
Fast Simulation of Facial Tissue Deformations Using
Mass-Spring Chain Algorithm

A. Duysak1 and J. J. Zhang2

1Dumlupinar University, Turkey

2Bournemouth University, United Kingdom

Abstract
We propose a method to develop a unique head model to be used in craniofacial surgery simulations. This
method considers the shape of the head and skull structure and provides a polygonal model, which includes
different tissue layers with realistic tissue thickness. We also introduce the use of the new deformation simulation
technique called mass-spring chain algorithm in simulation of facial tissue deformations caused by operations
on the bone structure. This method produces plausible results and considerably reduces the simulation time.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Physically Based
Modelling I.3.7 [Computer Graphics]: Animation and Virtual Reality

1. Introduction

 Simulating craniofacial surgery is one of the most
challenging applications in deformable object simulation
for the following reasons. It is very important that the
outcome of the simulation is as accurate as possible. This is
a challenge because facial tissue consists of several
different tissue layers with different deformation
characteristics. It is also very important that the simulation
concludes as quickly as possible. Since very high numbers
of modelling elements are used in the polygonal model to
approximate the facial appearance, simulation takes a long
time to perform. Polygonal models must include different
tissue layers as well as their connections with the skull.
Finding connections may introduce problems because of
the skull’s unique structure. Finally, the simulation
algorithm must carefully choose simulation parameters that
capture the tissue characteristics.
 Simulation of facial tissue deformations can be
considered to consist of two parts; Data acquisition-
modeling and simulation phases. The two most common
techniques used in acquiring 3D medical images are
Computerized Topography (CT) and Magnetic Resonance
Imaging (MRI). CT and MRI imaging have become very
popular because they create cross-sectional sliced images,
which can be stacked to form volume data showing the
internal structures as well as outer surface of a body.
Volume visualization of the medical image data is
necessary for further analysis. At this stage, measurement
and manipulation of the data takes place and experts decide
the required surgical operations and procedures. Once
surgery has been planned, the medical data is processed by
a number of algorithms in order to generate a polygonal
model suitable for simulation algorithms.
 There has been numerous simulation methods proposed
that are mainly divided into two categories: non-physically
based and physically based. There are some fundamental
limitations in non-physical methods such as, the
deformation characteristic of the object is not taken into
account and the deformation accuracy is based on the user
expertise. Physically based models, on the other hand,

incorporate the physical properties of the object, thus
produce more realistic deformations.
 Among physically based methods, finite element
modelling (FEM) and mass-spring systems (MSS) have
been widely used in a variety of areas from cloth
simulations to soft tissue simulations. The finite element
method is a common choice if accuracy is the main
concern while mass-spring systems may be preferred if
speed is essential. But even with the mass-spring system,
real-time performance is difficult to achieve, since most
real applications involve a large number elements. In
addition the mass-spring system is an iterative method,
which uses numerical iteration to perform deformation.
Therefore, whilst much research effort has been spent on
improving such techniques in the area of physical accuracy
and performance, other methods, such as the chainmail and
mass-spring chain algorithms, have been proposed for real-
time interactive frame rates.

1.1. Related work

 There are numerous publications dedicated to facial
tissue simulations using FEMs. An implementation of
FEMs for soft-tissue simulation is given in [RGT*98].
Instead of linear elasticity theory, Roth et al. used higher
order polynomial interpolation functions using a Bernstein-
Bezeir formulation, therefore aiming for more accurate
results and admitting higher computational cost. The main

drawback of their work is the lack of global
continuity, which results in lower quality surfaces. An
anatomy based 3D finite element tissue model was
developed by [KK98]. Their work includes a
comprehensive flexibility that allows for any craniofacial
operation on the bone structure. They improved their early
work by taking into account the individual patient’s
anatomy [KK99]. They used six node prisms to discretize
the face model.

1C

 Koch et al. [KGB*96, KRG*02] developed a facial
surgery simulation based on volumetric finite element
modeling. Their implementation aims for physical accuracy
therefore includes geometric and topological detail added

EG UK Theory and Practice of Computer Graphics (2005)
L. Lever, M. McDerby (Editors)

http://www.eg.org
http://diglib.eg.org

interactively to the model, which represents a facial volume
by prismatic shape functions. This model provides globally

 and internally continuity. In their work, they
registered 3D laser scan data with CT data to achieve photo
realistic appearances. Results from their simulations are
compared to real surgery images for several different
patients. Koch et al. [KGB98] also used a FEM model to
implement a facial expression editor. Their generic facial
model uses medical data and correct facial anatomy in
defining muscle groups.

