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Abstract 

Ray-slice-sweeping is a plane sweep algorithm for volume 
rendering, The compositing buffer sweeps through the vol- 
ume and combines the accumulated image with the new slice 
of just-projected voxels. The image combination is guided 
by sight rays from the view point through every voxel of 
the new slice. Cube-.#L is a volume rendering architecture 
which employs a ray-slice-sweeping algorithm. It improves 
the Cube-4 architecture in three ways. First, during per- 
spective projection all voxels of the dataset contribute to the 
rendering. Second, it computes gradients at the voxel posi- 
tions which improves accuracy and allows a more compact 
implementation, Third, Cube-AL has less control overhead 
than Cube-C 

Keywords: Volume Visualization, Volume Rendering Ar- 
chitecture, Hardware Design, Gradient Estimation, Com- 
positing, Perspective Projection 

1 Introduction 

Volume visualization is a method of extracting informa- 
tion from volumetric datasets through the use of interactive 
graphics and imaging, and is concerned with the representa- 
tion, manipulation and rendering of these datasets [5]. Most 
commonly, the data represents a continuous 3D function 
sampled on a ree;ular, rectilinear 3D grid of volume elements 
called uoxels. Depending on this 3D function (mathemati- 
cal, MRI, CT, ultrasound, etc.) voxels accordingly represent 
function value, density, absorption, etc. There are many dif- 
ferent approaches for rendering images from these volume 
datasets. Volume rendering includes only those techniques 
in which the image generation does not use any interme- 
diate surface representations of the sampled data. These 
techniques fall into four groups: object-order, image-order, 
and hybrid algorithms as well as domain methods. 
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Object-order algorithms compute each voxel contribution 
to all affected image pixels in object-storage order (e.g., 
splat&g [18]). Image-order algorithms compute each pixel 
color in image scan line order. For each pixel, a ray is 
cast into the volume, and all the voxels in the neighbor- 
hood of the ray are processed and composited to generate a 
color value for the pixel (e.g., ray-casting [7], volumetric ray- 
tracing [15]). These algorithms usually deliver higher image 
quality than object-order algorithms, but they also require 
more computation and tend to access each voxel multiple 
times. 

Hybrid algorithms combine object storage-order voxel ac- 
cess with image scan line processing order (e.g., slice trans- 
formation [1], cell-by-cell processing [16], template-based 
volume viewing [19], shear warp [6]). Good hybrid algo- 
rithms combine the high image quality of image-order al- 
gorithms with the efficient data access of object-order algo- 
rithms. 

Domain methods transform the data set from the spatial 
into another domain, such as frequency, wavelet, compres- 
sion, or light-field domain. Images are then rendered directly 
from the transformed domain data [2,8,9,10, 11,12,3,20]. 

Section 2 introduces ray-slice-sweeping -our new volume 
rendering algorithm. Section 3 describes the Cube-4L archi- 
tecture, a hardware design based on the ray-slice-sweeping 
algorithm, followed by a short analysis of the energy distri- 
bution of a voxel in Section 4 and results from our software 
simulator of the Cube-4L architecture in Section 5. 

2 Ray-Slice-Sweeping 

Cube-4L is based on a new hybrid algorithm, called ray- 
slice-sureeping. Each volume slice projects all its voxels to- 
wards the viewpoint, but only one inter-slice unit in dis- 
tance. In a sweep plane fashion, the compositing buffer 
sweeps through the volume from front-to-back and combines 
the images of the volume previously swept with the new slice 
of just-projected VOX& At the end of the sweep, the con- 
tent of the compositing buffer - the base plane image - 
has to be warped onto the image plane. The sweep is done 
in object storage order yet it is image-pixel driven, while the 
warp is performed in scan line order; thus, ray-slice-sweeping 
belongs to the hybrid algorithm group. The algorithm is de- 
signed specifically for perspective projections. Parallel pro- 
jections can be performed with the view point at infinity. 

