
empty.
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Persistent Threads

+load balancing
+(dynamic work generation)

–only one type of task
32

Persistent threads improve upon the load balancing issues of the time-sliced kernels approach and may
in theory also support dynamic work generation, depending on the queue implementation. But in this
basic version, only one task type is possible.

The generalized form of persistent threads is called MegaKernel and is discussed next.
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Megakernel

• Generalized version of persistent threads
• Can handle different task types
• Depending on queue also

dynamic work generation

• May suffer from divergence
• Occupancy still bound by 

largest procedure
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Taking the basic concept from persistent threads, i.e. having the blocks execute in a loop on the GPU
and drawing in new work from work queues, we can get to so-called MegaKernels by allowing for
different task types. This requires additional scheduling between the different work queues and depending
on the queue implementation, this also supports dynamic work generation.

While we now can offer the same functionality as with Time-sliced kernels, just with implicit load
balancing directly on the GPU and with no explicit CPU synchronization required, there are still some
drawbacks:
• The occupancy is still tied to the largest procedure, as every block has to be able to execute each task
• Furthermore, as each block might execute multiple, different tasks at the same time, there is also

potential for divergence negatively affecting overall performance within blocks
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Persistent Megakernel

34

e.g. Steinberger et al. [2012]

different 
tasks

divergence

dynamic work 
generation

Here we can see one visualization of a MegaKernel, based on our own work called Softshell. The queue
supports multiple task types (typically with an abstraction around multiple queues for one task type) and
also dynamic work generation. Each block still draws in new work after all work has been finished per
block, hence load balancing is quite well handled but still divergence may occur within a block.
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Persistent Megakernel

+load balancing
+dynamic work generation
+multitasking

–divergence
–suboptimal occupancy
–bottleneck: work queue

35

To sum up, the benefits of a MegaKernel are:
• Implicit load balancing over the blocks, as each can immediately start new work upon finishing

execution of “old” work
• The queues support dynamic work generation
• And multiple tasks types are support as well

The drawbacks include
• Divergence within a block can reduce overall performance, especially if there are large discrepancies

between run-times of different tasks
• Occupancy is tied to the largest stage, hence large discrepancies between stages once again reduce

performance overall
• The work queue has to be efficient, as many blocks keep polling for new work
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Dynamic Parallelism

• Nested parallelism occurs in many applications

• Since CUDA 5.0 
• Kernels can launch other kernels
• Dynamically adapt to 

amount of work

• Link with cudadevrt
• Compile with -rdc
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Before diving into the last set of techniques, lets first introduce dynamic parallelism. Starting with
CUDA 5.0, NVIDIA reacted to the problem of nested parallelism being common in many applications by
allowing for kernels to launch other kernels. This way one can dynamically adapt to the amount of work.
On the right you can see a typical problem, where it can be quite hard to find a good grid size selection
for some simulation problem, as it can be too coarse or too fine overall. Being able to react to the
coarseness of the problem directly on the GPU can be a great benefit.

To use dynamic parallelism, device linking has to be enabled and one has to link against the CUDA
Device Runtime.
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Dynamic Parallelism
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[NVIDIA 2012]

launch sync
CPU

GPU

Here we see a visualization of how a task scheduling could work using dynamic parallelism. The CPU
would launch an initial block, which then could launch new work in new kernels, specifically tailored to
the amount of work as well as the type of work. Hence, occupancy should be quite optimal.
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Dynamic Parallelism

• Group of blocks of threads is called a grid
• Parent grid launches child grids

• Child grid inherits attributes
• L1 cache
• Shared memory configuration
• Stack Size

• Child grids are fully nested
• Parent grid can call 

cudaDeviceSynchronize()
• Only thread which launches is aware

of kernel launch
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Back to the basics on Dynamic Parallelism: A group of blocks (each consisting of a certain number of
warps, each consisting of 32 threads), is called a grid. In the context of DP, we speak of a parent grid
launching a child grid.

