
Computational Aesthetics in Graphics, Visualization, and Imaging (2012)
D. Cunningham and D. House (Editors)

A Technique for Art Direction of Physically Based Fire
Simulation

A. Bangalore1,2 and D. H. House2

1Dreamworks Animation SKG, USA
2Digital Production Arts, Clemson University, USA

Figure 1: Wolf and lion shaped flames simulated and rendered using our method

Abstract
This paper presents a new approach to the art direction of individual flames in a physically based fire simulation.
Fire, due to its warm colors and constant movement, often becomes the main attraction to the viewer’s eye in a
scene. Therefore, being able to control a fire simulation to obtain a desired look or shape is crucial if simulation
is to be used to create a fire effect. Our technique provides control over this chaotic natural phenomenon at a fine
level, enabling the artist to add character to flames and create highly stylized visuals. The fire system itself is a fully
physics-based two-gas system, where flames are advected along convection currents generated by combustion. Our
method provides artistic control of these convection currents, using a set of imported curves drawn by an artist.
A full description of the implementation and performance of the fire system, and our control method is presented.
The technique is illustrated with examples of highly stylized flame artwork rendered using our system.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling

c© The Eurographics Association 2012.

DOI: 10.2312/COMPAESTH/COMPAESTH12/045-054

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/COMPAESTH/COMPAESTH12/045-054


A. Bangalore & D. H. House / A Technique for Art Direction of Physically Based Fire Simulation

1. Introduction

Computer generated simulations of natural phenomena are
widely used to produce visual effects in highly engaging
movies and games. In general, efficient numerical methods
are combined with physics-based dynamics to create general
animation systems for visual effects. The computer gener-
ated effects produced by these systems would be very ex-
pensive if not impossible to create in real life.

Natural phenomena in visual effects are often required as
environmental elements that interact with the characters or
serve as a stage on which they perform. Rarely are these el-
ements the “chief performers” in a scene. Therefore, having
purely physically based controls for the simulation systems
is often sufficient for their animation.

Fire, on the other hand, is an element that strongly attracts
attention in a scene, rather than just behaving like a prop.
One of the best examples of this would be the depiction of
fire breathing dragons. Each dragon is characterized by the
appearance of the fire it breathes, and thus the flames re-
quire careful art direction. For these purposes purely physics
based controls, which typically provide only for the setting
of various parameters and initial conditions, are not enough
to provide the artistic control that is needed. Although there
has been attention paid to the problem of tuning a simulation
to produce a predictable outcome, for example see Bruckner
and Möller [SB10], there has been no work that would pro-
vide the kind of control needed to produce highly stylized
fire effects. Traditional production methods for influencing
fire include subjecting a system of particles to wind forces,
turbulence or other physics or noise based influences. While
these methods can be very good at creating a realistic fire
look, they require multiple iterations by an effects artist to
get the desired result. Also, it is difficult to use these meth-
ods for fine artistic control of individual flames. The artist
is reduced to tweaking a number of physics based param-
eters that tend to be unintuitive and unpredictable. Thus, it
would be highly beneficial to provide control at the level
of the shape and timing of individual flames, within a true
physics-based fire simulation.

The focus of the work, described in this paper, has been
on directly controlling convection currents within a physical
fire model. The shape of the flame in a burn is controlled by
convection currents induced by temperature gradients, which
in turn are generated by combustion. Thus, controlling con-
vection currents provides the secondary effect of controlling
flame shape. The approach allows us to create “flame anima-
tions”, as depicted in the wolf and lion examples shown in
Figure 1. The input to our system is a set of space curves,
drawn by an artist and imported into our system. The curves
need not be fixed, but can themselves be animated via hand-
controlled keyframing. This results in a very intuitive sys-
tem, where the vision of the artist is precisely recreated. In
addition, the idea of a flame as a paint stroke is incorporated
into our control mechanism, which allows the flame to be

shaped by varying the amount of fuel in different parts of
the flame.