1C 0C

 An MSS is also used in soft-tissue simulations. A real-
time muscle deformation using an MSS was studied in
[NT98]. Using a new kind of spring type, called an angular
spring, the authors simulated a surface-based muscle
model. [TW91] and Lee et al. [LTW95] successfully used
an MSS for realistic facial modeling and simulation. A
detailed facial model represented by a four-layered mass-
spring model. In their motion equation, they include
volume preservation forces and other constraint forces,
such as skull penetration forces. U. Kuhnapfel et al.
[KCM00] implemented an MSS in their system for
simulating soft tissues. They integrated a mass-spring
system simulation module into their surgical training
system, which is capable of performing several surgical
tasks (such as grasping and cutting). Teschner et al.
[TGG99, TGG00] used an optimization approach to
improve the physical realism as well as the performance of
mass-spring systems. A multi-layer soft tissue model of the
head was developed including the skin turgor and sliding
effect between soft tissue and bone. They employed a
variety of different optimization methods and compared
them with regard to the computational cost and the
robustness of their results.

1.2. Our contributions

 In this paper we introduce a new method to generate a
head model to be used in craniofacial surgery simulation.
We use mass-spring chain method for performance
reasons. This method works in real time for most
applications and has not been applied to simulation of
facial tissue deformations before.

2. Model generation

 We use a head image, which is 512*512 pixels in size
and consists of 22 slices in the DICOM file format. Slice
spacing is 4.91 millimetres and maximum density is
4095.00 while minimum density is 0.00. The pixel size is
0.39 by 0.39 millimetres. The image captures the whole
head of a patient. Data is read using the 3DVIEWNIX
[3DV] software and then it is visualized. Slice images are
segmented using appropriate threshold values and
segmentation results for skin and bone surfaces are given in
Figure 1 (a) and (b) respectively.
 The first step in the reconstruction of 3D geometric
models is segmentation, extracting regions or features of
interests. The second step is to generate a surface
representation of segmented volumes. The geometric
models representing the surface of a 3D segmented volume
are often described by a set of triangles because of their
simple structure. This structure allows fast mathematical

manipulations and it is very suitable for simulation
algorithms. There are many methods proposed for the
isosurface generation. The marching cubes algorithm
[LC87] is one of the most popular methods used in
generating surface triangulation because of its sub-voxel
processing that produce high quality meshes. The bone and
face surfaces are generated using the marching cubes
algorithm and the results are then decimated ensuring the
number of triangles generated is suitable for the simulation
algorithm. The resultant face surface consists of 6292
vertices and 10519 triangles and the bone surface has
10056 vertices and 19770 triangles. Once both skin and
bone surfaces are generated, tissue layers between them
need to be included to the model.

 (a)

 (b)
Figure 1: Segmenting head image for skin (a) and bone
(b) surfaces.

 The tissue between the face surface and the bone surface
is represented by a number of small prismatic volumes.
Given that the skin and bone surfaces are represented by
triangles, prismatic elements can be generated using
various methods. Each vertex of a triangle of the skin
surface is projected on to the bone surface. This is done by

finding the intersection points between the normal vectors
of each skin vertex and the bone triangles. For better and
smooth results the normal vertex is determined by
averaging the normals of the triangles meeting at this
vertex. Since the face surface contains curved regions, it
may be impossible to find an intersection point for every
normal vector of a skin vertex. Besides, there are hollow
areas on the bone structure preventing an intersection. In
addition, some of the intersection points found may be at
completely the wrong places. Therefore using the skin
vertex normal will not result in a good representation of
tissue layers.
 In [KK99] a method tracing a ray from each skin vertex
to a predetermined point on the bone structure (or a point
inside the skull) is used in the generation of the prismatic
elements. An average point, called the centre point, is
determined for all bone triangles. Each skin vertex is then
traced towards this point and intersections with the bone
surface are recorded. If there is no intersection, then by
interpolating the neighbouring points of intersection a false
point of intersection is generated. This method guaranties
an intersection point for each skin vertex but may not
produce very good prismatic element shapes. In addition
some prisms may overlap. This happens because a single
centre point can not realistically represent the midpoint of
the face, which is not a sphere. Interpolating neighbouring
elements in order to assign a connection point may result in
an unrealistic approximation as well.
 We modified the method mentioned above as follows.
One centre point fails to represent the human head
accurately, which is not a perfect sphere. Therefore
assigning two centre points may better represent the facial
model in terms of finding the origin. As shown in Figure 2
we placed two centre points into the bone structure. The lip
level at the skin surface determines which skin vertices use
a specific centre point. Vertices above the lips level are
traced back to the centre point at the upper part of the jaw.
Vertices below the lip level use the centre point at the
lower jaw. Each skin vertex is then traced back to one of
the two centre points and any intersection with the bone
triangles is recorded. On this first run we also determine an
average thickness based on the intersected rays. On the
second run we assign an intersection point to those vertices
that did not get a hit in the ray direction on the first run
(preventing interpolating the neighbouring points of
intersection). The average thickness is used to determine
the depth of these intersections. This method also
guaranties an intersection for each skin vertex and
produces better-shaped prism elements, representing
different tissue layers, while minimizing any possible
overlaps.
 Using ray tracing algorithm, prism elements are obtained.
A typical prism element between the skin and bone
surfaces is shown in Figure 3. The number of prism
elements is equal to the number of skin triangles. It is
important to note that none of the skin vertices above the
bone level are used in this process. The skin and bone
surfaces as well as the bone level can clearly be seen from
Figure 2. Therefore the number of skin vertices involved in
finding the prism element is 2628 and the number of the
skin triangles is 4606.
 Once the prism elements representing different tissue
layers between the skin and bone surfaces are obtained,