The child grid inherits some attributes from the parent, this includes the configuration of Unified (L1)
cache and shared memory as well as the stack size. Child grids are always fully nested within the parent
launch as one can see in the graphic on the right. The parent grid implicitly waits for the child grid to
finish, but can also explicitly synchronize with the child grid by calling
cudaDeviceSynchronize(). One important note, only the thread that actually performed the
launch is aware of the child grid and can synchronize.
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Dynamic Parallelism

• cudaDeviceSynchronize() can be expensive
• May cause the currently running block to be paused and swapped to global 

memory

• Fully-consistent view of global memory
• Both directions with sync
• Weakly consistent in-between

• Passing pointers to child grid
• Global, zero-copy host and constant
• Shared and local memory
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Unfortunately but expectedly, a full cudaDeviceSynchronize can be quite expensive as it might
cause the currently running block to be paused and swapped to global memory. This means that all the
current state of a block (registers, shared memory etc.) have to be copied to and from global memory.

But, at least for global memory, there exists a fully-consistent view between child and parent, so a parent
writing to memory and then launching a child grid is guaranteed that the child sees the value.
Furthermore, if a child writes something and the parent synchronizes on the child, it is also guaranteed to
observe the value.

In between the model is weakly consistent and there is no guarantee.

One further limitation is given by what can be passed to the child grid regarding memory:
• Global memory, managed (or zero-copy host) memory as well as constant memory can be passed

between parent and child
• Shared memory as well as local memory cannot be passed to the child grid

39



Reims 2022

Dynamic Parallelism

• Child grids launched sequentially
• Happens even if launched by different threads
• Use streams

• Streams on device are non-blocking
• Kernels in different streams can execute concurrently

• Do not rely on that!
• Streams in different blocks are different

• Streams in same block can be used by all threads in block
• cudaStreamDestroy() returns kernels immediately

cudaStream_t s; 
cudaStreamCreateWithFlags(&s, cudaStreamNonBlocking);
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Identical to the host, child grids are launched sequentially, even if launched by different threads by
default. To allow for concurrent execution, one has to use streams.

Streams on the device are non-blocking (launches in the same stream occur still sequentially), hence
kernels in different streams can execute concurrently. One important note: Do not rely on this, as there
is no guarantee that two kernels will actually run concurrently, so a producer-consumer system between
two kernels is not guaranteed to work.

Furthermore, beware that streams in different blocks are different, while streams in the same block can be
used by all the threads.

Lastly, one can use cudaStreamDestroy() to immediately return a kernel.
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Dynamic Parallelism

• Recursion depth
• Nesting depth

• Kernels launched from host (Depth = 0)
• Hardware Limit = 24

• Synchronization depth
• Deepest level to sync (Default = 2)

• cudaLimitDevRuntimeSyncDepth()

• Pending launches (Default = 2048)
• cudaDeviceSetLimit(cudaLimitDevRuntimePendingLaunchCount, 123456)
• Virtualized pool (more flexible, but additional launches more costly)
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If all of that sounds great, here are now a few caveats:
• There exist some hardware limits:

• There is a maximum nesting depth of 24, limited by the hardware. Kernels are launched at
depth 0 from the host -> recursive launches only work up to the given hardware limit

• Furthermore, there is a limit how far the synchronization is possible.
• The number of pending launches is also limited

• Once can increase this from the default of 2048, but this can be quite costly
All of these limits exist as there are physical limitations, as states have to be stored in memory etc.

Overall, performance is limited quite a lot as soon as one approaches any of these limits.
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Hybrid Dynamic Parallelism (HDP)

42

Controller

check check

One possible solution would look something like that, with a controller on the GPU, checking the
individual queues, launching new work into separate, tailored kernels. This design mimicks the TSK
design from earlier, with one central controller unit (possibly a single thread, or warp), that routinely
checks the work queues for new work and launches corresponding new kernels.
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Dynamic Parallelism

+dynamic work generation
+GPU autonomy
+optimal occupancy

–no fine grained work generation though
–cannot use local memory to pass on data
–limited launch depth