The system itself consists of the four main components
shown in Figure 2: the Fire System, the Fluid Solver, the
Curve System, and the Volume Renderer. These are ex-
plained in detail in Section 6. The Fire System is the central
controller for the simulator, and accepts two sets of inputs
from the user. The first is a set of physics based input param-
eters which includes the burn rate, the stoichiometric ratio,
the oxygen density, amount of heat produced during com-
bustion, the diffusion rate, and the source density of fuel.
These parameters control the combustion reaction and the
gas motion as described in the background section. The sec-
ond is a set of B-spline curves that the user draws and then
imports into the program. At each frame, the fire system
computes the required data for the simulation step, using the
fluid solver to solve the equations for fuel gas, heat and ve-
locity. The resulting ignited fuel density in the grid is used
as input to the volume renderer, which renders the frame.

Figure 2: Flowchart of the Fire Simulator

2. Background

A flame is the visible, light emitting, gaseous part of a fire.
Fire is the result of combustion, which is an exothermic re-
action between a fuel and oxidant producing carbon dioxide,
water and energy. As shown in Figure 3 fuel, preheated by
ignition, when mixed with an oxidizing gas starts the pro-
cess, creating a reaction zone at the boundary of the flame
(flame front). The heated fuel at the center of the flame is
broken down into smaller molecules and radicals due to the
lack of oxygen. This is very luminous and gives flames their
distinctive yellow color. As the reaction zone is approached,
the increasing amount of oxidizing gas allows the chemi-
cal combustion reaction to occur. Combustion continues un-
til the stoichiometric contour (flame front) is passed and the
reaction is completed. The heat produced creates convection
currents which control the shape of the flame [MK02].

c© The Eurographics Association 2012.

46



A. Bangalore & D. H. House / A Technique for Art Direction of Physically Based Fire Simulation

Figure 3: A Simple Flame Model, redrawn with permission
from Melek and Keyser. [MK02]

Flame propagation is explained by two phenomena: heat
conduction and diffusion. In heat conduction, heat flows
from the flame front to the inner cone, the area containing
the unburned mixture of fuel and air. When the unburned
mixture is heated to its ignition temperature, it combusts in
the flame front, and heat from that reaction again flows to the
inner cone, thus creating a cycle of self-propagation. In dif-
fusion, a similar cycle begins when reactive molecules pro-
duced in the flame front diffuse into the inner cone and ignite
the mixture [bri]. Diffusion or laminar flames are created
when pure fuel gas from the fuel source mixes with the oxi-
dizing gas through the mixture zone. If the fuel is mixed with
oxidizing gas before ignition, a premixed flame is produced.
The focus of our work is on diffusion flames.

In the most common type of flame, hydrocarbon flames,
the most important factor determining color is oxygen sup-
ply and the extent of fuel-oxygen pre-mixing, which deter-
mines the rate of combustion and thus the temperature and
reaction paths, thereby producing different color hues. Fig-
ure 4 shows four bunsen burner flames created by varying the
mixture of fuel and oxygen. On the left, a rich fuel with no
premixed oxygen produces a yellow sooty diffusion flame,
on the right a lean, fully oxygen premixed, flame produces
no soot and the flame color is produced by molecular radi-
cals [wik].

3. Non-physically based fire models

The earliest reported fire model in computer graphics was
by Reeves [Ree83]. This was based on particle-systems and
some randomness. Reeves’ method was used in the movie
Star Trek: The wrath of Khan to create an expanding wall
of fire. However, a large number of particles was required to

Figure 4: Different Colored flames based on oxygen sup-
ply [wik]

hide the pointilistic nature of the technique and the fire had
obvious grainyness.

Perlin noise based systems [Per85,Per02], using animated
spatially and temporally coherent noise textures, are com-
monly used to enhance the look of particle systems to cre-
ate pyroclastic and lava-like effects. This approach, depends
heavily on randomness and tuning parameters, and thus is
not appropriate when a high degree of control is desired.

Beaudin et al. [BPP01], introduced a set of techniques
used together to produce realistic looking animations of
burning objects. They used flames as primitives instead of
particles to model the fire. Their flames are essentially de-
formable chains or skeletons of vertices rooted on the sur-
face of an object. Flame genesis and animation consist of
placing flames on a surface and deforming them according
to a space and time-dependent vector field in order to capture
the visual dynamics of fire. Implicit surfaces are generated
around these chains and displayed using a volumetric tech-
nique. The concept of flame skeletons helps in microscopic
control of the flames but the calculation of the vector field
to modify particles is difficult for artistically driven flames.
The implicit surfaces required for visualization are complex
and difficult to generate for artistic cases.

