
__ - _ - - - - - --_ .------- - ---- -- ----

A Ray-Slice-Sweep Volume Rendering Engine

Ingmar Bitter * and Arie Kaufman t

Center for Visual Computing (CVC)
State University of New York at Stony Brook t

Abstract

Ray-slice-sweeping is a plane sweep algorithm for volume
rendering, The compositing buffer sweeps through the vol-
ume and combines the accumulated image with the new slice
of just-projected voxels. The image combination is guided
by sight rays from the view point through every voxel of
the new slice. Cube-.#L is a volume rendering architecture
which employs a ray-slice-sweeping algorithm. It improves
the Cube-4 architecture in three ways. First, during per-
spective projection all voxels of the dataset contribute to the
rendering. Second, it computes gradients at the voxel posi-
tions which improves accuracy and allows a more compact
implementation, Third, Cube-AL has less control overhead
than Cube-C

Keywords: Volume Visualization, Volume Rendering Ar-
chitecture, Hardware Design, Gradient Estimation, Com-
positing, Perspective Projection

1 Introduction

Volume visualization is a method of extracting informa-
tion from volumetric datasets through the use of interactive
graphics and imaging, and is concerned with the representa-
tion, manipulation and rendering of these datasets [5]. Most
commonly, the data represents a continuous 3D function
sampled on a ree;ular, rectilinear 3D grid of volume elements
called uoxels. Depending on this 3D function (mathemati-
cal, MRI, CT, ultrasound, etc.) voxels accordingly represent
function value, density, absorption, etc. There are many dif-
ferent approaches for rendering images from these volume
datasets. Volume rendering includes only those techniques
in which the image generation does not use any interme-
diate surface representations of the sampled data. These
techniques fall into four groups: object-order, image-order,
and hybrid algorithms as well as domain methods.

l ingmar&s.sunysb.edu, http://www.cs.sunysb.edu/-ingmar
tariQcs.sunysb.edu, http://www.cs.sunysb.eduf-ari
tCenter for Visual Computing (http://www.cvc.sunysb.edu),

Depnrtment of Computer Science (http://www.cs.sunysb.edu),
State University of New York at Stony Brook, Stony Brook, NY
11794-4400

Permission IO runke dij$nl/Jlnrd copies ofnll or part of this tnnterinl for
pursosnl or clnssroom 11s~ is gmakd without Re provided thnt tke copies
nre not mnde or disM.Wcd hr prolil or conunercinl advantage, the copy-
right nolice, ~lle title of he publication nad ils date appar, and nolice is
given tl~nt copyriSllt is by penkion ofthe ACM. Inc. To copy otherwise,
IO republish, IO post on servr’rs or to redislriibute to lists, requires specific
penuirsion and/or Ii’e

1997 SlG(iR.4 PH/Euqtwphics Workhop
CopyrigM I937 ACM 0.89791.36l-0/37/S..%3.50

Object-order algorithms compute each voxel contribution
to all affected image pixels in object-storage order (e.g.,
splat&g [18]). Image-order algorithms compute each pixel
color in image scan line order. For each pixel, a ray is
cast into the volume, and all the voxels in the neighbor-
hood of the ray are processed and composited to generate a
color value for the pixel (e.g., ray-casting [7], volumetric ray-
tracing [15]). These algorithms usually deliver higher image
quality than object-order algorithms, but they also require
more computation and tend to access each voxel multiple
times.

Hybrid algorithms combine object storage-order voxel ac-
cess with image scan line processing order (e.g., slice trans-
formation [1], cell-by-cell processing [16], template-based
volume viewing [19], shear warp [6]). Good hybrid algo-
rithms combine the high image quality of image-order al-
gorithms with the efficient data access of object-order algo-
rithms.

Domain methods transform the data set from the spatial
into another domain, such as frequency, wavelet, compres-
sion, or light-field domain. Images are then rendered directly
from the transformed domain data [2,8,9,10, 11,12,3,20].

Section 2 introduces ray-slice-sweeping -our new volume
rendering algorithm. Section 3 describes the Cube-4L archi-
tecture, a hardware design based on the ray-slice-sweeping
algorithm, followed by a short analysis of the energy distri-
bution of a voxel in Section 4 and results from our software
simulator of the Cube-4L architecture in Section 5.