43

launch synchronize
CPU

GPU

Overall, to summarize the benefits of DP:
• It automatically supports dynamic work generation
• It is GPU autonomous, same as the MegaKernel, foregoing the synchronization with the host
• In contrast to the MegaKernel, it can tailor each launch to the specific task, resulting in optimal

occupancy

But there are some severe limitations:
• Due to the limit (and performance penalty) of launching many small kernels, one cannot successfully

allow for fine-grained work generation
• One cannot pass local memory directly to a kernel, only through global memory
• The limited launch depth limits the approach of each kernel launching new work (which would render

the controller obsolete)
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Here we have a different visualization of six characteristics
• Adaptive Scheduling: This is a great benefit of the MegaKernel, which can only be approximated

with the other approaches
• Optimal Occupancy: HDP and TSK can tailor their kernels to the requirements, contrary to the

MegaKernel
• Local Queuing: The Megakernel can support that for different tasks, HDP only for recursion
• Launch Overhead: CPU synchronization is worst, followed by GPU synchronization and then no

launches at all for the MegaKernel
• GPUAutonomy: WMK& HDP are autonomous, TSK requires synchronization
• Mixed Requirements: Neither approach can fully utilize mixed requirements, as homogeneous stages

fit Megakernel best and heterogeneous stages fit TSK & HDP best
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Future Ideas

• Allow combination of
MegaKernel and HDP

• Controller can launch
individual procedures or
smaller Megakernels

• Benefits
• Combine homogeneous 

workloads in MegaKernel
• Split apart heterogeneous

workloads

45
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Following on this last idea, one possible evolution of these concepts would be a combination of the
benefits of the MegaKernel and HDP. The controller in this instance can not only launch individual
kernels for tasks, but also smaller Megakernels.

This way, one can combine homogeneous workloads into a MegaKernel and split apart heterogeneous
workloads into different kernels, in theory combining the benefits of both approaches.
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Examples

Lastly, lets look at some examples, starting with a few applications that require a task-scheduling
framework on the GPU and then we finish on a software implementation of a rendering pipeline.
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Reims 2022Procedural Geometry Generation

• Spaceships generated randomly
• Input 

• Number of Cubes
• Random Parameter Table

• Recursive Tasks
• Responsible for different parts

of Spaceship

• Very homogenous overall
• MegaKernel performs best

• Local Queues help with
recursion
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Top-RecursionWing-RecursionBody-Recursion

Duplicate
CTA / SM Registers / Thread Shared Memory

Type Registers Worker 
Size

Shared 
Memory

Occupancy

Body-Recursion 56 1 2064 50%

Wing-Recursion 56 1 2064 50%

Top-Recursion 56 1 2064 50%

Duplicate 61 1 2064 50%

Parallel Generation of Architecture 
on the GPU

Markus Steinberger, Michael Kenzel, Bernhard Kainz, 
Jörg Müller, Peter Wonka and Dieter Schmalstieg

EG‘14

First of we can look at Procedural Geometry Generation, which we also worked on in a paper on
“Parallel generation of architecture on the GPU” by Steinberger and colleagues. Here we set up an
example which generates random spaceships, similar to an approach by Ritchie and colleagues on the
CPU. One can input the number of cubes that should make up the spaceship and a parameter table that
steers the random generation of the wings and top structure of this spaceship.

This pipeline is very homogeneous overall with loads of recursive tasks, benefiting from local queueing.
Overall, a MegaKernel approach performs best here.
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SVG Rendering

• Implements hierarchical 
rasterization approach

• Some coarse rasterization tasks
• Determine potential coverage, 

depending on hierarchy different size
• Fine rasterization stage

• Heterogeneous requirements
• Especially worker size and shared memory
• Lots of recursion

• HDP & TSK on-par with WMK
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Type Registers Worker 
Size