While sweeping through the vohune in front-t-back pro- 
cessing order, each voxel of the current slice has to be col- 
ored, illuminated and classified resulting in RGBA intensi- 
ties for that voxel. The algorithm sweeps the dataset always 
in positive z direction, independent of the view point. With 
the view point in front of the dataset (Fig. 1) front-to-back 
compositing (Fig. 3) is used to combine the RGBA values of 
the current slice with those of the compositing buffer. If the 
view point is behind the dataset (Fig. 2) the back-to-front 
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compositing equations are applied (Fig. 3). The main differ- 
ence between ray-slice-sweeping and other ray casting based 
volume rendering algorithms is how the accumulated RGBA 
values are determined. 

viewpoint in fkmt of dataset 

parallel 3D projection perspective 3D projection 

parallel 2D warp . ..-“..~.-‘.....*~ _ perspective 20 warp 
_..f 

&.iZ~e~LlIe 1‘ 
,!. .* - . . . . . . . * L...... -- 

view point . ..-- ~ . ..T 
/...... ----- 

1....-’ 

Figure 1: Ray Slice Sweep (front-to-back cornpositing). 

, 

Figure 1 depicts the rays cast by the algorithm within a 
horizontal cut through the dataset. Horizontal lines in the 
figure represent the data slices which the algorithm processes 
in positive e direction. Dashed sight rays exceed the 45’ 
view angle limit and do not influence the final image. With 
the view point in front of the dataset the sight rays point 
towards the voxel grid positions and start in between voxels 
of the previous slice. For each voxel of a given slice the 
sight ray is traced back to its starting point on the previous 
slice. The compositing buffer contains accumulated colors 
of the whole volume up to the previous slice. Computing a 
bilinear interpolation of the four compositing buffer colors 
surrounding the rays’ starting point yields the colors needed 
to perform the compositing calculation for the current voxel 
(Fig. 3). Thus, all values written to the compositing buffer 
are aligned with the voxel grid. 

/ Figure 2 illustrates the sight rays for a viewpoint behind 
the dataset. Here, the sight rays start at the voxel posi- 
tions and point towards the previously processed slice. The 
accumulated colors used in the backto-front compositing 
equation are determined by bilinear interpolation of the four 
compositing buffer colors surrounding the rays’ end point 
(Fig. 3). 

All operations carried out during ray-slice-sweeping read 
and write data only witbin a local neighborhood of the cur- 
rently processed voxel. All those small modifications add up 
from slice to slice, such that at the end of the sweep all voxels 
have been shifted to the image position required by perspec- 
tive projection. Note that there are neither regions between 
rays in which voxel data is skipped, nor is any voxel used 
more than once. The algorithm automatically maintains a 
well balanced workload. 
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Figure 2: Ray Slice Sweep (back-to-front cornpositing), 
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C 
Aleft Aacc Aright 

lf(dx CO) wdx else w=l-dx 
Cacc = (l-w)Cleft + w Cright 
i&c = (l-R3AleR + w Aright 

C= (l-Aacc)Cnew + Cacc 
A = (l-Aacc)Anew + Aacc 

if(dx CO) w=l+dx olno Wdx 
Cacc = (1.w)Cloft+ w Cright 
Aacc = (l-w)Aloft + w Aright 

c= (1.Anow)Cacc + Cnow 
A = &Anew)Aaco + Anow 

C,A now= color (RGB) and alpha of current VOXO~ 
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C,A = RGBA compositing result, 

to be stored in compositing buffer 
at current voxel position 

Figure 3: Compositing. 

3 The Cube-4L Architecture 

Cube-4 is a pipelined scalable volume rendering architecture 
based on ray casting [4, 13, 141. Cube-4L is a modification 
of Cube-4 simplifying it by using an implementation of ray- 
slice-sweeping. Cube-4L uses sample points directly on the 
voxel grid. Therefore, the trilinear interpolation stage of 
Cube-4 is not needed and the gradient computation is sim- 
plified. Furthermore, in perspective projection all voxels of 
the dataset contribute to the rendering. As there is also 

less control information for rays, the implementation can be 
more compact - hence the name: Cube-4 Light. 