2 Ray-Slice-Sweeping

Cube-4L is based on a new hybrid algorithm, called ray-
slice-sureeping. Each volume slice projects all its voxels to-
wards the viewpoint, but only one inter-slice unit in dis-
tance. In a sweep plane fashion, the compositing buffer
sweeps through the volume from front-to-back and combines
the images of the volume previously swept with the new slice
of just-projected VOX& At the end of the sweep, the con-
tent of the compositing buffer - the base plane image -
has to be warped onto the image plane. The sweep is done
in object storage order yet it is image-pixel driven, while the
warp is performed in scan line order; thus, ray-slice-sweeping
belongs to the hybrid algorithm group. The algorithm is de-
signed specifically for perspective projections. Parallel pro-
jections can be performed with the view point at infinity.

While sweeping through the vohune in front-t-back pro-
cessing order, each voxel of the current slice has to be col-
ored, illuminated and classified resulting in RGBA intensi-
ties for that voxel. The algorithm sweeps the dataset always
in positive z direction, independent of the view point. With
the view point in front of the dataset (Fig. 1) front-to-back
compositing (Fig. 3) is used to combine the RGBA values of
the current slice with those of the compositing buffer. If the
view point is behind the dataset (Fig. 2) the back-to-front

121

compositing equations are applied (Fig. 3). The main differ-
ence between ray-slice-sweeping and other ray casting based
volume rendering algorithms is how the accumulated RGBA
values are determined.

viewpoint in fkmt of dataset

parallel 3D projection perspective 3D projection

parallel 2D warp . ..-“..~.-‘.....*~ _ perspective 20 warp
_..f

&.iZ~e~LlIe 1‘
,!. .* - * L...... --

view point . ..-- ~ . ..T
/...... -----

1....-’

Figure 1: Ray Slice Sweep (front-to-back cornpositing).

,

Figure 1 depicts the rays cast by the algorithm within a
horizontal cut through the dataset. Horizontal lines in the
figure represent the data slices which the algorithm processes
in positive e direction. Dashed sight rays exceed the 45’
view angle limit and do not influence the final image. With
the view point in front of the dataset the sight rays point
towards the voxel grid positions and start in between voxels
of the previous slice. For each voxel of a given slice the
sight ray is traced back to its starting point on the previous
slice. The compositing buffer contains accumulated colors
of the whole volume up to the previous slice. Computing a
bilinear interpolation of the four compositing buffer colors
surrounding the rays’ starting point yields the colors needed
to perform the compositing calculation for the current voxel
(Fig. 3). Thus, all values written to the compositing buffer
are aligned with the voxel grid.

/ Figure 2 illustrates the sight rays for a viewpoint behind
the dataset. Here, the sight rays start at the voxel posi-
tions and point towards the previously processed slice. The
accumulated colors used in the backto-front compositing
equation are determined by bilinear interpolation of the four
compositing buffer colors surrounding the rays’ end point
(Fig. 3).

All operations carried out during ray-slice-sweeping read
and write data only witbin a local neighborhood of the cur-
rently processed voxel. All those small modifications add up
from slice to slice, such that at the end of the sweep all voxels
have been shifted to the image position required by perspec-
tive projection. Note that there are neither regions between
rays in which voxel data is skipped, nor is any voxel used
more than once. The algorithm automatically maintains a
well balanced workload.

122

viewpoint in back of dataset

perspective 3D projection

parallel 3D projection

view wlnt
perspective 2D warp

A

Figure 2: Ray Slice Sweep (back-to-front cornpositing),

Front to Back Cornpositing Back to Front Composking

C
Aleft Aacc Aright

lf(dx CO) wdx else w=l-dx
Cacc = (l-w)Cleft + w Cright
i&c = (l-R3AleR + w Aright

C= (l-Aacc)Cnew + Cacc
A = (l-Aacc)Anew + Aacc

if(dx CO) w=l+dx olno Wdx
Cacc = (1.w)Cloft+ w Cright
Aacc = (l-w)Aloft + w Aright

c= (1.Anow)Cacc + Cnow
A = &Anew)Aaco + Anow

C,A now= color (RGB) and alpha of current VOXO~

C,A lefi,right = RGBA of campositing buffor
C,A act= RGBA afbx linear interpolation
C,A = RGBA compositing result,

to be stored in compositing buffer
at current voxel position

Figure 3: Compositing.