Lamorlette and Foster [LF02] describe a non-physics
based fire model with focus on controlling the fire using
parametric space curves. These curves evolve over time ac-
cording to a combination of physics-based, procedural and
hand-defined wind fields. A cylindrical profile is used to
build an implicit surface representing the oxidation region
and particles are sampled close to this region using a volu-
metric falloff function. Two levels of noise are added to pro-
vide turbulent detail. This system can be used for animating

c© The Eurographics Association 2012.

47



A. Bangalore & D. H. House / A Technique for Art Direction of Physically Based Fire Simulation

a variety of natural fire effects and provides complete control
over the large-scale behavior.

The non-physical models described above use some kind
of noise to add the turbulent detail that occurs as a result of
the combustion reaction. These noise functions are a draw-
back when very fine level control is desired for highly styl-
ized fire. In this paper we use a spline based control system
similar to the one described by Lamorlette and Foster. How-
ever we use these control curves to control convection cur-
rents in a physical simulation to achieve fine control of the
flame.

4. Physically Based Fire Simulation

A fire can be thought of as fluid simulation modeling two
interacting fluids, and heat. The fluids are a fuel gas, and an
oxidizing gas, and the heat affects the fluid’s density, thus
inducing convection currents. The resulting complex behav-
ior of the fluid mixture can be described mathematically by
the Navier-Stokes equations. Thus, a solver for this equation
is an integral part of a physically based fire simulator. Vari-
ous fire simulation models, starting from this approach, have
been proposed in the literature, notably those by Nguyen et
al. [DN02], and Melek and Keyser [MK02]. The work re-
ported here uses the latter as a foundation for art directed
fire.

Fluid simulation methods are of two types, Eulerian,
which discretize space by observing the fluid through grid-
ded data and Lagrangian which discretize the fluid itself
into smaller pieces each with its own set of parameters.
A pure Lagrangian method like Smoothed Particle Hy-
drodynamics [MCG03] is useful for modeling chaotic be-
havior like splashes,etc but produces discontinuity in the
fluid, which we do not desire. Thus, in our work we use
the Semi-Lagrangian Stable Fluid solver, as described by
Stam [Sta99], where advection in the fluid is computed us-
ing a Lagrangian approach, but all forces are handled in an
Eulerian framework.

4.1. Stable Fluids

In compact form, the incompressible Navier-Stokes equa-
tions governing fluid flow are

∂u
∂t

= f − (u ·∇)u− 1
ρ
∇p+ν∇2u, (1)

∇·u = 0. (2)

Equation 1 represents the conservation of momentum in the
fluid and equation 2 represents the constraint that the fluid
be incompressible, requiring a divergence free flow. In the
equations u is the velocity field, p is a pressure field, ν is
the kinematic viscosity of the fluid, ρ is the density and f
is an external body force field, such as gravity. The second
term of equation 1 accounts for the advection of the velocity
field on itself. The third term accounts for the forces due

to pressure gradients, and the fourth is the diffusion term,
which accounts for viscous forces.

Advancement of these equations for each time step is
achieved by updating a candidate velocity field in three main
steps (full details are given in [Sta99]):

1. Advection : This is done using a Lagrangian approach,
tracing each position in the velocity field backwards one
time step and updating the current velocity with the ve-
locity found by backtracing. This preserves fluid momen-
tum. In our fire solver, temperature (heat), as well as ve-
locity, is also advected in this way.

2. Diffusion : This step adds a force due to fluid viscosity ν,
tending to align adjacent velocity streamlines. It is com-
puted using an implicit Euler integration step based on
finite differences over the fluid computation grid.

3. Projection : This step enforces incompressibility of the
flow by making it divergence free. This effectively repro-
duces the effect of pressure on the fluid, and is responsi-
ble for the production of vortices in the flow. A Poisson
equation is solved to obtain a pressure field, and the re-
sulting pressure gradient is applied to the velocity field
to project the current field onto the nearest (in the least
squared error sense) divergence free velocity field.