Figure 4 gives an overview of the Cube-4L architecture, 
The voxel memory is distributed over several memory mod- 
ules. Equally many rendering pipelines - each on a separate 
Cube-4L chip - are working on the 3D projection simulta- 



neously. They only need nearest neighbor connections for 
horizontal communication until the final base plane pixels 
are computed, These pixels are sent over a global pixel bus 
to the host or graphics card memory to be assembled into 
one image and warped onto the final image plane. 

I I I 

I I 

Cube-4L t--, Cube-4L +-) ... t-t 
chip chip chip 

f 
pixel Bus 

1 5 1 
1 Host 1 

Figure 4: The Cube-IL Architecture. 

The following detailed description of the Cube-4L ren- 
dering pipeline modules uses signal flow graphs (SFG) as 
described in [13]. Circles represent pipeline stages. Vertical 
arcs show the data flow within a pipeline, while diagonal 
arcs show data flow between pipelines. The weight on each 
arc represents for how many pipeline cycles the data has to 
be delayed before reaching the next pipeline stage. All units 
assume partial beam processing: beams are rows of vox- 
els and breaking a beam into equal sized segments produces 
partial beams; the size of a partial beam is equal to the num- 
ber of parallel pipelines implemented in hardware (Fig. 5). 
To handle the differences between partial-beam-end, beam- 
end and slice-end, each module has an extension unit (EX) 
at every pipeline stage with neighbor connections. Details 
about the Cube-4L architecture not mentioned in this paper 
are assumed to be handled the same way as in the Cube-4 
architecture. 

0 partial beam @ voxele) 
I- full beam (n voxele) 

slice (n’voxels) 

for each volume : increment s&as in positive z direction 
for each slice : increment !idl beams in positive y direction 

for each full beam: increment partial beams in positive x direction 

Figure 5: The Partial Beam Processing Order. Nb: current partial beam number. 

3.1 Cubic Frame Buffer 

The Cubic Frame Buffer (CFB) contains memory modules 
for distributed skewed storage of voxels as well as an ad- 
dress generator and a control unit. It is the only stage in 
the CubedL rendering pipeline [Fig. 6) with global position 
information, It must make all global decisions for all pipeline 
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Figure 6: The Cube-.JL Rendering Pipeline. 

modules. The subsequent stages make their selections based 
on the control bits generated in the CFB. 

These are a few abbreviations we employ: 

(i, k) Memory Space coordinates: k = memory mod- 
ule number, i = address in module. 

(w, Vd, ‘uld) Dataset Space coordinates: right handed, 
view independent and static. 

(+, y,, zp) Pipeline Space coordinates: right handed, 
view dependent and changes if major view direction 
changes. 

n: number of voxels along one axis of a cubic dataset. 

p: number of parallel pipelines. 

k: current pipeline number. 

b: number of partial beams (p - b = n). 

N,: current slice number. 

NB: current beam number. 

SR: control bit for start of ray 

ER: control bit for end of ray 

First, the CFB has to calculate the position of the voxel 
starting to flow down the pipeline in the current clock cycle. 
An efficient incremental algorithm for this needs only a few 
local registers to store counters for the current partial beam 
number Nb, the beam number NB, and the slice number 
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N,. The result is the 3D voxel position P = (x, y, z) in the 
pipeline coordinate system. The view point V is also defined 
in the pipeline coordinate system. 

The sight ray S of a voxel is the vector from the view- 
point to the voxel position. Thus, the sight ray is the vector 
S = P - V (see Fig. 7). Normalizing S yields do = S,/S, 
and dy = SY/SZ. These normalized x and y components 
determine the bilinear interpolation weights (Fig. 6) and are 
forwarded to the compositing unit. They are also range 
checked. If l&I > 1 or ldyl > 1, then the viewing angle 
exceeds 45’ and the invalid bit is set to true; to make those 
voxels valid, the architecture would need more than nearest 
neighbor connections. The shading stage assigns complete 
transparency (cr = 0) to those shaded voxels which have the 
invalid bit set. As in Cube-4 for any arbitrary viewing di- 
rection one of the faces of the data cube has a normal within 
f45’ of the sight ray. The slices processed by the algorithm 
are parallel to that slice. Therefore, the restriction to us- 
ing only nearest neighbors is feasible. For parallel viewing 
all sight rays are the same; sweeping the volume once de- 
livers the complete image. In perspective projection mode 
the sight rays differ for each voxel, as might the faces for 
which the normal is within f45’. This happens especially 
for viewpoints close to or inside the dataset. To acquire a 
full image with these settings, multiple sweeps through the 
data volume in different processing directions are necessary. 
The final image is assembled from the regions of valid pixels 
in the different base plane images. 