Shared 
Memory

Occupancy

Coarse <7,1> 70 16 3600 38%

Coarse <1,7> 70 16 3600 38%

Coarse <7,7> 71 8 21008 38%

FineStage 60 128 32 50%

Fine Stage

Coarse < 7 , 7 >

Coarse < 1 , 7 >

Coarse < 7 , 1 >

CTA / SM Registers / Thread Shared Memory

Hierarchical Rasterization of Curved 
Primitives for Vector Graphics 

Rendering on the GPU
Mark Dokter, Jozef Hladky, Mathias Parger, Dieter 

Schmalstieg, Hans-Peter Seidel and Markus Steinberger
EG‘19

Next we can look at a hierarchical SVG rasterization approach as based on a paper by Mark Dokter and
colleagues, called “Hierarchical Rasterization of Curved Primitives for Vector Graphics Rendering on the
GPU”, consisting of some coarse stages, which determine first the potential coverage and then are
executed, depending on the current hierarchy level and there is also a fine rasterization stage. Overall, the
requirements are quite heterogeneous, especially considering worker size and shared memory. But there
is also significant recursion and local queueing helps, so overall all approaches are on a similar level
regarding performance.
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Catmull-Clark Subdivision

• Simple input mesh → detailed geometry
• Recursive subdivision
• Split mesh into patches

• Execution
• Heterogeneous shared memory

requirements
• Large input data 

• up to 500B
• TSK & HDP narrowly

outperform WMK
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Type Registers Worker 
Size

Shared 
Memory

Occupancy

Poly-Patch 60 16 22736 50%

Quad-Patch 64 16 15952 50%

Regular-Patch 64 16 7056 50%

CTA / SM Registers / Thread Shared Memory

Quad-Patch Regular-PatchPoly-Patch

Subdivision-Specialized Linear Algebra 
Kernels for Static and Dynamic Mesh 

Connectivity on the GPU
Daniel Mlakar, Martin Winter, Pascal Stadlbauer, Hans-

Peter Seidel, Markus Steinberger and Rhaleb Zayer
EG‘20

Next we can look at Catmull-Clark Subdivision, where we also did some work in a paper called
“Subdivision-Specialized Linear Algebra Kernels for Static and Dynamic Mesh Connectivity on the
GPU”. Here, we use a simpler implementation, which takes a simple input mesh and, using recursive
subdivision by splitting the mesh into patches, generates highly detailed output geometry.

We observe quite heterogeneous shared memory requirements overall and have to load quite a bit of data
for each input patch. Overall, TSK & HDP outperform WMK, but not by a huge margin.
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Reyes Rendering

• Split scene recursively into 
micropolygons

• Recursively split and render

• Heterogeneous workload
• Different worker size, shared

memory, registers
• TSK & HDP outperform WMK
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Type Registers Worker 
Size

Shared 
Memory

Occupancy

Check 24 16 2192 100%

Bound/Split U 63 4 14864 50%

Bound/Split V 62 4 14864 50%

Dice & Shade 104 256 6168 25%

Blend 14 1 2072 100%

CTA / SM Registers / Thread Shared Memory

BoundSplit-U

BoundSplit-V

Dice & ShadeCheck

Blend

Lastly, the previously mentioned Reyes Rendering, where the scene is recursively split into
micropolygons, which are further split up to a certain level and then rendered in the end.

Here we have a prime example of a heterogeneous workload, with different numbers of workers per item,
different register requirements as well as shared memory requirements.

Here, TSK & HDP clearly outperform the MegaKernel approach.
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CURE

Lastly, we can look at one project of ours which dealt with implementing a software rendering pipeline.
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Basic Graphics Pipeline

52

Vertex Shading Primitive Assembly Projection Rasterization
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Here we have the basic graphics pipeline as it existed some years ago, consisting of:
1. Vertex Shading
2. Primitive Assembly
3. Projection
4. Rasterization

Back then, everything was fixed-function and was purpose built for the task of rendering simple meshes.
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Today, we have access to different types of pipelines, depending on the GPU in your system. The
classical pipeline, now augmented by Tessellation and also further means of geometry processing, still
exists and still is mostly used today for most rendering applications. But also new pipeline models have
been introduced in the recent years on modern GPUs.

This includes a pipeline based on Mesh Shaders (introduced with Turing GPUs) and can replace the
traditional pipeline. It adds two new shader stages, the task shader (operates in work groups and can emit
mesh shader workgroups) as well as the mesh shader (generates primitives), both similar to compute
shaders and having greater flexibility and scalability at possibly a reduced bandwidth.