3 The Cube-4L Architecture

Cube-4 is a pipelined scalable volume rendering architecture
based on ray casting [4, 13, 141. Cube-4L is a modification
of Cube-4 simplifying it by using an implementation of ray-
slice-sweeping. Cube-4L uses sample points directly on the
voxel grid. Therefore, the trilinear interpolation stage of
Cube-4 is not needed and the gradient computation is sim-
plified. Furthermore, in perspective projection all voxels of
the dataset contribute to the rendering. As there is also

less control information for rays, the implementation can be
more compact - hence the name: Cube-4 Light.

Figure 4 gives an overview of the Cube-4L architecture,
The voxel memory is distributed over several memory mod-
ules. Equally many rendering pipelines - each on a separate
Cube-4L chip - are working on the 3D projection simulta-

neously. They only need nearest neighbor connections for
horizontal communication until the final base plane pixels
are computed, These pixels are sent over a global pixel bus
to the host or graphics card memory to be assembled into
one image and warped onto the final image plane.

I I I

I I

Cube-4L t--, Cube-4L +-) ... t-t
chip chip chip

f
pixel Bus

1 5 1
1 Host 1

Figure 4: The Cube-IL Architecture.

The following detailed description of the Cube-4L ren-
dering pipeline modules uses signal flow graphs (SFG) as
described in [13]. Circles represent pipeline stages. Vertical
arcs show the data flow within a pipeline, while diagonal
arcs show data flow between pipelines. The weight on each
arc represents for how many pipeline cycles the data has to
be delayed before reaching the next pipeline stage. All units
assume partial beam processing: beams are rows of vox-
els and breaking a beam into equal sized segments produces
partial beams; the size of a partial beam is equal to the num-
ber of parallel pipelines implemented in hardware (Fig. 5).
To handle the differences between partial-beam-end, beam-
end and slice-end, each module has an extension unit (EX)
at every pipeline stage with neighbor connections. Details
about the Cube-4L architecture not mentioned in this paper
are assumed to be handled the same way as in the Cube-4
architecture.

0 partial beam @ voxele)
I- full beam (n voxele)

slice (n’voxels)

for each volume : increment s&as in positive z direction
for each slice : increment !idl beams in positive y direction

for each full beam: increment partial beams in positive x direction

Figure 5: The Partial Beam Processing Order. Nb: current partial beam number.

3.1 Cubic Frame Buffer

The Cubic Frame Buffer (CFB) contains memory modules
for distributed skewed storage of voxels as well as an ad-
dress generator and a control unit. It is the only stage in
the CubedL rendering pipeline [Fig. 6) with global position
information, It must make all global decisions for all pipeline

C

VolumeData - Address
- 1

Vanel

CFB ‘*
Weights & Control

I
T

ABC Gradient Estimation

1 Gradient

v 1.

Shading Classification

Shaded Voxal (RGB) 1 Opacity (A)

1 Pixel (RGBA)

c . Interpolation
Compositing

Pixel (RGBA) E’ixel (RGBA)

Compositing Buffer

Final’ ‘Pixel (RGBA)
t

Figure 6: The Cube-.JL Rendering Pipeline.

modules. The subsequent stages make their selections based
on the control bits generated in the CFB.

These are a few abbreviations we employ:

(i, k) Memory Space coordinates: k = memory mod-
ule number, i = address in module.

(w, Vd, ‘uld) Dataset Space coordinates: right handed,
view independent and static.

(+, y,, zp) Pipeline Space coordinates: right handed,
view dependent and changes if major view direction
changes.

n: number of voxels along one axis of a cubic dataset.

p: number of parallel pipelines.

k: current pipeline number.

b: number of partial beams (p - b = n).

N,: current slice number.

NB: current beam number.

SR: control bit for start of ray

ER: control bit for end of ray

First, the CFB has to calculate the position of the voxel
starting to flow down the pipeline in the current clock cycle.
An efficient incremental algorithm for this needs only a few
local registers to store counters for the current partial beam
number Nb, the beam number NB, and the slice number

123

I

/

/
I

!
I

’ I
I

,
,

i
t
s
,

i

I
‘LT-

N,. The result is the 3D voxel position P = (x, y, z) in the
pipeline coordinate system. The view point V is also defined
in the pipeline coordinate system.