S = P-V = sight ray 

coordinate “P = sample position 

J 

Figure 7: Sight ray and different coordinate systems. 

All Cube architectures share the same memory layout. A 
voxel at position P’ = (u, v, w) is stored in memory mod- 
ule k = (u + v + w) mod p. This is called skewed memory. It 
distributes the voxels across memory modules such that all 
voxels of a partial beam parallel to the x,y or z axis reside in 
different memory modules. Thus, they can be accessed con- 
flict free. All computation in the pipeline assumes working 
on slices perpendicular to the z axis and uses pipeline coor- 
dinates. To compute the voxel memory address, the vector 
P = (x, y,z) has to be transformed into the dataset coordi- 
nate system. The transformed vector P’ = (u, u, w) is used 
to compute the address: i = u div p + w b + w b ny. While 
storing the data one has to ensure that a voxel at position 
(u, u, w) is written to memory module k = (u+u+w) modp. 
However, in the rendering mode, this computation is implicit 
- each pipeline has only one dedicated memory module. 

To be certain that voxels are only shaded if they have 
valid gradients, the CFB also has to set the invalid bit for 
all those voxels that have a direct neighbor on the other end 
of the data set. For those voxels the CFB might also have to 
set the SR or ER bits (i.e., ER should be true if the current 
voxel is on the left most slice of the dataset and dx < 0). 
The latter two bits are forwarded to the compositing unit, 
where they enable the compositing buffer reset (SR) and the 
pixel output to the final image (ER). 

The CFB also has to set the start of beam (BS) bit when- 
ever the current partial beam is the first on a full beam. This 
bit is needed in the extension units. 

Finally, to output the final pixels to the unskewed base 
plane position, the CFB must compute the pixel address for 
each cornpositing buffer element. The coordinates are 

X = (%.p+k-N,-(Ng-1)+2n)modn 

t-N,. 
{ 

1 if dx > 0 
0 if dx = 0 

-1 ifdx< 0 

and 

1 if dy> 0 
Y = (Ng-l)+NS- 

1 
0 if dy = 0 

-1 if dy< 0 

3.2 ABC Gradient Estimation 

The gradients used for shading in Cube-4L are central differ- 
ence gradients (see Fig. 8). As a consequence, we need the 
six axis-aligned neighbors (a-f) of a voxel m to compute the 
gradient. In Cube-4 the gradients are computed using neigh- 
boring sample points. Fortunately, in Cube-4L all necessary 
neighbors are on the voxel grid. Thus, no interpolation and 
no gradient corrections are necessary. 

Z 

f- 

Gx=-(a-b) 
F/f 

ahead slice (0 
’ Gy=-(c-d) current slice (m, a,b, c,d) 

Y Gz = -(e - f~ :?r” behind slice (e) 

Figure 8: Gradient components and the unskewed spatial re- 
lationship of the six computation parameters (uoxels a-f). 

The voxels needed for the computation reside in three 
planes - the ahead, behind and current (ABC) slices - 
reflecting the processing order of the slices, They are stored 
in the ABC slice FIFO buffers. In fact, only the B and C 
slices are stored in a FIFO; the ahead slice comes directly 
from the CFB. 

Figure 9 shows the spatial and temporal relationships be- 
tween the gradient computation parameters considering the 
skewing. Voxel e is read first. After b(n - 1) = (s-a) cycles 
voxel c is available in the same pipeline. b cycles later, voxel 
a is read in the same pipeline and voxel b two pipelines to 
the right. That pipeline also reads voxels d and f after b and 
b(n - 1) more cycles. The following figures show the SFGs 
delaying and moveing those voxels so that they can be used 
to compute the three gradient components. Starting with 
the easiest possible approach, each new figure adds another 
inherent consideration. At the bottom of each graph new 
logical symbols are explained. 