surgical operation can take place and consecutively
simulation algorithm performs deformation. The simulation
algorithm, mass-spring chain is briefly explained. Details
of the algorithm and its implementation are given in
[DZ2004].

Figure 2: Skin and bone surfaces with two marks
representing two centres used in ray tracing algorithm.

Figure 3: A prismatic element between the skin surface
and the bone surface.

3. Mass-spring chain (MSC) algorithm

 The Mass-Spring-Chain algorithm models the object in a
similar way to the mass-spring systems algorithm in that
the object consists of a number of mass-points connected
with springs. As in the mass-spring system’s algorithm,
springs perform a deformation by stretching or
compression. The deformation starts from the moved mass-

points and propagates through the entire 3D lattice of
springs. Spring movement is limited between two
extremes; rigid movement and elastic movement. The
spring length is also constrained between the allowed
maximum compressions and stretching. The deformation
algorithm is then responsible for finding the necessary
movements and the amounts of deformation of the springs
within these set limits. Mass-spring chain algorithm can be
viewed in there parts.

3.1. Deformation pattern

 The 3D lattice is initially considered to be in a passive
state, which implies that all points and springs in the mesh
are not under the influence of any external force. Figure 4
(a) illustrates such a lattice where the object is constrained
at its two vertices shown as black. When a point in 3D
mesh is subject to an external force (by grabbing it and
moving it) this particular point becomes an active point or,
in other words, a source point for the deformation. An
active point is shown as green in Figure 4 (b).

(a) (b)

(c) (d)

Figure 4: Deformation propagation of the proposed
algorithm; (a) initial stage, (b) first, (c) second, and (c) last
step.

A deformation starts from an active point and travels
through the rest of the lattice in every direction using the
springs. The springs connected to the active point are now
defined as active springs, because they are subject to
movement and deformation. These springs are represented
by green lines. Arrows on these lines show direction of the
deformation propagation. The other end points of the active
springs are called semi-active points, because they will be
repositioned (causing the deformation), and will become
active points themselves in the next step of the algorithm.
Semi-active points are shown in yellow in Figure 4 (b).
Springs connecting semi-active points are called semi-
active springs and they have arrows at their both ends
representing deformation at both ends. Figure 4 (c) shows

the second step of the deformation. Previous semi-active
points (yellow in Figure 4 (b)) are now active points and
shown as green. The last step’s active point is now shown
by red representing deformed state. The last step of the
propagation is given in Figure 4 (d) where only one semi-
active point is left. This point is processed and deformation
propagation ends here. Constrained vertices are not
considered as active or semi-active points and are not
repositioned (deformed). Springs connected to constrained
vertices, however, are moved and deformed.

3.2. Movement limits and new orientation

 We assume that there are two extreme cases possible
regarding spring movements. One is defined as a rigid
movement without any rotation. When a point is moved, a
connected spring moves accordingly. The initial spring and
the moved spring are now parallel to each other and the
distance between them is equal to the distance traveled by
the moving point. An example is given in Figure 5 where

initial triangle is represented by and vertex
∆

ACB A is
moved to a new location given by . The spring given by a
AB makes a rigid movement to a new location given by

ab . A vector called the rigid movement vector, ,
defines this new location and sets the rigid limit or, in other
words, the upper limit beyond which there will not be any
movement. The opposite situation is known as super elastic
movement. It is assumed that the spring offers no
resistance to its movement, i.e. while one end is moving the

other end stays still. A vector, represented by , from the
moving end to the stationary end of the spring sets this
limit. It is therefore our assumption that the moved and
deformed spring will be somewhere between the rigid and
elastic movement vectors.