Furthermore we also got Ray Tracing support (also introduced with Turing GPUs) as well.
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Programmable Hardware Pipeline

Hardware-accelerated Software Pipeline?
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Depending on the actual use case, different pipelines might work best. But still, those pipelines have a
rigid structure, which might not fit all scenarios equally well. Hence we thought about the possibility of
moving from a programmable hardware pipeline to a hardware-accelerated software pipeline to be able to
adapt to specific use cases and test the benefits of new pipeline designs.
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Shader

Compute 
Mode

tomorrow?
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So instead of using fixed-function units, the question is if we can just do everything in compute mode, is
that feasible?
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Challenges
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object-space parallelism screen-space parallelism

vertex-level parallelism primitive-level parallelism in-order blending

primitive order
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During a classical rendering pipeline, we not only have multiple different stages, but also have to think
about different levels of parallelism and maybe have to obey primitive order.

The first part of the pipeline deals with object-space parallelism, while the second part deals with
screen-space parallelism. When we look more closely at the first part, we can further distinguish between
vertex-level and primitive-level parallelism.

Furthermore, if we require in-order blending, primitive order has to kept the same throughout the
pipeline.
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GPU Pipeline Implementation
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When we think about execution patterns, we have to be careful about our memory footprint. Using a
sequential design (like KBK), executing one stage of the pipeline after the other, we quickly run into
problems with memory consumption, as is visualized on the left side. Rendering pipelines are usually
built on a streaming approach, as can be seen on the right side, here we use much less memory overall.

57



Reims 2022

How do we implement it?

• Design Principle:
• globally sort middle
• locally sort everywhere else
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To keep primitive order, we also have to think about sorting. One sensible solution is to globally sort
middle and locally sort everywhere else during the pipeline.
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• fill GPU with worker blocks

• run either
• Geometry Processing or
• Rasterization

• global load balancing:
raster queues

• local load balancing:
on-chip buffers
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Megakernel Approach

In our design, we build on a MegaKernel approach and start by filling the GPU with worker blocks.
Each block can handle either Geometry Processing or Rasterization tasks. Global load balancing is
handled via the raster queues, but also local load balancing is possible by using shared memory directly
on chip for improved performance, so only in the end one has to write to global memory again.

This is based on work by Michael Kenzel and colleagues (“A high-performance software graphics 
pipeline architecture for the GPU“ at Siggraph’18).
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Comparison with Hardware Pipeline

increase shader load ⇨ pipeline overhead less significant
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We also did some comparisons against the standard hardware pipeline. In this plot you can see the
overhead plotted. As can be seen, there is quite significant overhead compared to the specific hardware
units which obviously are faster than a respective software implementation. But we can see that by
increasing the shader load, i.e. minimising the overhead accumulated from the software pipeline
compared to the hardware pipeline, the performance actually gets quite close to the hardware pipeline
overall.
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Performance Breakdown

• workload dominated by
• framebuffer
• primitive order

6125.04.2022 CUDA and Applications to Task-based Programming

We also looked more closely at the performance cost of the individual stages. The workload overall is
dominated by the primitive ordering as well as writing to the framebuffer, as ROPs are not directly
accessible via software yet. If one could access the ROPs directly and primitive order is not a huge factor,
performance would actually be really competitive.
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Application examples
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Lastly, what such a modular pipeline design allows are applications which can be quite hard to handle
using the traditional, fixed pipeline. Here we have four examples
• Checkerboard Rendering
• Foveated Rendering with an adaptive sampling rate
• Heightmaps can lead to issues, here the geometry shader could be used but is typically slower
• Programmable blending (different blending that is available with ROPs)
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Conclusion

• Task-parallelism vs. Data-parallelism
• Need to organize work

• Queues

• Different scheduling techniques
• Time-Sliced Kernels
• MegaKernel
• Dynamic Parallelism

• Many examples benefit
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This concludes our tutorial session, so lets summarize quickly what you should take with you:
• We initially looked at the general CUDA programming model and how it fits to different applications
• We discussed the need to organize work using some data structure and we introduced several variants

of a queue
• Then we talked in detail about different techniques for scheduling tasks on the GPU
• Finally, we mentioned a few examples and compared the individual techniques regarding their

feasibility on some examples
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