Figure 10 shows an SFG computing only the y-component 
of the gradient. It achieves delaying voxel c and moving voxel 
d such that they end up at the same clock cycle in the same 
pipeline. Hence, enabling the computation of the vertical 
gradient component G, = -(c - d). 

Figure 11 modifies that approach such that only near- 
est neighbor connections are used. This makes one more 
pipeline stage necessary which receives voxel d from the 
pipeline to the right and sends it to the pipeline to the left, 
Figure 12 then changes the forwarding directions so that tho 
y-gradient is computed in the pipeline which also holds the 
corresponding center voxel m. 
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Figure 9: Skewed positions of the gradient computation pa- 
rameters (uoxels a-f). 

c d 

Gy = -(c-dJ 

input ~1 pipdire. k P-i-’ (from pnvious pip-dine stage) 

Delay of Zb clcek cych 
x 

f= Gy--(c-d) P f-$ 

Figure 10: Gradient y-component SFG, de-skewing and 
proper time lineup. 

Partial beams are tiled across each full beam. This is 
illustrated in Figure 13 for two full beams in skewed space 
each having five partial beams. The shaded circles represent 
voxels with different intensities. In this example each partial 
beam has four voxels. 

Gy = fcdJ 

J .s Y 

Da 

x = 

Y = x 

Figure 11: Gradient y-component SFG, with only nearest 
neighbor connections. 

G.v = fc-d) 

Figure 12: Gradient y-component SFG, in which the result 
is computed in the pipeline of the corresponding center voxel 
m. 

- 
. ..-I. “is left nci@borof 

n I) 7, 

hewed Beam Stan t Physical Beam Stat 

Figure 13: Two consecutive full beams in skewed space. 

The voxel in the rightmost pipeline is usually the left 
neighbor of the voxel in the leftmost pipeline one clock cycle 
later. Consequently forwarding to the right requires buffer- 
ing the rightmost voxel for one clock cycle. This buffer log- 
ically extends the next partial beam. Due to the skewing, 
the physical start of a beam changes from beam to beam. 
Thus the leftmost and rightmost voxels of a beam are also 
neighbors. Therefore, forwarding to the right requires the 
rightmost pipeline to send its data to the leftmost one. Un- 
fortunately, it arrives there a full beam processing time (b 
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cycles) too late. The Cube-4 architecture handled this by 
reading the beam as soon as possible, but delaying the pro- 
cessing of the data by b cycles which requires buffering of the 
whole beam [4,13]. Figure 14 suggests a better approach by 
shifting the beginning of a beam by one partial beam to the 
right. The figure shows the partial beams being read in the 
lejt column and the partial beams being processed in the 
right column. The first partial beam read is buffered in an 
extension unit for b - 1 cycles. The following partial beams 
immediately process their data. After the last partial beam 
is finished its rightmost voxel and the voxels from the exten- 
sion buffer are used to perform the computations on the first 
partial beam. This way, the extension buffer for each stage 
that forwards data to the right shrinks from full beam size to 
partial beam size. This increases the scalability of the archi- 
tecture. Figure 15 shows the SFG using the just described 
ideas for the wrap around connections between the ends of 
partial beams. 

Sequence of partial beams 
being read 

BS=I 

BS=O 

BS=O 

BS=O 

BS=O 

BS=I 

BS=O 

BS=O 

BS=O 

BS=O 

Sequence of those partial 
beams being processed 

BS=I 

BS=O 

BS=O 

BS=O 

BS=O 

BS=l 

BS=O 

BS=O 

BS=O 

BS=O 

arrows connect partial beams containing the same data 

Figure 14: Two consecutive full beams in time. 

i 
I 

Finally we show two alternatives for the complete x,y, and 
x gradient computation in one SFG. Fig. 16 minimizes pin 
count, while Fig. 17 minimizes on-chip buffer size. In Fig. 16 

