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Abstract 
We propose a method to develop a unique head model to be used in craniofacial surgery simulations. This 
method considers the shape of the head and skull structure and provides a polygonal model, which includes 
different tissue layers with realistic tissue thickness. We also introduce the use of the new deformation simulation 
technique called mass-spring chain algorithm in simulation of facial tissue deformations caused by operations 
on the bone structure. This method produces plausible results and considerably reduces the simulation time.        
 
Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Physically Based 
Modelling I.3.7 [Computer Graphics]: Animation and Virtual Reality 
 
 
 

 
1.  Introduction 
 
    Simulating craniofacial surgery is one of the most 
challenging applications in deformable object simulation 
for the following reasons. It is very important that the 
outcome of the simulation is as accurate as possible. This is 
a challenge because facial tissue consists of several 
different tissue layers with different deformation 
characteristics. It is also very important that the simulation 
concludes as quickly as possible. Since very high numbers 
of modelling elements are used in the polygonal model to 
approximate the facial appearance, simulation takes a long 
time to perform. Polygonal models must include different 
tissue layers as well as their connections with the skull. 
Finding connections may introduce problems because of 
the skull’s unique structure. Finally, the simulation 
algorithm must carefully choose simulation parameters that 
capture the tissue characteristics.  
    Simulation of facial tissue deformations can be 
considered to consist of two parts; Data acquisition-
modeling and simulation phases. The two most common 
techniques used in acquiring 3D medical images are 
Computerized Topography (CT) and Magnetic Resonance 
Imaging (MRI). CT and MRI imaging have become very 
popular because they create cross-sectional sliced images, 
which can be stacked to form volume data showing the 
internal structures as well as outer surface of a body. 
Volume visualization of the medical image data is 
necessary for further analysis. At this stage, measurement 
and manipulation of the data takes place and experts decide 
the required surgical operations and procedures. Once 
surgery has been planned, the medical data is processed by 
a number of algorithms in order to generate a polygonal 
model suitable for simulation algorithms. 
   There has been numerous simulation methods proposed 
that are mainly divided into two categories: non-physically 
based and physically based. There are some fundamental 
limitations in non-physical methods such as, the 
deformation characteristic of the object is not taken into 
account and the deformation accuracy is based on the user 
expertise. Physically based models, on the other hand,  

 
incorporate the physical properties of the object, thus 
produce more realistic deformations. 
     Among physically based methods, finite element 
modelling (FEM) and mass-spring systems (MSS) have 
been widely used in a variety of areas from cloth 
simulations to soft tissue simulations. The finite element 
method is a common choice if accuracy is the main 
concern while mass-spring systems may be preferred if 
speed is essential. But even with the mass-spring system, 
real-time performance is difficult to achieve, since most 
real applications involve a large number elements. In 
addition the mass-spring system is an iterative method, 
which uses numerical iteration to perform deformation. 
Therefore, whilst much research effort has been spent on 
improving such techniques in the area of physical accuracy 
and performance, other methods, such as the chainmail and 
mass-spring chain algorithms, have been proposed for real-
time interactive frame rates. 
     
1.1.   Related work 
 
   There are numerous publications dedicated to facial 
tissue simulations using FEMs. An implementation of 
FEMs for soft-tissue simulation is given in [RGT*98]. 
Instead of linear elasticity theory, Roth et al. used higher 
order polynomial interpolation functions using a Bernstein-
Bezeir formulation, therefore aiming for more accurate 
results and admitting higher computational cost. The main 

drawback of their work is the lack of global  
continuity, which results in lower quality surfaces. An 
anatomy based 3D finite element tissue model was 
developed by [KK98]. Their work includes a 
comprehensive flexibility that allows for any craniofacial 
operation on the bone structure. They improved their early 
work by taking into account the individual patient’s 
anatomy [KK99]. They used six node prisms to discretize 
the face model.  
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   Koch et al. [KGB*96, KRG*02] developed a facial 
surgery simulation based on volumetric finite element 
modeling. Their implementation aims for physical accuracy 
therefore includes geometric and topological detail added 
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interactively to the model, which represents a facial volume 
by prismatic shape functions. This model provides globally 