The fire model described in the next section uses this fluid
solver to compute the velocity, fuel and temperature fields
at every time step of simulation. The fire model also has ad-
ditional routines to account for the combustion reaction that
occurs.

4.2. Fire Model

Heat is also transported with the flow of the air, and affects
the buoyancy forces and changes the flow accordingly. Suf-
ficient heat, and an appropriate mixture of the air and fuel
gas, creates a combustion reaction, releasing more heat into
the system. This creates convection currents which give the
flame its shape. Later, we will explain how we art direct
flames by controlling the convection currents. Here, we out-
line the fire simulation model that we use.

Melek and Keyser [MK02], and Melek [Mel08] present a
physically accurate model of fire, which we have incorpo-
rated into our system. They make several assumptions and
simplifications that we carry over into our implementation.
These are, quoting loosely from Melek and Keyser [MK02]
pp. 6-7:

• The fuel gas is uniform. That is, the fuel is either burned
or unburned, and that any combustible byproducts behave
exactly the same as the original fuel, and that the amount
of heat produced is a function of just the amount of fuel
burned.

• The compression of the gases as a result of explosive com-
bustion is ignored. Since basically stable flames are sim-
ulated, it is unlikely that this compression will have a sig-
nificant visual effect on the solution. The total amount of

c© The Eurographics Association 2012.

48



A. Bangalore & D. H. House / A Technique for Art Direction of Physically Based Fire Simulation

gas (fuel, oxidizer, and exhaust) in a unit volume is as-
sumed to be constant.

• Heat and temperature are treated interchangeably.
• The pressure effects of gases at different temperatures are

not modeled directly. However, the most significant ef-
fects (buoyancy of hot air, and spread of heat through the
fluid) are modeled.

4.2.1. Gas motion in the fire model

The velocity field computed by the fluid solver described by
Stam [Sta99] is used to advect fuel gas, and heat. Smoke
could also be advected, but we do not presently incorporate
smoke into our flame model. Melek and Keyser [MK02] give
the equations for the motion of fuel gas and heat as

∂g
∂t

=−(u ·∇)g−αgg+Sg, (3)

∂T
∂t

=−(u ·∇)T −αT T +KT∇2T. (4)

Here KT is a diffusion constant, αx is a dissipation rate and
Sg is the fuel gas source term. Thus, the characteristics of
the motion of fuel and heat can differ significantly, though
they are carried by the motion of the same fluid system. The
external force acting on any one cell in an (x,y,z) coordinate
frame, where y is the vertical direction, is

F = fggg

 0
−1
0

+ fT (T −Tamb)

 0
1
0

 (5)

where fg and fT are positive constants controlling the force
components based on gravity and temperature respectively,
and Tamb is the room temperature. Hot air will thus rise, and
cold air fall, creating convection currents necessary to give
the correct flame shape. The fuel gas will tend to fall, though
this effect is usually not very noticeable (i.e. fg should be
fairly small).

4.2.2. Combustion

Melek and Keyser [MK02] also give the equations for com-
bustion in a cell, where T > Tb, as

C = r min(dA,bdg),

∂dg

∂t
=−C

b
,

∂T
∂t

= T0C.

Here dx is the density, r is the burning rate (0 < r ≤ 1), b
is the stoichiometric mixture (the amount of air required to
burn one unit of fuel), Tb is the lower flammability tempera-
ture threshold for burning to occur, and T0 is the output heat
from the reaction. The burning rate is the percentage of the
gas that can be burned in a second.The oxygen density is
defined as

dA = D−dg

where D is the total amount of gas in each cell, which is con-
stant and dg is the density of fuel gas in that cell. If there is
no fuel gas in a cell then it is filled with oxygen, and if there
is no oxygen it is filled with fuel gas. The fact that air is not
all oxygen can be easily accounted for by adjusting the sto-
ichiometric mixture appropriately. The heat output coming
from a combustion cell can be sufficient to start a reaction in
a neighboring cell. Or it might not be sufficient and the com-
bustion reaction cannot continue, extinguishing the flame.
Practically, the combustion inside the cell is controlled with
four parameters: Tb, b, T0, and r, controlling the tempera-
ture above which ignition occurs, the oxygen requirement
for combustion, the intensity of the reaction, and the burn
rate.