The sight ray S of a voxel is the vector from the view-
point to the voxel position. Thus, the sight ray is the vector
S = P - V (see Fig. 7). Normalizing S yields do = S,/S,
and dy = SY/SZ. These normalized x and y components
determine the bilinear interpolation weights (Fig. 6) and are
forwarded to the compositing unit. They are also range
checked. If l&I > 1 or ldyl > 1, then the viewing angle
exceeds 45’ and the invalid bit is set to true; to make those
voxels valid, the architecture would need more than nearest
neighbor connections. The shading stage assigns complete
transparency (cr = 0) to those shaded voxels which have the
invalid bit set. As in Cube-4 for any arbitrary viewing di-
rection one of the faces of the data cube has a normal within
f45’ of the sight ray. The slices processed by the algorithm
are parallel to that slice. Therefore, the restriction to us-
ing only nearest neighbors is feasible. For parallel viewing
all sight rays are the same; sweeping the volume once de-
livers the complete image. In perspective projection mode
the sight rays differ for each voxel, as might the faces for
which the normal is within f45’. This happens especially
for viewpoints close to or inside the dataset. To acquire a
full image with these settings, multiple sweeps through the
data volume in different processing directions are necessary.
The final image is assembled from the regions of valid pixels
in the different base plane images.

S = P-V = sight ray

coordinate “P = sample position

J

Figure 7: Sight ray and different coordinate systems.

All Cube architectures share the same memory layout. A
voxel at position P’ = (u, v, w) is stored in memory mod-
ule k = (u + v + w) mod p. This is called skewed memory. It
distributes the voxels across memory modules such that all
voxels of a partial beam parallel to the x,y or z axis reside in
different memory modules. Thus, they can be accessed con-
flict free. All computation in the pipeline assumes working
on slices perpendicular to the z axis and uses pipeline coor-
dinates. To compute the voxel memory address, the vector
P = (x, y,z) has to be transformed into the dataset coordi-
nate system. The transformed vector P’ = (u, u, w) is used
to compute the address: i = u div p + w b + w b ny. While
storing the data one has to ensure that a voxel at position
(u, u, w) is written to memory module k = (u+u+w) modp.
However, in the rendering mode, this computation is implicit
- each pipeline has only one dedicated memory module.

To be certain that voxels are only shaded if they have
valid gradients, the CFB also has to set the invalid bit for
all those voxels that have a direct neighbor on the other end
of the data set. For those voxels the CFB might also have to
set the SR or ER bits (i.e., ER should be true if the current
voxel is on the left most slice of the dataset and dx < 0).
The latter two bits are forwarded to the compositing unit,
where they enable the compositing buffer reset (SR) and the
pixel output to the final image (ER).

The CFB also has to set the start of beam (BS) bit when-
ever the current partial beam is the first on a full beam. This
bit is needed in the extension units.

Finally, to output the final pixels to the unskewed base
plane position, the CFB must compute the pixel address for
each cornpositing buffer element. The coordinates are

X = (%.p+k-N,-(Ng-1)+2n)modn

t-N,.
{

1 if dx > 0
0 if dx = 0

-1 ifdx< 0

and

1 if dy> 0
Y = (Ng-l)+NS-

1
0 if dy = 0

-1 if dy< 0

3.2 ABC Gradient Estimation

The gradients used for shading in Cube-4L are central differ-
ence gradients (see Fig. 8). As a consequence, we need the
six axis-aligned neighbors (a-f) of a voxel m to compute the
gradient. In Cube-4 the gradients are computed using neigh-
boring sample points. Fortunately, in Cube-4L all necessary
neighbors are on the voxel grid. Thus, no interpolation and
no gradient corrections are necessary.

Z

f-

Gx=-(a-b)
F/f

ahead slice (0
’ Gy=-(c-d) current slice (m, a,b, c,d)

Y Gz = -(e - f~ :?r” behind slice (e)

Figure 8: Gradient components and the unskewed spatial re-
lationship of the six computation parameters (uoxels a-f).

The voxels needed for the computation reside in three
planes - the ahead, behind and current (ABC) slices -
reflecting the processing order of the slices, They are stored
in the ABC slice FIFO buffers. In fact, only the B and C
slices are stored in a FIFO; the ahead slice comes directly
from the CFB.