/ only two crossings between pipelines are needed. There- 
fore, considering the connections to the left and to the right 
pipeline, as well as 16 bits per voxel, this module needs 

/ 2x2~16~64 I/O-pins. The drawback is that four full slice 
, buffers are necessary. In Fig. 17 only two full slice buffers 

I 
are needed. However, each pipeline requires six connec- 

E tions to one neighboring pipeline. Thus, this version needs 
6x2x16=192 IO-pins. For both alternatives, the pin count 
can be reduced by 75%, if only the four most significant bits 
are sent across pipelines. This is feasible if the shader uses 
only the four most significant bits of the computed gradient 
components. 

I I few ains I small buffers 1 
buffer size -4 &es 2 sli& 
IO-pins 16 bit 64 pins 192 pins 

L bit 16 Dins 48 Dins 

Table 1: Gradient hardware requirements 

d 

BS = BwnSlnn conlrol bll 

x Is input darn, nomlully 

forwarded lmmcdlnkly IO tic 

OUpJl 

only If BS=uue then x Is smcd 

in Ihe D.FlIpRop nnd lbo old 

vduc of x Is fonvudcd 

Extenslocs IO the right have lo delay lhe BS wnlml bil by ICC 

Figure 15: Gradient y-component SFG, in which the wrap 

around connections can handle diflerences between jull-beam- 
end and just partial-beam-end. An extension from the right 

stores the data of the leftmost pipeline in the first partial 
beam until the rest of the beam is processed, The extensions 
from the left store the complete first partial beam until the 

rest of the beam is processed. 

3.3 Shading 

Once the voxel intensity and the corresponding gradient are 
available, the shader uses the intensity as an index into RGB 
color tables, and the gradient as an index into (L reflectance 
map. The color tables map different intensities to different 
colors. This color transfer function can be used to segment 
the data on the fly. The reflectance map is a quantized SO- 
lution table for the illumination equation for rays along the 
main viewing direction and any surface orientation [17]. The 
final color of a shaded voxel is then composed from the values 
returned from these tables. The most compact implemen- 
tation just multiplies the RGB values from the color table 
with the intensity taken from the reflectance map. 

3.4 Classification 

Usually pixels are represented by RGBA where A represents 
the opacity cr. The opacity for each voxel is determined by 
a classification function which depends on the voxel inten- 
sity and the gradient magnitude. This function is stored in 
another look-up table. Filling the table using different al- 
gorithms allows very flexible viewing modes such as x-ray, 
surface, fog, etc. Shading and classification are the same in 
Cube-4 and Cube-4L. 

3.5 Compositing 

Cube-4L uses either back-to-front or front-to-back composit- 
ing. The choice depends on the major viewing direction. If 
in the dataset coordinate system the viewpoint is left, above, 
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Figure 17: SFG for all gradient components - minimizing 
internal buffer size. 
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or in front of the dataset, front-teback compositing is used 
- otherwise back-to-front is employed. The compositing 
equations read as follows: 

Backto-front compositing 
C = (1 - Anew) . Cacc + Cnew, 
A = (1 - Anew) . Aacc + Anew. 

Front-to-back compositing 
C = (1 - Am,) . ‘Sew + Cacc, 
A = (1 - A,,,) . A,,, + Am. 

Here we use C,,, for any of the shaded voxel color com- 
ponents (RGB), and A,,, for the classified voxel opacity, 
while using the subscript occ for the corresponding accu- 
mulated values taken from the compositing buffer. These 
equations are evaluated in the Ck circles of Fig. 18. 

Bilinear Interpolation 

b 

0 S == new pixel from the shader 
and classification stages 

0 == composition of new and accumulated pixels 

Figure 18: Cornpositing with cornpositing bufler and bilinear 
interpolation. 

3.6 Compositing Buffer 

The compositing buffer is a FIFO with a capacity of a full 
slice of RGBA values. The compositing unit writes new 
values to the bottom of the slice FIFO while the bilinear 
interpolation reads from the top. 