5. Volume Rendering

The heated fuel at the center of a flame is broken down into
smaller molecules and radicals due to the lack of oxygen.
This is luminous and gives the characteristic yellow color
to the flame. The reactions at the flame front release energy
and some of this energy may be released in the wavelength
of visible light based on the type of fuel and oxidizer used.
Volumetric rendering methods are most suitable for render-
ing flames of this kind. We use a simplified version of the
ray marching method described in the Volumetric methods
course presented at SIGGRAPH 2010 [WZC∗10].

Starting a ray march from the position of the camera,
through a position on the image array, a sampling position
is iterated along the ray in small steps, until a predetermined
maximum distance is reached. The color Ca accumulated
along the ray is initially set to 0, and the transmissivity T
is set to 1. These are updated at every step of the march ac-
cording to the update equations:

4T = e−4sρ(x)κ,

Cn+1
a =Cn

a +Cd(x)T
n(1−4T ),

T n+1 = T n4T,

where x is the 3D position of the sampling point along the
ray, ρ(x) is the density, and κ is the scattering coefficient.

6. Implementation

As we have indicated, our flame simulation system consists
of four main components: the Fire System, the Fluid Solver,
the Curve System, and the Volume Renderer. These are ex-
plained in detail below.

6.1. The Fluid Solver

The Fluid Solver solves the equations at every time step for
the velocity field (equations 1 and 2), fuel gas (equation 3)
and heat (equation 4). Stam’s Semi-Lagrangian stable fluid
solver [Sta99] is used as described in the background sec-
tion. The fluid solver is implemented as a C++ object which

c© The Eurographics Association 2012.

49



A. Bangalore & D. H. House / A Technique for Art Direction of Physically Based Fire Simulation

Table 1: Fluid Solver Functions

Fluid Solver Functions
addSource Add fuel from computed sources
setBoundaries Enforce boundary conditions
linSolve Linear equation solver
diffuse Diffusion operation
advect Advection operation
project Projection operation
computeVelocity Solves eqns 1 and 2
computeDensity Solves eqns 3 and 4

the Fire System uses for the simulation. This was extended
to three dimensions and converted to a C++ class with sepa-
rate methods to solve for fuel gas, heat and velocity.

Table 1 shows the important functions in the fluid solver.
The computeVelocity function is called for the ve-
locity followed by the computeDensity function for
the fuel gas and heat and at the beginning of the simula-
tion time step. The computeDensity function first calls
the addSource function to add fuel sources as computed
by the fire system. Then the diffuse function performs
the diffusion operation, and advect function performs the
Semi-Lagrangian backtrace operation for advection. These
two functions call the linSolve function to solve a sys-
tem of equations and the setBoundaries function to en-
force boundary conditions. The computeVelocity func-
tion has an additional step of making the field divergence
free for which it calls the project function.

6.2. The Curve System

The Curve System handles all of the artistic input from the
user. Its input is a set of curves drawn and animated by the
user in Autodesk Maya. Although Maya was chosen because
of its ease of animation, any other software package with
animatable curve drawing capabilities could be used. Curve
data is exported into a sequence of files by a Python script
which generates one file for each frame of animation. The
Curve System contains the number of curves the user is in-
putting, the array of curves input by the user, and a method
to read the sequence of input files. The required data from
the user for each curve is:

• The number of control points in each curve.
• The number of interpolating points in a curve.
• The order of the curve. (Must be less than the number of

control points)
• A flag to indicate if the curve is a root source of fuel

(active and ignited from the beginning of the simulation)
or a branch source (ignites when heat from combustion
reaches it).

• A scale in the range of 0 to 1 to control the amount of fuel
emitted for each curve.

• A list of control points. (Must match the number specified
before)

The fuel sources are perpetual emitters by default. Addi-
tional parameters can be added, if necessary, to control the
lifetime of the flame. This can be easily implemented as the
system keeps track of time as well as the frame number.