Figure 9 shows the spatial and temporal relationships be-
tween the gradient computation parameters considering the
skewing. Voxel e is read first. After b(n - 1) = (s-a) cycles
voxel c is available in the same pipeline. b cycles later, voxel
a is read in the same pipeline and voxel b two pipelines to
the right. That pipeline also reads voxels d and f after b and
b(n - 1) more cycles. The following figures show the SFGs
delaying and moveing those voxels so that they can be used
to compute the three gradient components. Starting with
the easiest possible approach, each new figure adds another
inherent consideration. At the bottom of each graph new
logical symbols are explained.

Figure 10 shows an SFG computing only the y-component
of the gradient. It achieves delaying voxel c and moving voxel
d such that they end up at the same clock cycle in the same
pipeline. Hence, enabling the computation of the vertical
gradient component G, = -(c - d).

Figure 11 modifies that approach such that only near-
est neighbor connections are used. This makes one more
pipeline stage necessary which receives voxel d from the
pipeline to the right and sends it to the pipeline to the left,
Figure 12 then changes the forwarding directions so that tho
y-gradient is computed in the pipeline which also holds the
corresponding center voxel m.

124

II__ ^~ - -- ^~_ _ ----- -

/?I I I mem(e) = (x+y+(z-I)) %p = k-l

mem(c) = (x+&l)+z) %p = k-l

mem(m) = (x+y+z) %p = k

mem(d) = (x+(y+l)+z) %p = k+l

= (x+y+(z+l)) %p = k+l

memory module k+l

memory module k-l

delays in processing order
b = one beam delay = b clock cycles
s = one slice delay = n b clock cycles

Figure 9: Skewed positions of the gradient computation pa-
rameters (uoxels a-f).

c d

Gy = -(c-dJ

input ~1 pipdire. k P-i-’ (from pnvious pip-dine stage)

Delay of Zb clcek cych
x

f= Gy--(c-d) P f-$

Figure 10: Gradient y-component SFG, de-skewing and
proper time lineup.

Partial beams are tiled across each full beam. This is
illustrated in Figure 13 for two full beams in skewed space
each having five partial beams. The shaded circles represent
voxels with different intensities. In this example each partial
beam has four voxels.

Gy = fcdJ

J .s Y

Da

x =

Y = x

Figure 11: Gradient y-component SFG, with only nearest
neighbor connections.

G.v = fc-d)

Figure 12: Gradient y-component SFG, in which the result
is computed in the pipeline of the corresponding center voxel
m.

-
. ..-I. “is left nci@borof

n I) 7,

hewed Beam Stan t Physical Beam Stat

Figure 13: Two consecutive full beams in skewed space.

The voxel in the rightmost pipeline is usually the left
neighbor of the voxel in the leftmost pipeline one clock cycle
later. Consequently forwarding to the right requires buffer-
ing the rightmost voxel for one clock cycle. This buffer log-
ically extends the next partial beam. Due to the skewing,
the physical start of a beam changes from beam to beam.
Thus the leftmost and rightmost voxels of a beam are also
neighbors. Therefore, forwarding to the right requires the
rightmost pipeline to send its data to the leftmost one. Un-
fortunately, it arrives there a full beam processing time (b

125

_~ _. ___.~_..~ _.__ ----

cycles) too late. The Cube-4 architecture handled this by
reading the beam as soon as possible, but delaying the pro-
cessing of the data by b cycles which requires buffering of the
whole beam [4,13]. Figure 14 suggests a better approach by
shifting the beginning of a beam by one partial beam to the
right. The figure shows the partial beams being read in the
lejt column and the partial beams being processed in the
right column. The first partial beam read is buffered in an
extension unit for b - 1 cycles. The following partial beams
immediately process their data. After the last partial beam
is finished its rightmost voxel and the voxels from the exten-
sion buffer are used to perform the computations on the first
partial beam. This way, the extension buffer for each stage
that forwards data to the right shrinks from full beam size to
partial beam size. This increases the scalability of the archi-
tecture. Figure 15 shows the SFG using the just described
ideas for the wrap around connections between the ends of
partial beams.