 and internally continuity. In their work, they 
registered 3D laser scan data with CT data to achieve photo 
realistic appearances. Results from their simulations are 
compared to real surgery images for several different 
patients. Koch et al. [KGB98] also used a FEM model to 
implement a facial expression editor. Their generic facial 
model uses medical data and correct facial anatomy in 
defining muscle groups. 
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    An MSS is also used in soft-tissue simulations. A real-
time muscle deformation using an MSS was studied in 
[NT98]. Using a new kind of spring type, called an angular 
spring, the authors simulated a surface-based muscle 
model. [TW91] and Lee et al. [LTW95] successfully used 
an MSS for realistic facial modeling and simulation. A 
detailed facial model represented by a four-layered mass-
spring model. In their motion equation, they include 
volume preservation forces and other constraint forces, 
such as skull penetration forces. U. Kuhnapfel et al.            
[KCM00] implemented an MSS in their system for 
simulating soft tissues. They integrated a mass-spring 
system simulation module into their surgical training 
system, which is capable of performing several surgical 
tasks (such as grasping and cutting). Teschner et al. 
[TGG99, TGG00] used an optimization approach to 
improve the physical realism as well as the performance of 
mass-spring systems. A multi-layer soft tissue model of the 
head was developed including the skin turgor and sliding 
effect between soft tissue and bone. They employed a 
variety of different optimization methods and compared 
them with regard to the computational cost and the 
robustness of their results.   
  
1.2.   Our contributions 
 
    In this paper we introduce a new method to generate a 
head model to be used in craniofacial surgery simulation. 
We use mass-spring chain method for performance 
reasons. This method works in real time for most 
applications and has not been applied to simulation of 
facial tissue deformations before.  
  
2. Model generation 
 
    We use a head image, which is 512*512 pixels in size 
and consists of 22 slices in the DICOM file format. Slice 
spacing is 4.91 millimetres and maximum density is 
4095.00 while minimum density is 0.00. The pixel size is 
0.39 by 0.39 millimetres. The image captures the whole 
head of a patient. Data is read using the 3DVIEWNIX 
[3DV] software and then it is visualized. Slice images are 
segmented using appropriate threshold values and 
segmentation results for skin and bone surfaces are given in 
Figure 1 (a) and (b) respectively. 
   The first step in the reconstruction of 3D geometric 
models is segmentation, extracting regions or features of 
interests. The second step is to generate a surface 
representation of segmented volumes. The geometric 
models representing the surface of a 3D segmented volume 
are often described by a set of triangles because of their 
simple structure. This structure allows fast mathematical 

manipulations and it is very suitable for simulation 
algorithms. There are many methods proposed for the 
isosurface generation. The marching cubes algorithm 
[LC87] is one of the most popular methods used in 
generating surface triangulation because of its sub-voxel 
processing that produce high quality meshes. The bone and 
face surfaces are generated using the marching cubes 
algorithm and the results are then decimated ensuring the 
number of triangles generated is suitable for the simulation 
algorithm. The resultant face surface consists of 6292 
vertices and 10519 triangles and the bone surface has 
10056 vertices and 19770 triangles. Once both skin and 
bone surfaces are generated, tissue layers between them 
need to be included to the model. 
 

 
 
                                           (a)  
          

 
 
                             (b) 
Figure 1:  Segmenting head image for skin (a) and bone 
(b) surfaces. 
 