The curves are all implemented as B-splines, and C code
for B-splines from the Geometric Tools open source li-
brary [Too] was used for curve interpolation. Additions were
made to include the flag for the fuel source, the scale factor
for fuel in each curve and to read the file input data at every
frame.

6.3. The Fire System

The fire system is the central part of the program which is
connected to all the other components. It houses data struc-
tures for the coarse grids containing the simulated quantities
of velocity, fuel and heat and the directions of buoyancy and
gravity at each cell. It contains methods to start simulation,
calculate forces, sample and query fuel and velocity at any
point in the grid and control combustion.

Table 2: Fire System User Input Parameters

Fire System User Input Parameters
Name Description Value
numDivisions Voxels per grid side 80
sideLength Length of grid side 14
timeStep Simulation time step 0.04
diffusionRate Heat diffusion rate 0.01
threshTemp Threshold combustion temperature 0.0
fg Gravity scale factor 0.1
fT Buoyancy scale factor 0.2
burnRate Fuel exhausted per unit of oxygen 1.0
stoiMix Oxygen in 1 unit of air 1.0

The fire system has physics based parameters to control
the oxygen density, stoichiometric ratio of air, the rate of ox-
idation and the amount of heat released during combustion.
Table 2 presents a list of all the data contained in the fire sys-
tem, and typical values that we used to produce the results
shown in this paper.

According to equation 5, only two constants are required
to control the forces due to gravity and buoyancy in any cell
of the system. The main idea in this thesis is to use curves
to control the direction of the gravity and buoyancy vector at
each cell. The control curve is drawn at the desired position,
as shown on the left side in Figure 5, and tangents to the
curve are calculated for sample points at regular intervals
along the curve. These tangents are used as directions for
gravity and buoyancy in the system. They are injected into
the force direction grid using the algorithm discussed below.

A volumetric splatting algorithm [LH91] is used to inject
force direction and fuel gas at any point in the 3D grid. If
ν amount of the fuel has to be injected at a point P(x,y,z),

c© The Eurographics Association 2012.

50



A. Bangalore & D. H. House / A Technique for Art Direction of Physically Based Fire Simulation

Figure 5: A Maya Curve and the corresponding velocity field

then let a,b and c represent the decimal part and i, j and
k represent the integer part of x,y and z respectively (e.g.
i = f loor(x) and a = x− i). Then by linear interpolation, for
all α,β,γ ∈ {0,1},

ρ(i+α, j+β,k+γ) = ν(1−a+α)(1−b+β)(1− c+ γ).

The force direction injected into the system based on the
user-drawn curves directs the heat currents. The fluid solver
ensures incompressible flows and populates the entire veloc-
ity grid as explained in the background section. This results
in art directed advection with fluid behavior. The image on
the right in Figure 5 shows the generated velocity based on
the input curve to the left. The fuel gas and heat are then
advected along this velocity field.

The sources of fuel are injected at the first point of each
curve at the start of the simulation. The root fuel sources are
ignited when the simulation begins. The combustion reaction
begins and generates heat and consumes the fuel. The con-
vection currents are directed along the control curves by the
velocity field. The heated fuel is advected by the convecting
heat currents and the flame is obtained. Branch curves are ig-
nited only when sufficient heat from one of the root sources
reaches the first control point.

However, due to the numerical dissipation in the fluid
solver, and diffusion of heat in the grid, the flames start
fading and the sharpness is lost when they are advected
away from the sources. This behavior, although numerically
correct, is a problem for creating stylized flames. This is
fixed by injecting a small amount of fuel along the curve
at each one of its interpolating points, when the advected
heat reaches that point. The quantity of fuel injected at a
curve point is made proportional to its distance from the first
point of the curve. Mathematically, if N represents the num-
ber of interpolating points (the resolution) of the B-spline,
(i1, ..., in) and if 0 < α≤ 1 is a scale factor, then the injected
density at a point is

ρi =
N−αi
N−1

ρ0

where ρ0 is the fuel gas density at the first control point of
the curve. α can be regulated to control the tapering of the
flame and its length along the control curve. This miniscule
amount of fuel ignites when the heat is sufficient and the
additional convection currents generated stabilize the shape
of the art directed flame.