Sequence of partial beams
being read

BS=I

BS=O

BS=O

BS=O

BS=O

BS=I

BS=O

BS=O

BS=O

BS=O

Sequence of those partial
beams being processed

BS=I

BS=O

BS=O

BS=O

BS=O

BS=l

BS=O

BS=O

BS=O

BS=O

arrows connect partial beams containing the same data

Figure 14: Two consecutive full beams in time.

i
I

Finally we show two alternatives for the complete x,y, and
x gradient computation in one SFG. Fig. 16 minimizes pin
count, while Fig. 17 minimizes on-chip buffer size. In Fig. 16

/ only two crossings between pipelines are needed. There-
fore, considering the connections to the left and to the right
pipeline, as well as 16 bits per voxel, this module needs

/ 2x2~16~64 I/O-pins. The drawback is that four full slice
, buffers are necessary. In Fig. 17 only two full slice buffers

I
are needed. However, each pipeline requires six connec-

E tions to one neighboring pipeline. Thus, this version needs
6x2x16=192 IO-pins. For both alternatives, the pin count
can be reduced by 75%, if only the four most significant bits
are sent across pipelines. This is feasible if the shader uses
only the four most significant bits of the computed gradient
components.

I I few ains I small buffers 1
buffer size -4 &es 2 sli&
IO-pins 16 bit 64 pins 192 pins

L bit 16 Dins 48 Dins

Table 1: Gradient hardware requirements

d

BS = BwnSlnn conlrol bll

x Is input darn, nomlully

forwarded lmmcdlnkly IO tic

OUpJl

only If BS=uue then x Is smcd

in Ihe D.FlIpRop nnd lbo old

vduc of x Is fonvudcd

Extenslocs IO the right have lo delay lhe BS wnlml bil by ICC

Figure 15: Gradient y-component SFG, in which the wrap

around connections can handle diflerences between jull-beam-
end and just partial-beam-end. An extension from the right

stores the data of the leftmost pipeline in the first partial
beam until the rest of the beam is processed, The extensions
from the left store the complete first partial beam until the

rest of the beam is processed.

3.3 Shading

Once the voxel intensity and the corresponding gradient are
available, the shader uses the intensity as an index into RGB
color tables, and the gradient as an index into (L reflectance
map. The color tables map different intensities to different
colors. This color transfer function can be used to segment
the data on the fly. The reflectance map is a quantized SO-
lution table for the illumination equation for rays along the
main viewing direction and any surface orientation [17]. The
final color of a shaded voxel is then composed from the values
returned from these tables. The most compact implemen-
tation just multiplies the RGB values from the color table
with the intensity taken from the reflectance map.

3.4 Classification

Usually pixels are represented by RGBA where A represents
the opacity cr. The opacity for each voxel is determined by
a classification function which depends on the voxel inten-
sity and the gradient magnitude. This function is stored in
another look-up table. Filling the table using different al-
gorithms allows very flexible viewing modes such as x-ray,
surface, fog, etc. Shading and classification are the same in
Cube-4 and Cube-4L.

3.5 Compositing

Cube-4L uses either back-to-front or front-to-back composit-
ing. The choice depends on the major viewing direction. If
in the dataset coordinate system the viewpoint is left, above,

126

ace bdf

(!f(= Gk=.fi.jj = m

Fipre 16: SFG for all gradient components - minimizing
pin count.

bdf
. . .

. . .

. . .

. . .

.

. . .

. . .

. . .

. . .

L

. . .

. . .

Figure 17: SFG for all gradient components - minimizing
internal buffer size.

127

or in front of the dataset, front-teback compositing is used
- otherwise back-to-front is employed. The compositing
equations read as follows:

Backto-front compositing
C = (1 - Anew) . Cacc + Cnew,
A = (1 - Anew) . Aacc + Anew.

Front-to-back compositing
C = (1 - Am,) . ‘Sew + Cacc,
A = (1 - A,,,) . A,,, + Am.

Here we use C,,, for any of the shaded voxel color com-
ponents (RGB), and A,,, for the classified voxel opacity,
while using the subscript occ for the corresponding accu-
mulated values taken from the compositing buffer. These
equations are evaluated in the Ck circles of Fig. 18.

Bilinear Interpolation

b

0 S == new pixel from the shader
and classification stages

0 == composition of new and accumulated pixels

Figure 18: Cornpositing with cornpositing bufler and bilinear
interpolation.

3.6 Compositing Buffer

The compositing buffer is a FIFO with a capacity of a full
slice of RGBA values. The compositing unit writes new
values to the bottom of the slice FIFO while the bilinear
interpolation reads from the top.