  The tissue between the face surface and the bone surface 
is represented by a number of small prismatic volumes. 
Given that the skin and bone surfaces are represented by 
triangles, prismatic elements can be generated using 
various methods. Each vertex of a triangle of the skin 
surface is projected on to the bone surface. This is done by 



finding the intersection points between the normal vectors 
of each skin vertex and the bone triangles. For better and 
smooth results the normal vertex is determined by 
averaging the normals of the triangles meeting at this 
vertex. Since the face surface contains curved regions, it 
may be impossible to find an intersection point for every 
normal vector of a skin vertex. Besides, there are hollow 
areas on the bone structure preventing an intersection. In 
addition, some of the intersection points found may be at 
completely the wrong places. Therefore using the skin 
vertex normal will not result in a good representation of 
tissue layers. 
   In [KK99] a method tracing a ray from each skin vertex 
to a predetermined point on the bone structure (or a point 
inside the skull) is used in the generation of the prismatic 
elements. An average point, called the centre point, is 
determined for all bone triangles. Each skin vertex is then 
traced towards this point and intersections with the bone 
surface are recorded. If there is no intersection, then by 
interpolating the neighbouring points of intersection a false 
point of intersection is generated. This method guaranties 
an intersection point for each skin vertex but may not 
produce very good prismatic element shapes. In addition 
some prisms may overlap. This happens because a single 
centre point can not realistically represent the midpoint of 
the face, which is not a sphere. Interpolating neighbouring 
elements in order to assign a connection point may result in 
an unrealistic approximation as well. 
    We modified the method mentioned above as follows. 
One centre point fails to represent the human head 
accurately, which is not a perfect sphere. Therefore 
assigning two centre points may better represent the facial 
model in terms of finding the origin. As shown in Figure 2 
we placed two centre points into the bone structure. The lip 
level at the skin surface determines which skin vertices use 
a specific centre point. Vertices above the lips level are 
traced back to the centre point at the upper part of the jaw. 
Vertices below the lip level use the centre point at the 
lower jaw. Each skin vertex is then traced back to one of 
the two centre points and any intersection with the bone 
triangles is recorded. On this first run we also determine an 
average thickness based on the intersected rays. On the 
second run we assign an intersection point to those vertices 
that did not get a hit in the ray direction on the first run 
(preventing interpolating the neighbouring points of 
intersection). The average thickness is used to determine 
the depth of these intersections. This method also 
guaranties an intersection for each skin vertex and 
produces better-shaped prism elements, representing 
different tissue layers, while minimizing any possible 
overlaps.  
   Using ray tracing algorithm, prism elements are obtained. 
A typical prism element between the skin and bone 
surfaces is shown in Figure 3. The number of prism 
elements is equal to the number of skin triangles. It is 
important to note that none of the skin vertices above the 
bone level are used in this process. The skin and bone 
surfaces as well as the bone level can clearly be seen from 
Figure 2. Therefore the number of skin vertices involved in 
finding the prism element is 2628 and the number of the 
skin triangles is 4606. 
  Once the prism elements representing different tissue 
layers between the skin and bone surfaces are obtained, 

surgical operation can take place and consecutively 
simulation algorithm performs deformation. The simulation 
algorithm, mass-spring chain is briefly explained. Details 
of the algorithm and its implementation are given in 
[DZ2004]. 
 

 
 
Figure 2: Skin and bone surfaces with two marks 
representing two centres used in ray tracing algorithm. 

 
 

 
 
Figure 3: A prismatic element between the skin surface 
and the bone surface. 
 
   
3. Mass-spring chain (MSC) algorithm 
 
    The Mass-Spring-Chain algorithm models the object in a 
similar way to the mass-spring systems algorithm in that 
the object consists of a number of mass-points connected 
with springs. As in the mass-spring system’s algorithm, 
springs perform a deformation by stretching or 
compression. The deformation starts from the moved mass-



points and propagates through the entire 3D lattice of 
springs. Spring movement is limited between two 
extremes; rigid movement and elastic movement. The 
spring length is also constrained between the allowed 
maximum compressions and stretching. The deformation 
algorithm is then responsible for finding the necessary 
movements and the amounts of deformation of the springs 
within these set limits. Mass-spring chain algorithm can be 
viewed in there parts. 
 