6.4. Renderer

Once the new fuel gas and heat information are computed,
the flame is imaged using a volume renderer, as described
above. Ideally the color of a flame would depend on the mix-
ing of oxygen with the fuel and the temperature. The lumi-
nous heated fuel has a yellow color and the reaction zone
where the combustion happens has a reddish color. However,
flame rendering is not the focus of this paper, so a simple ap-
proximation is used as the color of the flame. The quantity
of fuel gas density in each voxel acts as a scaling factor for
a base orange color (R = 1.0, G = 0.3, B = 0.0 was used for
our examples), which can be changed by the user. When the
fuel gas density is high the color is brighter, indicating the
yellow luminous part of the flame. The consumption of fuel
gas due to combustion decreases the fuel gas density yield-
ing a darker shade of color at the edges of the flame. This
color is then accumulated by the volume renderer to render
the image.

7. Results

In order to test the technique presented in the above sections,
different cases of stylized flames were used. The tests ran on
a computer running a linux operating system with an Intel
Core 2 Quad (2.4 Ghz) processor with 4 GB of ram. The
tests were all CPU based and no GPU acceleration was used.
Autodesk Maya was used to draw and animate the control
curves. No optimizations like bounding boxes were added to
the renderer.

In the first case, the image of a set of flames shaped to
form a flower shown in Figure 6, was recreated through art

c© The Eurographics Association 2012.

51



A. Bangalore & D. H. House / A Technique for Art Direction of Physically Based Fire Simulation

directed simulation. Eight rendered frames from the simu-
lation are shown in Figure 6. The flames grow from com-
bustion and form the shape of the flower, then the convec-
tion currents that build up from the heat produced gradually
distort the shape of the flower. The simulation was done on
a 80x80x80 grid and the images were rendered at a reso-
lution of 800x800 pixels. The simulation was in real time
(approx. 0.03 seconds per frame) and the rendering took ap-
proximately 10 minutes a frame. Root curves were used at
the tips of the petals and the stem. Branch curves were used
for the leaves.

Figure 6: Frames from “Fire Flower” animation

In the second case, three control curves were animated in
Maya to create a stylized version of fire. Figure 7 shows four
frames, out of one hundred, of the curves being animated
as the fire grows, and the corresponding rendered frames.
Clearly, the flames follow the curve animation, while ex-
hibiting the fluid motion of fire. The simulation was done
on a 40x40x40 grid and the images were rendered at a reso-
lution of 500x500 pixels. The simulation was in real time
(approx. 0.01 seconds per frame) and rendering took ap-
proximately five minutes per frame. All three curves are root
curves.

Figure 7: Animated curves controlling a flame

Figure 1, at the start of the paper, shows rendered im-
ages of flames art directed to form wolf and lion shapes. 38
control curves were used to create the wolf image, and 45
control curves were used to create the lion image. Figure 8
shows a rendered image of flames directed on a set of in-
put curves representing a phoenix bird. Twenty-one control
curves were used to create it. The simulation was done on a
120x120x120 grid and the images were rendered at a resolu-
tion of 800x800 pixels. The simulation took approximately
2 seconds per frame and rendering took approximately 10
minutes per frame.

c© The Eurographics Association 2012.

52



A. Bangalore & D. H. House / A Technique for Art Direction of Physically Based Fire Simulation

8. Conclusion

We have presented a technique to enable art direction of
a physically based fire simulation. This frees the artist
from using non-intuitive physical control methods like wind
fields, noise and turbulence. Using the technique presented,
the artist can draw and animate control curves in a famil-
iar software package and then export them into the simu-
lator. The simulator runs fast at relatively low resolutions
(≤ 100 voxels per side) to enable real time visualization us-
ing OpenGL. Thus, the artist validate and adjust behavior
and movement before doing the final flame rendering. We
have demonstrated the technique to create single frame ren-
ders as well as animations for highly stylized flames, which
are very difficult to produce using traditional physics based
control methods. The results show that the simulated flames
precisely follow the art direction and the resulting images
retain an artistic feel.