→
u

→
v

B

A

C

c

a

b
u

v

Figure 5: Elastic () and rigid () limit (movement)
→
v

→
u

vectors.

 In order to establish the spring location after the vertex
movement, we employ a vector called the orientation
vector whose purpose is to indicate where the spring lies

between the movement vectors and . Both
movement vectors are located on a surface defined by

 in Figure 5. Orientation vector and new

location for moved spring (

→
v

→
u

)(ABbaS
AB) will be on this surface as

well. Depending on the material properties, the spring’s
location will vary between the two movement vectors and
this location is indicated by orientation vector. The
orientation vector therefore spans the entire surface

between and . Therefore an equation for the
orientation vector can be expressed in terms of the
movement vectors as:

→
v

→
u

→→→
−+= vuw)1(αα

where is orientation vector and
→
w α represents the

deformation characteristics of the object under
consideration. If the object is very elastic in nature, then
the orientation vector is expected to be closer to the elastic
limit. Alternatively if the springs are defined with a higher
stiffness then the orientation vector approaches the rigid
limit. Thus, the parameter α can also be considered as a
control coefficient for the spring movement. New locations

(orientations) for springs in triangle are given in
Figure 6 for different values of parameter

∆
ACB

α .

Figure 6: New locations of triangle because of
movement of vertex A. Control parameter

∆
ACB

α varies from
0.0 (elastic) to 1.0 (rigid).

3.3. Deformation magnitude and direction

 Once new locations for springs are determined
deformation algorithm finds necessary deformations and
their directions. Springs are allowed to stretch or compress
for a certain percentage of their original lengths. The
current spring length varies between the maximum
compression length and the maximum stretch length. As in
the mass-spring system’s algorithms, the current spring
lengths are found and compared with their initial (pre-set)
lengths. There are three possible outcomes from this
comparison. If there is no difference between them, there
will be no spring deformation. The current spring length

may be larger then its rest length. In this case, the spring is
being stretched. In opposite case, where the initial spring
length is larger than the current spring length, thus the
spring is being compressed. In both cases the spring is
deformed and the amount of the deformation needs to be
determined. The magnitude of the deformation may be
calculated using many different formulations. Here, we use
the following:

)1(max
or

dr

eddef
β−

−=

where is the allowed maximum stretch or

compression, is the difference between the current and

the rest length, is the rest length of the spring and the

slope parameter

maxd
dr

or
β represents the deformation rate.

 In our work, for simplicity we choose the direction of the
orientation vector as the deformation direction. If the
spring is being compressed, then the deformation direction
is opposite to the orientation direction. The amount of
deformation is then subtracted from the original spring
length, leaving the current spring length shorter than the
original length. If the spring is being stretched, then the
deformation direction is the same as the orientation
direction. In this case the deformation is added to the
original spring length elongating the spring. Deforming
semi-active springs is slightly more complex than
deforming active springs. The strategy is different for semi-
active springs because unlike active springs both their
endpoints are moving at the same time. Semi-active
springs are allowed to move and deform freely during the
deformation of active springs. Then the deformation
algorithm checks if the semi-active springs violate the
spring length criteria. If the maximum stretch and the
maximum compression conditions are satisfied, no action
is taken. Otherwise, the semi-active springs are deformed
to meet the set conditions. Figure 7 shows an animation of
a simple geometric figure. The figure is pulled and pushed
from one of its vertices while the two most left vertices are
constrained.

Figure 7: Example of simple figure, which is animated by
pulling and pushing one of its vertices.

4. Results and conclusions

 Figure 8 (a) and (b) show surgical operations round the
jaw area. Lower jaw is cut, Figure 8 (a), and pushed back

to align the lower and upper parts, Figure 8 (b). This
operation causes deformations on the facial tissues. These
deformations are predicted here using mass-spring chain
algorithm.

 (a)

 (b)

Figure 8: Surgical operations are performed on the bone
structure.