3.1.   Deformation pattern 
 
    The 3D lattice is initially considered to be in a passive 
state, which implies that all points and springs in the mesh 
are not under the influence of any external force. Figure 4 
(a) illustrates such a lattice where the object is constrained 
at its two vertices shown as black. When a point in 3D 
mesh is subject to an external force (by grabbing it and 
moving it) this particular point becomes an active point or, 
in other words, a source point for the deformation. An 
active point is shown as green in Figure 4 (b).  

 
(a) (b) 

 
(c)                                      (d) 
 

Figure 4: Deformation propagation of the proposed 
algorithm; (a) initial stage, (b) first, (c) second, and (c) last 
step. 
 
A deformation starts from an active point and travels 
through the rest of the lattice in every direction using the 
springs. The springs connected to the active point are now 
defined as active springs, because they are subject to 
movement and deformation. These springs are represented 
by green lines. Arrows on these lines show direction of the 
deformation propagation. The other end points of the active 
springs are called semi-active points, because they will be 
repositioned (causing the deformation), and will become 
active points themselves in the next step of the algorithm. 
Semi-active points are shown in yellow in Figure 4 (b). 
Springs connecting semi-active points are called semi-
active springs and they have arrows at their both ends 
representing deformation at both ends. Figure 4 (c) shows 

the second step of the deformation. Previous semi-active 
points (yellow in Figure 4 (b)) are now active points and 
shown as green. The last step’s active point is now shown 
by red representing deformed state. The last step of the 
propagation is given in Figure 4 (d) where only one semi-
active point is left. This point is processed and deformation 
propagation ends here. Constrained vertices are not 
considered as active or semi-active points and are not 
repositioned (deformed). Springs connected to constrained 
vertices, however, are moved and deformed.  
 
3.2.  Movement limits and new orientation 
 
    We assume that there are two extreme cases possible 
regarding spring movements. One is defined as a rigid 
movement without any rotation. When a point is moved, a 
connected spring moves accordingly. The initial spring and 
the moved spring are now parallel to each other and the 
distance between them is equal to the distance traveled by 
the moving point.  An example is given in Figure 5 where 

initial triangle is represented by  and vertex 
∆

ACB A  is 
moved to a new location given by . The spring given by a
AB  makes a rigid movement to a new location given by 

ab . A vector called the rigid movement vector, , 
defines this new location and sets the rigid limit or, in other 
words, the upper limit beyond which there will not be any 
movement. The opposite situation is known as super elastic 
movement. It is assumed that the spring offers no 
resistance to its movement, i.e. while one end is moving the 

other end stays still. A vector, represented by , from the 
moving end to the stationary end of the spring sets this 
limit. It is therefore our assumption that the moved and 
deformed spring will be somewhere between the rigid and 
elastic movement vectors. 
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Figure 5:  Elastic ( ) and rigid ( ) limit (movement)  
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vectors. 
 
    In order to establish the spring location after the vertex 
movement, we employ a vector called the orientation 
vector whose purpose is to indicate where the spring lies 



between the movement vectors   and . Both 
movement vectors are located on a surface defined by 

 in Figure 5. Orientation vector and new 

location for moved spring (

→
v

→
u

)(ABbaS
AB ) will be on this surface as 

well. Depending on the material properties, the spring’s 
location will vary between the two movement vectors and 
this location is indicated by orientation vector. The 
orientation vector therefore spans the entire surface 

between  and  . Therefore an equation for the 
orientation vector can be expressed in terms of the 
movement vectors as: 

→
v

→
u

→→→
−+= vuw )1( αα  

where  is orientation vector and 
→
w α  represents the 

deformation characteristics of the object under 
consideration. If the object is very elastic in nature, then 
the orientation vector is expected to be closer to the elastic 
limit. Alternatively if the springs are defined with a higher 
stiffness then the orientation vector approaches the rigid 
limit. Thus, the parameter α  can also be considered as a 
control coefficient for the spring movement. New locations 

(orientations) for springs in triangle are given in 
Figure 6 for different values of parameter

∆
ACB

α .                                                                                                      
  

 

Figure 6: New locations of triangle   because of 
movement of vertex A. Control parameter 

∆
ACB

α  varies from 
0.0 (elastic) to 1.0 (rigid). 
 