RGBA 48bit RGBA Shit
1 slice buffer 384 KBytes 256 KBytes
IO-pins 384 pins 256 pins

Table 2: Cornpositing hardware requirements

128

3.7 Bilinear Interpolation

The aims of the bilinear interpolation unit are to determine
the color at the intersection between the compositing buffer
plane and the sight ray through the already shaded voxel,
Recall that because of the viewing angle being limited to
f45’ the sight ray increments dx and dy are bounded. The
intersection can therefore only occur within a 3x3 region
around the current voxel. Figure 19 shows the skewed rcla-
tive positions of the voxels in that region. In order to transfer
the data from that region to the pipeline in which voxcl m
resides, a minimum of four pipeline stages is necessary -
three that forward their data to their right neighbors and
one that forwards to the left. This optimal configuration is
used in the SFG of Fig. 21.

f- unskewed positions

J
skewed positions

b
b

s-b

= (xt(y-1)tz) %p = k-2

= (xtytz) %p = k-l

= (xt(ytl)tz)%p = k

= (x+yt(ztl))%p = k

L 1 L
L memory module ktl
memory module k

memory module k-l

delay in processing order
b = one beam delay = b clock cycles
s = one slice delsy = n b clock cycles

Figure 19: Skewed relative positions of current voxel m, pos-

sibly influencing voxels a-i in the previous slice.

The possible region can be narrowed to a 2x2 region just
by evaluation of the sign of dx and dy (see the first two
stages in Figs. 20 and 21). The second two stages in Figs. 20
and 21 then compute the actual bilinear interpolation from
those four compositing buffer pixels. The dependency of the
interpolation weights from the sight ray increments is given
in Figs. 3 and 20.

4 Energy Distribution

In traditional ray casting each voxel can only contribute to a
maximum of four rays. The voxel energy distribution on the
image plane has very sharp edges. In our ray-slice-sweeping
algorithm, the energy of a voxel is concentrated along the ray
direction, but with each slice it spreads to the neighboring
voxels. This spreading is caused by the bilinear interpola-
tion. Thus, on average, a quarter of each voxel contribution
flows towards the nearest four voxels of the next slice. In

- ~.-__ ---. ---

,,, -(1+4X if dx4
r dxelse

,., -(kiy if dy<o
r dyelse

Back-to-Front Cornpositing Input/Output Format: A&C = RGBA]

Figure 20: Functionality of the pipeline stages in the bilin-
ear interpolation SFG (Fig. 21) assuming back-to-front com-
positing. For front-to-back compositing dx and dy have the
opposite sign slightly changing the computations.

da u
1

Figure 21: Bilinear Interpolation SFG.

the subsequent slice they spread over nine pixels, but also
recombine in the center. As a result, the energy distribution
function is a discrete approximation of the rapid decaying
function f(z) = 1/x2 rotated around the y-axis (see Fig. 22).
This shows great similarity to the filter kernels used in splat-
ting - and automatically provides anti&a&g.

energy energy

AL In
position position

Ray Cas ring Ray Slice Sweeping

Figure 22: Voxel Energy Distributions.

5 Results

A bit accurate C++ simulation delivered the images in
Figs. 23 and 24. The compositing buffer width was re-
stricted to 8 bits per RGBA channel and all fixpoint opera-
tions used 8 fractional bits. Fig. 23 shows a 2563 MRI head
in parallel projection. Fig. 24 is an image of a 320~320x34
CT dataset of a lobster rendered in perspective mode.

Figure 23: MRI head, parallel projection.

6 Conclusions

We have presented a volume rendering architecture which
allows the rendering of parallel and perspective projections
with low control overhead - especially in comparison to
the Cube-4 architecture. In Cube-4L there are only nearest

129

I
1

,

I

,

I

I
* ,

I

I

I

I

/
,

t

I
t

I

I

I

I

I

1

<
I

I
I

Figure 24: CT lobster, perspective projection.

neighbor connections required between rendering pipelines.
An implementation could be realized on one chip with two
parallel rendering pipelines. A higher number of pipelines
would also be possible.

We are currently investigating modifications to the al-
gorithm which will allow us to control the filter kernel
size. Other anticipated improvements include carring out
the compositing steps along trees rooted at each baseplane
pixel, including merging/splitting branches of the trees using
purely local information or globally predefined merges.