Deformations are simulated and results are shown in Figure
9. First two figures show pre and after surgery images.
Deformations especially around the lips area show the
changes on the face surface. The images from pre-surgery
and after surgery are given in the last part of the Figure 9,
which allows clear comparison between them and shows
that simulation algorithm successfully predicts the soft
tissue changes due to bone manipulations. Simulation time
for this prediction is 0.21 seconds on a 2.40 GHz. Pentium
4 computer. Considering that model consists of 7884
vertices and 19724 springs, mass-spring chain algorithm
concludes in a reasonable time.

Figure 9: Facial tissue prediction. First image is the face
before the surgery, middle one gives tissue deformations
and the last image represents both pre and post surgery
images superimposed.

An animation of mouth opening due to jaw rotation is also
simulated and resultant facial tissue changes are given in
Figure 10. The real-time capability of mass-spring chain
algorithm is demonstrated in Figure 11, where a moon
character, consisting of 3198 vertices and 9505 springs, is
animated. Animation time for this example is 0.015
seconds.

Figure 10: Mouth opening before and after the operation.

Figure 11: Deformation simulation of a moon character.

Although verification using real data was not done due to
the lack of the post-operation images, the results were
verified visually by the surgeons. Future works will include
comparison of the results with post operation images and
with the results form other simulation methods.

References

[DZ04] DUYSAK, A, ZHANG J. J.: Fast

Simulation of Deformable Objects,
International symposium on Computer
Animation, The 8th International
Conference on Information Visualization,
IEEE Computer Society, (IV 2004, London)
(2004), pp.422-427.

[KCM00] KUHNOPFEL, U., CAKMAK, H.K.,
MAAB H.: Endoscapic surgery training

using virtual reality and deformable tissue
simulation. Computers&Graphics 24
(2000), pp. 621-632.

 [KGB*96] KOCH, R. M., GROSS, M. H., BUREN,
D.F., FANKHAUSER, G., PARISH, Y. I.
H., CARLS, F.R.: Simulating facial surgery
using finite element models. ACM
Computer Graphics SIGGRAPH,(1996)
pp.421-428.

[KGB98] KOCH R. M., GROSS, M. H. BOSSHARD
A. A.: Emotion Editing Using Finite
Elements, Proceedings of the
Eurographics, Computer
Graphics Forum, (1998) Vol. 17, N0. 3,
C295- C302.

[KGK*98] KEEVE, E., GIROD, S., KIKINS, R.,
GIROD, B.: Deformable modeling of
facial tissue for craniofacial surgery
simulation. Invited Paper,
Computer aided surgery, (1998) pp. 1-10.

[KK99] KEEVE, E., KIKINIS, R.:
Deformable Modeling of Facial Tissue.
Proceedings of theFirst Joint BMES/EMBS
Conference, (1999) Vol. 1, pp. 502.

[KRG*02] KOCH, R. M., ROTH, S.H.M., GRASS,
M.H., ZIMMERMANN, A. P., SOILER,
H. F.: A framework for facial surgery
simulation.Proceedings of ACMSCCG
(2002). http://graphics.ethz.ch

[LC87] LORENSEN, W. E., CLINE, H. E.: A High
Resolution 3D Surface Construction
Algorithm. ACMComputerGraphics (1987)

 Volume 21, No 24, pp. 163-169.
[LTW95] LEE, Y., TERZOPOULOS, D., WATERS,

K.: Realistic modeling for facial animation.
ACM Computer Graphics, (1995) Vol. 29,
pp. 55-62, Aug. 6-11.

[NT98] NEDEL, L. P., THALMANN, D.: Real
Time Muscle Deformations Using Mass-
spring Systems. Computer Graphics
International, Proceedings,(1998) pp. 156-
165.

[RGT*98] ROTH, S. H. M., GROS, M. H.,
TURELLO, S., CARLS, F. R.: A
Bernstein-Bezier Approach to Soft Tissue
Simulation. EUROGRAPHICS (1998).
Volume 17, No 3, pp. C285-29.

 [TGG99] TESCHNER, M., GIROD, S., GIROD, B.:
Optimization approaches for soft-tissue
prediction in craniofocial surgery
simulation. Second Int. Conf. On Medical
Image Computing and Computer-Assisted
Intervention MICCAI’99, pp. 1183-1190.

[TGG00] TESCHNER, M., GIROD, S., GIROD, B.:
 Direct computation of nonlinear soft-tissue
 deformation. Vision, Modeling, and
 Visualization VMV’00, pp. 383-390.
[TW91] TERZOPOULOS, D., WATERS, K.:
 Techniques for realistic facial modeling and

animating. Proc. Of Computer
Animation’91, (1991) pp 59-73.

[3DV] 3DVIEWNIX:
 http://www.mipg.upenn.edu/~Vnews/.