3.3.   Deformation magnitude and direction 
 
    Once new locations for springs are determined 
deformation algorithm finds necessary deformations and 
their directions. Springs are allowed to stretch or compress 
for a certain percentage of their original lengths. The 
current spring length varies between the maximum 
compression length and the maximum stretch length. As in 
the mass-spring system’s algorithms, the current spring 
lengths are found and compared with their initial (pre-set) 
lengths. There are three possible outcomes from this 
comparison. If there is no difference between them, there 
will be no spring deformation. The current spring length 

may be larger then its rest length. In this case, the spring is 
being stretched. In opposite case, where the initial spring 
length is larger than the current spring length, thus the 
spring is being compressed. In both cases the spring is 
deformed and the amount of the deformation needs to be 
determined. The magnitude of the deformation may be 
calculated using many different formulations. Here, we use 
the following:  

              )1(max
or

dr

eddef
β−

−=                                            

where is the allowed maximum stretch or 

compression,  is the difference between the current and 

the rest length, is the rest length of the spring and the 

slope parameter 

maxd
dr

or
β  represents the deformation rate. 

 
    In our work, for simplicity we choose the direction of the 
orientation vector as the deformation direction. If the 
spring is being compressed, then the deformation direction 
is opposite to the orientation direction. The amount of 
deformation is then subtracted from the original spring 
length, leaving the current spring length shorter than the 
original length. If the spring is being stretched, then the 
deformation direction is the same as the orientation 
direction. In this case the deformation is added to the 
original spring length elongating the spring. Deforming 
semi-active springs is slightly more complex than 
deforming active springs. The strategy is different for semi-
active springs because unlike active springs both their 
endpoints are moving at the same time.  Semi-active 
springs are allowed to move and deform freely during the 
deformation of active springs. Then the deformation 
algorithm checks if the semi-active springs violate the 
spring length criteria. If the maximum stretch and the 
maximum compression conditions are satisfied, no action 
is taken. Otherwise, the semi-active springs are deformed 
to meet the set conditions. Figure 7 shows an animation of 
a simple geometric figure. The figure is pulled and pushed 
from one of its vertices while the two most left vertices are 
constrained.     
      

   
 
Figure 7: Example of simple figure, which is animated by 
pulling and pushing one of its vertices. 
 
 
4. Results and conclusions 
 
    Figure 8 (a) and (b) show surgical operations round the 
jaw area. Lower jaw is cut, Figure 8 (a), and pushed back 



to align the lower and upper parts, Figure 8 (b).  This 
operation causes deformations on the facial tissues. These 
deformations are predicted here using mass-spring chain 
algorithm. 
 

 
 
                                            (a) 
 

 
 
                                         (b) 
 
Figure 8: Surgical operations are performed on the bone 
structure. 
 
Deformations are simulated and results are shown in Figure 
9.  First two figures show pre and after surgery images. 
Deformations especially around the lips area show the 
changes on the face surface. The images from pre-surgery 
and after surgery are given in the last part of the Figure 9, 
which allows clear comparison between them and shows 
that simulation algorithm successfully predicts the soft 
tissue changes due to bone manipulations. Simulation time 
for this prediction is 0.21 seconds on a 2.40 GHz. Pentium 
4 computer. Considering that model consists of 7884 
vertices and 19724 springs, mass-spring chain algorithm 
concludes in a reasonable time.  
   

 

 

 
 
Figure 9: Facial tissue prediction. First image is the face 
before the surgery, middle one gives tissue deformations 
and the last image represents both pre and post surgery 
images superimposed.   



An animation of mouth opening due to jaw rotation is also 
simulated and resultant facial tissue changes are given in 
Figure 10. The real-time capability of mass-spring chain 
algorithm is demonstrated in Figure 11, where a moon 
character, consisting of 3198 vertices and 9505 springs, is 
animated. Animation time for this example is 0.015 
seconds.   
 

   
 
Figure 10: Mouth opening before and after the operation.  
 