There are several possible extensions and improvements
that could be added to the model. For example, the vol-
ume renderer could be made more physically accurate by
considering fuel-oxygen ratio, temperature and the combus-
tion reaction at the flame front for color computation. The
fluid solver could be upgraded to a solver with less nu-
merical dissipation than Stam’s stable fluid solver [Sta99].
For example, a solver using advection approaches like the
BFECC [KLLR05] or the Modified MacCormack [Akw05]
method could greatly increase the turbulent detail in the
flame.

References

[Akw05] AKWABOA S.: A modified maccormack’s explicit time
marching scheme for solving the conservation equations. In Pro-
ceedings of American Physical Society, 58th Annual Meeting of
the Division of Fluid Dynamics (2005). 9

[BPP01] BEAUDIN P., PARQUET S., POULIN P.: Realistic and
controllable fire simulation. In Proceedings of Graphics Interface
2001 (2001), pp. 159–166. 3

[bri] BRITANNICA.COM: Flame.
http://www.britannica.com/EBchecked/topic/209358/flame.
3

[DN02] D.Q. NGUYEN R. FEDKIW H. J.: Physically based mod-
eling and animation of fire. ACM Transactions on Graphics (Pro-
ceedings of SIGGRAPH 02) 21 (2002), 721–728. 4

[KLLR05] KIM B., LIU Y., LLAMAS I., ROSSIGNAC J.: Flow-
fixer: Using bfecc for fluid simulation. In Proceedings of Euro-
graphics Workshop on Natural Phenomena (2005). 9

[LF02] LAMORLETTE A., FOSTER N.: Structural modeling of
natural flames. In Proceedings of SIGGRAPH 02 (2002), ACM.
3

[LH91] LAUR D., HANRAHAN P.: Hierarchical splatting: a pro-
gressive refinement algorithm for volume rendering. In Proceed-
ings of SIGGRAPH 1991 (1991), ACM. 6

[MCG03] MULLER M., CHARYPAR D., GROSS M.: Particle-
based fluid simulation for interactive applications. In Proceed-
ings of Eurographics/SIGGRAPH Symposium on Computer Ani-
mation (2003) (2003), ACM. 4

[Mel08] MELEK Z.: Interactive simulation of fire, burn and de-
composition. PhD thesis, Texas A&M University, College Sta-
tion, TX, 2008. 4

[MK02] MELEK Z., KEYSER J.: Interactive Simulation of Fire.
Tech. Rep. TR 2002-7-1, Texas A&M Department of Computer
Science and Engineering, 2002. 2, 3, 4, 5

[Per85] PERLIN K.: An image synthesizer. In Computer Graphics
(Proceedings of SIGGRAPH 85) (1985), ACM, pp. 287–296. 3

[Per02] PERLIN K.: Improving noise. In ACM Transactions
on Graphics (Proceedings of SIGGRAPH 02) (2002), vol. 21-3,
ACM, pp. 681–682. 3

[Ree83] REEVES W.: Particle systems - a technique for modeling
a class of fuzzy objects. ACM Transactions on Graphics 2, 2
(1983). 3

[SB10] S. BRUCKNER T. M.: Result-driven exploration of sim-
ulation parameter spaces for visual effects design. IEEE Trans-
actions on Visualization and Computer Graphics 16, 6 (2010),
1467–1475. 2

[Sta99] STAM J.: Stable fluids. In Proceedings of SIGGRAPH
99, Computer Graphics Proceedings, Annual Conference series
(1999), ACM, pp. 121–128. 4, 5, 9

[Too] TOOLS G.:. www.geometrictools.com. 6

[wik] WIKIPEDIA: Flame. http://en.wikipedia.org/wiki/Flame. 3

[WZC∗10] WRENNINGE M., ZAFAR N. B., CLIFFORD J., GRA-
HAM G., PENNEY D., KONTKANEN J., TESSENDORF J., CLIN-
TON A.: Volumetric methods in visual effects. In Proceedings of
SIGGRAPH 2010 (2010), ACM. 5

c© The Eurographics Association 2012.

53



A. Bangalore & D. H. House / A Technique for Art Direction of Physically Based Fire Simulation

Figure 8: Phoenix on fire

c© The Eurographics Association 2012.

54