7 Acknowledgements

Many thanks to Hanspeter Pfister, Kevin Kreeger, Rank
Dachille, and Baoquan Chen for numerous productive dis-
cussions. This work has been supported by NSF grant MIP-
9527694, Japan Radio Corporation, Mitsubishi Electric Re-
search Laboratory, and Hewlett Packard.

References

[1] R. A. Drebin, L. Carpenter, and P. Hanrahan. Vol-
ume Rendering. In Computer Graphics, SIGGRAPH
88, volume 22(4), pages 65-74. ACM, August 1988.

[2] S. Dunne, S. Nape& and B. Rutt. Fast Reprojection of
Volume Data. In Proceedings of the 1st Conference on
Visualization in Biomedical Computing, pages 11-18,
Boston, MA, 1990.

[3] J. Fowler and R. Yagel. Lossless Compression of Volume
Data. In Proceedings of 1994 Symposium on Volume
Visualization, pages 43-50, Washington, DC, October
1994.

[4] U. Kanus, M. Meissner, W. Strasser, H. Pfister,
A. Kaufman, R. Amerson, R.J. Carter, B. Culbertson,
P. Kuekes, and G. Snider. Implementations of Cube-4

on the Teramac Custom Computing Machine. Comput-
ers and Graphics, 21(2), 1997.

[5] A.E. Kaufman, editor. Volume Visualization. IEEE
Computer Society Press, Los Alamitos, CA, 1991.

[S] P. Lacroute and M. Levoy. Fast Volume Rendering US-

ing a Shear-warp Factorization ot the Viewing ‘Dans-
form. In Computer Graphics, SIGGRAPH 94, Anual
Conference Series, pages 451-457. ACM, July 1994,

[7] M. Levoy. Display of Surfaces from Volume Data. IEEE
Computer Graphics and Applications, 8(5):29-37, May
1988.

[S] M. Levoy. Volume Rendering using the Fourier
Projection-slice Theorem. In Proceedings of Graphics
Interface ‘92, pages 61-69. Canadian Information Pro-
cessing Society, 1992.

[9] M. Levoy and P. Hanrahan. Light Field Rendering. In
Computer Graphics, SIGGRAPH 96, Anual Conference
Series, pages 31-42, New Orleans, LA, August 1996,
ACM.

[lo] T. Malebender. Fourier Volume Rendering. ACM
Transactions on Graphics, 12(3):233-250, July 1993,

[ll] S. Muraki. Volume Data and Wavelet Transform. I&!#
Computer Graphics 8 Applications, 13(4):50-56, July
1993.

[12] P. Ning and L. Hesselink. Fast Volume Rendering of
Compressed Data. In Proceedings of Visualization ‘93,
pages 11-18, October 1993.

[13] H. Pfister. Architectures for Real-Time Volume Render-
ing. PhD thesis, State University of New York at Stony
Brook, Computer Science Department, Stony Brook,
NY 11794-4400, January 1997.

[14] H. Pfister and A. Kaufman. Cube-4: A Scalable Ar-
chitecture for Real-Time Volume Rendering. In Pro-
ceedings of 1996 Symposium on Volume Visualization,
pages 47-54, San l%ancisco, CA, October 1996.

[15] L. Sobierajski and A. Kaufman. Volumetric Ray Trac-

ing. Volume Visualization Symposium Proceedings,
pages 11-19, October 1994.

[16] C. Upson and M. Keeler. V-BUFFER: Visible Volume
Rendering. In Computer Graphics, SIGGRAPH 88, vol-
ume 22(4), pages 59-64. ACM, August 1988.

[17] J. van Scheltinga, J. Smit, and M. Bosma. Design of an
On-Chip Reflectance Map. In Proceedings of the IUth
Eurographics Workshop on Graphics Hardware, pages
51-55, Maastricht, The Netherlands, August 1995.

[lS] L. Westover. Footprint Evaluation for Volume Ren-
dering. In Computer Graphics, SIGGRAPH ‘90, vol-

ume 24, pages 367-376. ACM, August 1990.

[19] R. Yagel and A. Kaufman. Template-based Volume
Viewing. In Proceedings Eurographics, volume 11(3),
pages 153-167. Eurographics Association, September
1992.

[20] B.-L. Yeo and B. Liu. Volume Rendering of Dct-Based
Compressed 3d Scalar Data. IEEE Transactions on Vi-
sualization and Computer Graphics, 1(1):29-43, March
1995.

130