  
 

   
 
Figure 11: Deformation simulation of a moon character. 
 
Although verification using real data was not done due to 
the lack of the post-operation images, the results were 
verified visually by the surgeons. Future works will include 
comparison of the results with post operation images and 
with the results form other simulation methods. 
 
References 
 
[DZ04] DUYSAK, A, ZHANG J. J.: Fast 

Simulation of Deformable Objects, 
International symposium on Computer 
Animation, The 8th International 
Conference on Information Visualization, 
IEEE Computer Society, (IV 2004, London) 
(2004), pp.422-427.  

[KCM00]   KUHNOPFEL, U., CAKMAK, H.K., 
MAAB  H.: Endoscapic surgery training 

using virtual reality and deformable tissue 
simulation. Computers&Graphics 24 
(2000), pp. 621-632. 

 [KGB*96]   KOCH, R. M., GROSS, M. H., BUREN, 
D.F., FANKHAUSER,  G.,  PARISH, Y. I. 
H., CARLS, F.R.: Simulating facial surgery 
using finite element models. ACM 
Computer Graphics SIGGRAPH,( 1996) 
pp.421-428. 

[KGB98]     KOCH R. M., GROSS, M. H. BOSSHARD 
A.   A.: Emotion Editing Using Finite 
Elements, Proceedings of the 
Eurographics, Computer                   
Graphics Forum, (1998) Vol. 17, N0. 3, 
C295- C302. 

[KGK*98] KEEVE, E., GIROD, S., KIKINS, R., 
GIROD, B.:  Deformable modeling of  
facial  tissue  for craniofacial surgery 
simulation.  Invited Paper,                   
Computer aided surgery, (1998) pp. 1-10. 

[KK99] KEEVE, E., KIKINIS, R.:             
Deformable  Modeling of Facial Tissue. 
Proceedings of theFirst Joint  BMES/EMBS  
Conference,  (1999) Vol. 1, pp. 502. 

[KRG*02] KOCH, R. M., ROTH, S.H.M., GRASS, 
M.H., ZIMMERMANN, A. P., SOILER, 
H. F.:  A framework for facial surgery 
simulation.Proceedings of ACMSCCG 
(2002).  http://graphics.ethz.ch 

[LC87]  LORENSEN, W. E., CLINE, H. E.: A High 
Resolution 3D Surface Construction  
Algorithm. ACMComputerGraphics (1987)  

                         Volume 21, No  24, pp. 163-169. 
[LTW95]          LEE, Y., TERZOPOULOS, D., WATERS,  

K.: Realistic modeling for facial animation. 
ACM Computer Graphics, (1995) Vol. 29, 
pp. 55-62, Aug. 6-11. 

[NT98] NEDEL, L. P., THALMANN, D.: Real 
Time Muscle Deformations Using Mass-
spring Systems. Computer Graphics 
International, Proceedings,( 1998) pp. 156-
165. 

[RGT*98] ROTH, S. H. M., GROS, M. H., 
TURELLO, S., CARLS, F. R.: A 
Bernstein-Bezier   Approach to Soft Tissue 
Simulation. EUROGRAPHICS (1998).  
Volume  17,  No 3, pp. C285-29. 

 [TGG99] TESCHNER, M., GIROD, S., GIROD, B.: 
Optimization approaches for soft-tissue                    
prediction in craniofocial surgery 
simulation. Second Int. Conf. On Medical 
Image Computing and Computer-Assisted 
Intervention MICCAI’99, pp. 1183-1190. 

[TGG00]  TESCHNER, M., GIROD, S., GIROD, B.:   
                   Direct computation of nonlinear soft-tissue  
                   deformation.  Vision, Modeling, and  
                   Visualization VMV’00, pp. 383-390. 
[TW91] TERZOPOULOS, D., WATERS, K.:  
                  Techniques for realistic facial modeling and  

animating. Proc. Of Computer 
Animation’91, (1991) pp 59-73. 

[3DV]         3DVIEWNIX:  
                    http://www.mipg.upenn.edu/~Vnews/. 