RGBA 48bit RGBA Shit 
1 slice buffer 384 KBytes 256 KBytes 
IO-pins 384 pins 256 pins 

Table 2: Cornpositing hardware requirements 
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3.7 Bilinear Interpolation 

The aims of the bilinear interpolation unit are to determine 
the color at the intersection between the compositing buffer 
plane and the sight ray through the already shaded voxel, 
Recall that because of the viewing angle being limited to 
f45’ the sight ray increments dx and dy are bounded. The 
intersection can therefore only occur within a 3x3 region 
around the current voxel. Figure 19 shows the skewed rcla- 
tive positions of the voxels in that region. In order to transfer 
the data from that region to the pipeline in which voxcl m 
resides, a minimum of four pipeline stages is necessary - 
three that forward their data to their right neighbors and 
one that forwards to the left. This optimal configuration is 
used in the SFG of Fig. 21. 

f- unskewed positions 

J 
skewed positions 

b 
b 

s-b 

= (xt(y-1)tz) %p = k-2 

= (xtytz) %p = k-l 

= (xt(ytl)tz)%p = k 

= (x+yt(ztl))%p = k 

L 1 L 
L memory module ktl 
memory module k 

memory module k-l 

delay in processing order 
b = one beam delay = b clock cycles 
s = one slice delsy = n b clock cycles 

Figure 19: Skewed relative positions of current voxel m, pos- 

sibly influencing voxels a-i in the previous slice. 

The possible region can be narrowed to a 2x2 region just 
by evaluation of the sign of dx and dy (see the first two 
stages in Figs. 20 and 21). The second two stages in Figs. 20 
and 21 then compute the actual bilinear interpolation from 
those four compositing buffer pixels. The dependency of the 
interpolation weights from the sight ray increments is given 
in Figs. 3 and 20. 

4 Energy Distribution 

In traditional ray casting each voxel can only contribute to a 
maximum of four rays. The voxel energy distribution on the 
image plane has very sharp edges. In our ray-slice-sweeping 
algorithm, the energy of a voxel is concentrated along the ray 
direction, but with each slice it spreads to the neighboring 
voxels. This spreading is caused by the bilinear interpola- 
tion. Thus, on average, a quarter of each voxel contribution 
flows towards the nearest four voxels of the next slice. In 
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Figure 20: Functionality of the pipeline stages in the bilin- 
ear interpolation SFG (Fig. 21) assuming back-to-front com- 
positing. For front-to-back compositing dx and dy have the 
opposite sign slightly changing the computations. 
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1 

Figure 21: Bilinear Interpolation SFG. 

the subsequent slice they spread over nine pixels, but also 
recombine in the center. As a result, the energy distribution 
function is a discrete approximation of the rapid decaying 
function f(z) = 1/x2 rotated around the y-axis (see Fig. 22). 
This shows great similarity to the filter kernels used in splat- 
ting - and automatically provides anti&a&g. 

energy energy 

AL In 
position position 

Ray Cas ring Ray Slice Sweeping 

Figure 22: Voxel Energy Distributions. 

5 Results 

A bit accurate C++ simulation delivered the images in 
Figs. 23 and 24. The compositing buffer width was re- 
stricted to 8 bits per RGBA channel and all fixpoint opera- 
tions used 8 fractional bits. Fig. 23 shows a 2563 MRI head 
in parallel projection. Fig. 24 is an image of a 320~320x34 
CT dataset of a lobster rendered in perspective mode. 

Figure 23: MRI head, parallel projection. 

6 Conclusions 

We have presented a volume rendering architecture which 
allows the rendering of parallel and perspective projections 
with low control overhead - especially in comparison to 
the Cube-4 architecture. In Cube-4L there are only nearest 
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Figure 24: CT lobster, perspective projection. 

neighbor connections required between rendering pipelines. 
An implementation could be realized on one chip with two 
parallel rendering pipelines. A higher number of pipelines 
would also be possible. 

We are currently investigating modifications to the al- 
gorithm which will allow us to control the filter kernel 
size. Other anticipated improvements include carring out 
the compositing steps along trees rooted at each baseplane 
pixel, including merging/splitting branches of the trees using 
purely local information or globally predefined merges. 
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